Systems Analysis and Control


 Sherman McCormick
 1 years ago
 Views:
Transcription
1 Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics
2 Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles SteadyState Error Rise Time Settling Time Complex Poles Complex Pole Locations Damped/Natural Frequency Damping and Damping Ratio M. Peet Lecture 8: Control Systems 2 / 24
3 Feedback Control Recall the Feedback Interconnection  u(s) + K(s) G(s) y(s) Feedback: Controller: u i = K(u y) Plant: y = Gu i The output signal is ŷ(s), ŷ(s) = Ĝ(s) ˆK(s) 1 + Ĝ(s) ˆK(s)û(s) M. Peet Lecture 8: Control Systems 3 / 24
4 Controlling the Inverted Pendulum Model Open Loop Transfer Function 1 Ĝ(s) = Js 2 Mgl 2 Controller: Static Gain: ˆK(s) = K Input: Impulse: û(s) = 1. Closed Loop: Lower Feedback ŷ(s) = Ĝ(s) ˆK(s) = 1 + Ĝ(s) ˆK(s)û(s) K Js 2 Mgl K Js 2 Mgl 2 = K Js 2 Mgl 2 + K M. Peet Lecture 8: Control Systems 4 / 24
5 Controlling the Inverted Pendulum Model Closed Loop Impulse Response: Lower Feedback K ŷ(s) = Js 2 Mgl 2 + K Traits: Infinite Oscillations Oscillates about 0. Amplitude Impulse Response Open Loop Impulse Response: Time (sec) 18 x 105 Impulse Response ŷ(s) = 1 2J 1 J Mgl s Mgl 2J 1 s + Mgl 2J Amplitude Unstable! Time (sec) M. Peet Lecture 8: Control Systems 5 / 24
6 Controlling the Suspension System Open Loop Transfer Function: Set m c = m w = g = c = K 1 = K 2 = 1. x 1 m c Ĝ(s) = s 2 + s + 1 s 4 + 2s 3 + 3s 2 + s + 1 x 2 m w Controller: Static Gain: ˆK(s) = k u Closed Loop: Lower Feedback Ĝ(s) ˆK(s) ŷ(s) = 1 + Ĝ(s) ˆK(s)û(s) = k(s 2 + s + 1) s 4 + 2s 3 + (3 + k)s 2 + (1 + k)s + (1 + k) M. Peet Lecture 8: Control Systems 6 / 24
7 Controlling the Suspension Problem Effect of changing the Feedback, k Closed Loop Step Response: ŷ(s) = k(s 2 + s + 1) 1 s 4 + 2s 3 + (3 + k)s 2 + (1 + k)s + (1 + k) s High k: Overshot the target Quick Response Closer to desired value of f Low k: Slow Response No overshoot Final value is farther from 1. Questions: Which Traits are important? How to predict the behaviour? Figure : Step Response for different k M. Peet Lecture 8: Control Systems 7 / 24
8 Stability The most basic property is Stability: Definition 1. A system, G is Stable if there exists a K > 0 such that kgukl2 KkukL2 Note: Although this is the true definition for systems defined by transfer functions, it is rarely used. Bounded input means bounded output. Stable is y(t) 0 when u(t) 0. M. Peet Lecture 8: Control Systems 8 / 24
9 Stability Definition 2. The Closed Right HalfPlace, CRHP is the set of complex numbers with nonnegative real part. {s C : Real(s) 0} Im(s) CRHP Re(s) Im(s) Figure : Unstable Re(s) Theorem 3. A system G is stable if and only if it s transfer function Ĝ has no poles in the Closed Right Half Plane. Check stability by checking poles. x is a pole o is a zero M. Peet Lecture 8: Control Systems 9 / 24
10 Predicting SteadyState Error Definition 4. SteadyState Error for a stable system is the final difference between input and output. e ss = lim t u(t) y(t) Usually measured using the step response. Since u(t) = 1, e ss = 1 lim t y(t) Figure : Suspension Response for k = 1 M. Peet Lecture 8: Control Systems 10 / 24
11 Predicting SteadyState Error Recall: For any system G, by partial fraction expansion: So which means and hence ŷ(s) = Ĝ(s)1 s = r 0 s + r 1 s p y(t) = r 0 1(t) + r 1 e p1t r n e pnt lim t y(t) = r 0 e ss = 1 r 0 r n s p n M. Peet Lecture 8: Control Systems 11 / 24
12 Predicting SteadyState Error The steadystate error is given by r 0. e ss = 1 r 0 Recall: The residue at s = 0 is r 0 and is found as r 0 = Ĝ(s) s=0 = lim s 0 Ĝ(s) Thus the steadystate error is e ss = 1 lim s 0 Ĝ(s) This can be generalized to find the limit of any signal: Theorem 5 (Final Value Theorem). lim y(t) = lim sŷ(s) t s 0 Assumes the limit exists (Stability) Can be used to find response to other inputs Ramp, impulse, etc. M. Peet Lecture 8: Control Systems 12 / 24
13 Predicting SteadyState Error Numerical Example Ĝ(s) = The steadystate response is k(s 2 + s + 1) s 4 + 2s 3 + (3 + k)s 2 + (1 + k)s + (1 + k) y ss = lim s 0 sŷ(s) = lim s 0 Ĝ(s) = lim s 0 k(s 2 + s + 1) s 4 + 2s 3 + (3 + k)s 2 + (1 + k)s + (1 + k) = k 1 + k The steadystate error is When k = 0, e ss = 1 As k, e ss = 0 e ss = 1 y ss = 1 = k k 1 + k M. Peet Lecture 8: Control Systems 13 / 24
14 Dynamic Response Characteristics Two Types of Response By now, you know that motion is dominated by the poles! Simplify the response by considering response of each pole. Allows quantitative analysis Figure : Real Pole Figure : Complex Pair of Poles We start with Real Poles M. Peet Lecture 8: Control Systems 14 / 24
15 Step Response Characteristics Real Poles Consider a real pole step response: ŷ(s) = r 1 s p s = r r p s p p s y(t) = r p ( e pt 1 ) Assume stable, so p < 0 Cases: p > 0 implies y(t) p < 0 implies y(t) r p SteadyState Error: e ss = 1 r p M. Peet Lecture 8: Control Systems 15 / 24
16 Step Response Characteristics Rise Time Definition 6. The rise time, T r, is the time it takes to go from.1 to.9 of the final value. LINK: Double Inverted Pendulum LINK: Triple Inverted Pendulum M. Peet Lecture 8: Control Systems 16 / 24
17 Step Response Characteristics Rise Time Besides the final value: How quickly will the system respond? Definition 7. The rise time, T r, is the time it takes to go from.1 to.9 of the final value. t 1 when y(t 1 ) =.1 r p is found as