Systems Analysis and Control

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Systems Analysis and Control"

Transcription

1 Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics

2 Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles Steady-State Error Rise Time Settling Time Complex Poles Complex Pole Locations Damped/Natural Frequency Damping and Damping Ratio M. Peet Lecture 8: Control Systems 2 / 24

3 Feedback Control Recall the Feedback Interconnection - u(s) + K(s) G(s) y(s) Feedback: Controller: u i = K(u y) Plant: y = Gu i The output signal is ŷ(s), ŷ(s) = Ĝ(s) ˆK(s) 1 + Ĝ(s) ˆK(s)û(s) M. Peet Lecture 8: Control Systems 3 / 24

4 Controlling the Inverted Pendulum Model Open Loop Transfer Function 1 Ĝ(s) = Js 2 Mgl 2 Controller: Static Gain: ˆK(s) = K Input: Impulse: û(s) = 1. Closed Loop: Lower Feedback ŷ(s) = Ĝ(s) ˆK(s) = 1 + Ĝ(s) ˆK(s)û(s) K Js 2 Mgl K Js 2 Mgl 2 = K Js 2 Mgl 2 + K M. Peet Lecture 8: Control Systems 4 / 24

5 Controlling the Inverted Pendulum Model Closed Loop Impulse Response: Lower Feedback K ŷ(s) = Js 2 Mgl 2 + K Traits: Infinite Oscillations Oscillates about 0. Amplitude Impulse Response Open Loop Impulse Response: Time (sec) 18 x 105 Impulse Response ŷ(s) = 1 2J 1 J Mgl s Mgl 2J 1 s + Mgl 2J Amplitude Unstable! Time (sec) M. Peet Lecture 8: Control Systems 5 / 24

6 Controlling the Suspension System Open Loop Transfer Function: Set m c = m w = g = c = K 1 = K 2 = 1. x 1 m c Ĝ(s) = s 2 + s + 1 s 4 + 2s 3 + 3s 2 + s + 1 x 2 m w Controller: Static Gain: ˆK(s) = k u Closed Loop: Lower Feedback Ĝ(s) ˆK(s) ŷ(s) = 1 + Ĝ(s) ˆK(s)û(s) = k(s 2 + s + 1) s 4 + 2s 3 + (3 + k)s 2 + (1 + k)s + (1 + k) M. Peet Lecture 8: Control Systems 6 / 24

7 Controlling the Suspension Problem Effect of changing the Feedback, k Closed Loop Step Response: ŷ(s) = k(s 2 + s + 1) 1 s 4 + 2s 3 + (3 + k)s 2 + (1 + k)s + (1 + k) s High k: Overshot the target Quick Response Closer to desired value of f Low k: Slow Response No overshoot Final value is farther from 1. Questions: Which Traits are important? How to predict the behaviour? Figure : Step Response for different k M. Peet Lecture 8: Control Systems 7 / 24

8 Stability The most basic property is Stability: Definition 1. A system, G is Stable if there exists a K > 0 such that kgukl2 KkukL2 Note: Although this is the true definition for systems defined by transfer functions, it is rarely used. Bounded input means bounded output. Stable is y(t) 0 when u(t) 0. M. Peet Lecture 8: Control Systems 8 / 24

9 Stability Definition 2. The Closed Right Half-Place, CRHP is the set of complex numbers with non-negative real part. {s C : Real(s) 0} Im(s) CRHP Re(s) Im(s) Figure : Unstable Re(s) Theorem 3. A system G is stable if and only if it s transfer function Ĝ has no poles in the Closed Right Half Plane. Check stability by checking poles. x is a pole o is a zero M. Peet Lecture 8: Control Systems 9 / 24

10 Predicting Steady-State Error Definition 4. Steady-State Error for a stable system is the final difference between input and output. e ss = lim t u(t) y(t) Usually measured using the step response. Since u(t) = 1, e ss = 1 lim t y(t) Figure : Suspension Response for k = 1 M. Peet Lecture 8: Control Systems 10 / 24

11 Predicting Steady-State Error Recall: For any system G, by partial fraction expansion: So which means and hence ŷ(s) = Ĝ(s)1 s = r 0 s + r 1 s p y(t) = r 0 1(t) + r 1 e p1t r n e pnt lim t y(t) = r 0 e ss = 1 r 0 r n s p n M. Peet Lecture 8: Control Systems 11 / 24

12 Predicting Steady-State Error The steady-state error is given by r 0. e ss = 1 r 0 Recall: The residue at s = 0 is r 0 and is found as r 0 = Ĝ(s) s=0 = lim s 0 Ĝ(s) Thus the steady-state error is e ss = 1 lim s 0 Ĝ(s) This can be generalized to find the limit of any signal: Theorem 5 (Final Value Theorem). lim y(t) = lim sŷ(s) t s 0 Assumes the limit exists (Stability) Can be used to find response to other inputs Ramp, impulse, etc. M. Peet Lecture 8: Control Systems 12 / 24

13 Predicting Steady-State Error Numerical Example Ĝ(s) = The steady-state response is k(s 2 + s + 1) s 4 + 2s 3 + (3 + k)s 2 + (1 + k)s + (1 + k) y ss = lim s 0 sŷ(s) = lim s 0 Ĝ(s) = lim s 0 k(s 2 + s + 1) s 4 + 2s 3 + (3 + k)s 2 + (1 + k)s + (1 + k) = k 1 + k The steady-state error is When k = 0, e ss = 1 As k, e ss = 0 e ss = 1 y ss = 1 = k k 1 + k M. Peet Lecture 8: Control Systems 13 / 24

14 Dynamic Response Characteristics Two Types of Response By now, you know that motion is dominated by the poles! Simplify the response by considering response of each pole. Allows quantitative analysis Figure : Real Pole Figure : Complex Pair of Poles We start with Real Poles M. Peet Lecture 8: Control Systems 14 / 24

15 Step Response Characteristics Real Poles Consider a real pole step response: ŷ(s) = r 1 s p s = r r p s p p s y(t) = r p ( e pt 1 ) Assume stable, so p < 0 Cases: p > 0 implies y(t) p < 0 implies y(t) r p Steady-State Error: e ss = 1 r p M. Peet Lecture 8: Control Systems 15 / 24

16 Step Response Characteristics Rise Time Definition 6. The rise time, T r, is the time it takes to go from.1 to.9 of the final value. LINK: Double Inverted Pendulum LINK: Triple Inverted Pendulum M. Peet Lecture 8: Control Systems 16 / 24

17 Step Response Characteristics Rise Time Besides the final value: How quickly will the system respond? Definition 7. The rise time, T r, is the time it takes to go from.1 to.9 of the final value. t 1 when y(t 1 ) =.1 r p is found as.1 = e pt1 1 ln(1.1) = pt 1 ln.9 t 1 = p Likewise for y(t 2 ) =.9 r p t 2 = ln.1 p = 2.31 p =.11 p we get Thus rise time for a Single Pole is: T r = t 2 t 1 = 2.31 p.11 p = 2.2 p M. Peet Lecture 8: Control Systems 17 / 24

18 Step Response Characteristics Settling Time Definition 8. The Settling Time, T s, is the time it takes to reach and stay within.99 of the final value Figure : Complex Pair of Poles LINK: Bouncing Balls LINK: Newton s Cradle M. Peet Lecture 8: Control Systems 18 / 24

19 Step Response Characteristics Settling Time Will it stay there: How fast does it converge? Definition 9. The Settling Time, T s, is the time it takes to reach and stay within.99 of the final value. The time at y(t s ) =.99 r p.99 = e pts 1 is found as ln(.01) = pt s ln.01 T s = p = 4.6 p The settling time for a Single Pole is: T s = 4.6 p M. Peet Lecture 8: Control Systems 19 / 24

20 Solution for Complex Poles ŷ(s) = ω 2 d + σ2 s 2 + 2σs + ω 2 d + σ2 1 s = σ 2 + ω 2 d (s + σ) 2 + ω 2 d The poles are at s = σ ± ω d ı and s = 0. The solution is: y(t) = 1 e (cos(ω σt d t) σ ) sin(ω d t) ω d s 2σ = (s + σ) 2 + ωd s The result is oscillation with an Exponential Envelope. Envelope decays at rate σ Speed of oscillation is ω d, the Damped Frequency M. Peet Lecture 8: Control Systems 20 / 24

21 Damping We use several adjectives to describe exponential decay: Undamped Oscillation continues forever, σ = 0 Underdamped Oscillation continues for many cycles. Damped Critically Damped No oscillation or overshoot. ω d = 0 M. Peet Lecture 8: Control Systems 21 / 24

22 Step Response Characteristics Damping Ratio Besides ω d, there is another way to measure oscillation Im(s) Definition 10. The Natural Frequency of a pole at p = σ + ıω d is ω n = σ 2 + ω 2 d. ω n Re(s) 1 1 for ŷ(s) = s 2 +as+b s, ω n = b. Radius of the pole in complex plane. Resonant Frequency. Also known as resonant frequency M. Peet Lecture 8: Control Systems 22 / 24

23 Step Response Characteristics Damping Ratio Besides σ, there are other ways to measure damping Definition 11. The Damping Ratio of a pole at p = σ + ıω is ζ = σ ω n. 1 1 for ŷ(s) = s 2 +as+b s, ζ = a 2. b Gives the ratio by which the amplitude decreases per oscillation (almost...). M. Peet Lecture 8: Control Systems 23 / 24

24 Summary What have we learned today? Characteristics of the Response Real Poles Steady-State Error Rise Time Settling Time Complex Poles Complex Pole Locations Damped/Natural Frequency Damping and Damping Ratio Continued in Next Lecture M. Peet Lecture 8: Control Systems 24 / 24

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of

More information

Chapter 12. Feedback Control Characteristics of Feedback Systems

Chapter 12. Feedback Control Characteristics of Feedback Systems Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an open-loop system (a system without feedbac) and a closed-loop

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

Transient Response of a Second-Order System

Transient Response of a Second-Order System Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

More information

Notes for ECE-320. Winter by R. Throne

Notes for ECE-320. Winter by R. Throne Notes for ECE-3 Winter 4-5 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

Lab Experiment 2: Performance of First order and second order systems

Lab Experiment 2: Performance of First order and second order systems Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 First-Order Specs: Step : Pole Real inputs contain

More information

16.31 Homework 2 Solution

16.31 Homework 2 Solution 16.31 Homework Solution Prof. S. R. Hall Issued: September, 6 Due: September 9, 6 Problem 1. (Dominant Pole Locations) [FPE 3.36 (a),(c),(d), page 161]. Consider the second order system ωn H(s) = (s/p

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology. Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control

More information

Lab # 4 Time Response Analysis

Lab # 4 Time Response Analysis Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an

More information

Lecture 9 Time-domain properties of convolution systems

Lecture 9 Time-domain properties of convolution systems EE 12 spring 21-22 Handout #18 Lecture 9 Time-domain properties of convolution systems impulse response step response fading memory DC gain peak gain stability 9 1 Impulse response if u = δ we have y(t)

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

More information

1 (30 pts) Dominant Pole

1 (30 pts) Dominant Pole EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +

More information

12.7 Steady State Error

12.7 Steady State Error Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there

More information

Poles, Zeros and System Response

Poles, Zeros and System Response Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired

More information

Dynamic System Response. Dynamic System Response K. Craig 1

Dynamic System Response. Dynamic System Response K. Craig 1 Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. Non-LTI Behavior Solution of Linear, Constant-Coefficient, Ordinary Differential Equations Classical

More information

Second Order and Higher Order Systems

Second Order and Higher Order Systems Second Order and Higher Order Systems 1. Second Order System In this section, we shall obtain the response of a typical second-order control system to a step input. In terms of damping ratio and natural

More information

Root Locus Design Example #3

Root Locus Design Example #3 Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll

More information

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

More information

Project Lab Report. Michael Hall. Hao Zhu. Neil Nevgi. Station 6. Ta: Yan Cui

Project Lab Report. Michael Hall. Hao Zhu. Neil Nevgi. Station 6. Ta: Yan Cui Project Lab Report Michael Hall Hao Zhu Neil Nevgi Station 6 Ta: Yan Cui Nov. 12 th 2012 Table of Contents: Executive Summary 3 Modeling Report.4-7 System Identification 7-11 Control Design..11-15 Simulation

More information

Homework 7 - Solutions

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

More information

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Modeling and Experimentation: Mass-Spring-Damper System Dynamics Modeling and Experimentation: Mass-Spring-Damper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS STAFF NAME: Mr. P.NARASIMMAN BRANCH : ECE Mr.K.R.VENKATESAN YEAR : II SEMESTER

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

Homework 11 Solution - AME 30315, Spring 2015

Homework 11 Solution - AME 30315, Spring 2015 1 Homework 11 Solution - AME 30315, Spring 2015 Problem 1 [10/10 pts] R + - K G(s) Y Gpsq Θpsq{Ipsq and we are interested in the closed-loop pole locations as the parameter k is varied. Θpsq Ipsq k ωn

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Goals for today 2.004

Goals for today 2.004 Goals for today Block diagrams revisited Block diagram components Block diagram cascade Summing and pickoff junctions Feedback topology Negative vs positive feedback Example of a system with feedback Derivation

More information

EE3CL4: Introduction to Linear Control Systems

EE3CL4: Introduction to Linear Control Systems 1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 5: Calculating the Laplace Transform of a Signal Introduction In this Lecture, you will learn: Laplace Transform of Simple

More information

Feedback Control part 2

Feedback Control part 2 Overview Feedback Control part EGR 36 April 19, 017 Concepts from EGR 0 Open- and closed-loop control Everything before chapter 7 are open-loop systems Transient response Design criteria Translate criteria

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Essence of the Root Locus Technique

Essence of the Root Locus Technique Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general set-up, namely for the case when the closed-loop

More information

Example on Root Locus Sketching and Control Design

Example on Root Locus Sketching and Control Design Example on Root Locus Sketching and Control Design MCE44 - Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We

More information

Root Locus Design Example #4

Root Locus Design Example #4 Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is

More information

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

More information

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

More information

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

ME 375 System Modeling and Analysis. Homework 11 Solution. Out: 18 November 2011 Due: 30 November 2011 = + +

ME 375 System Modeling and Analysis. Homework 11 Solution. Out: 18 November 2011 Due: 30 November 2011 = + + Out: 8 November Due: 3 November Problem : You are given the following system: Gs () =. s + s+ a) Using Lalace and Inverse Lalace, calculate the unit ste resonse of this system (assume zero initial conditions).

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles

More information

APPLICATIONS FOR ROBOTICS

APPLICATIONS FOR ROBOTICS Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

More information

Performance of Feedback Control Systems

Performance of Feedback Control Systems Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

More information

Homework Assignment 3

Homework Assignment 3 ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full

More information

DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS

DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS 7 DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS Previous chapters, by introducing fundamental state-space concepts and analysis tools, have now set the stage for our initial foray into statespace methods

More information

Frequency Response of Linear Time Invariant Systems

Frequency Response of Linear Time Invariant Systems ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z

More information

Tradeoffs and Limits of Performance

Tradeoffs and Limits of Performance Chapter 9 Tradeoffs and Limits of Performance 9. Introduction Fundamental limits of feedback systems will be investigated in this chapter. We begin in Section 9.2 by discussing the basic feedback loop

More information

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1 Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s) C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

More information

Ch 6.4: Differential Equations with Discontinuous Forcing Functions

Ch 6.4: Differential Equations with Discontinuous Forcing Functions Ch 6.4: Differential Equations with Discontinuous Forcing Functions! In this section focus on examples of nonhomogeneous initial value problems in which the forcing function is discontinuous. Example 1:

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8 I * * Massachusetts

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

EE102 Homework 2, 3, and 4 Solutions

EE102 Homework 2, 3, and 4 Solutions EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of

More information

Vibrations: Second Order Systems with One Degree of Freedom, Free Response

Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single Degree of Freedom System 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 5//007 Lecture 0 Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single

More information

An Introduction to Control Systems

An Introduction to Control Systems An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a

More information

Frequency domain analysis

Frequency domain analysis Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation

More information

Chapter 3. 1 st Order Sine Function Input. General Solution. Ce t. Measurement System Behavior Part 2

Chapter 3. 1 st Order Sine Function Input. General Solution. Ce t. Measurement System Behavior Part 2 Chapter 3 Measurement System Behavior Part 2 1 st Order Sine Function Input Examples of Periodic: vibrating structure, vehicle suspension, reciprocating pumps, environmental conditions The frequency of

More information

Laboratory handouts, ME 340

Laboratory handouts, ME 340 Laboratory handouts, ME 340 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 4. 2014-2016 Harry Dankowicz, unless otherwise

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:

More information

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis Chapter 1 Harmonic Oscillator Figure 1.1 illustrates the prototypical harmonic oscillator, the mass-spring system. A mass is attached to one end of a spring. The other end of the spring is attached to

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

More information

An Internal Stability Example

An Internal Stability Example An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

More information

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.

More information

Richiami di Controlli Automatici

Richiami di Controlli Automatici Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

More information

Damped Harmonic Oscillator

Damped Harmonic Oscillator Damped Harmonic Oscillator Wednesday, 23 October 213 A simple harmonic oscillator subject to linear damping may oscillate with exponential decay, or it may decay biexponentially without oscillating, or

More information

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 5-8 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3

More information

Lecture 12. AO Control Theory

Lecture 12. AO Control Theory Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1 What are control systems? Control is the process of making a system variable

More information

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may

More information

Chapter 5 HW Solution

Chapter 5 HW Solution Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, time-invariant system. Let s see, I

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline Input-Output

More information

Linear Systems. Chapter Basic Definitions

Linear Systems. Chapter Basic Definitions Chapter 5 Linear Systems Few physical elements display truly linear characteristics. For example the relation between force on a spring and displacement of the spring is always nonlinear to some degree.

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

K c < K u K c = K u K c > K u step 4 Calculate and implement PID parameters using the the Ziegler-Nichols tuning tables: 30

K c < K u K c = K u K c > K u step 4 Calculate and implement PID parameters using the the Ziegler-Nichols tuning tables: 30 1.5 QUANTITIVE PID TUNING METHODS Tuning PID parameters is not a trivial task in general. Various tuning methods have been proposed for dierent model descriptions and performance criteria. 1.5.1 CONTINUOUS

More information

Professor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 21 Jansen Sheng and Wenjie Chen, UC Berkeley 1. (15 pts) Partial fraction expansion (review) Find the inverse Laplace transform of the following

More information

Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II

ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #27 Wednesday, March 17, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Discrete Delta Domain Models The

More information

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control

More information

Robust Performance Example #1

Robust Performance Example #1 Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants

More information

Spacecraft and Aircraft Dynamics

Spacecraft and Aircraft Dynamics Spacecraft and Aircraft Dynamics Matthew M. Peet Illinois Institute of Technology Lecture 11: Longitudinal Dynamics Aircraft Dynamics Lecture 11 In this Lecture we will cover: Longitudinal Dynamics: Finding

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

16.30/31, Fall 2010 Recitation # 2

16.30/31, Fall 2010 Recitation # 2 16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R + - E G c (s) G(s) C Figure 1: The standard block diagram

More information

Recitation 11: Time delays

Recitation 11: Time delays Recitation : Time delays Emilio Frazzoli Laboratory for Information and Decision Systems Massachusetts Institute of Technology November, 00. Introduction and motivation. Delays are incurred when the controller

More information

Learn2Control Laboratory

Learn2Control Laboratory Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should

More information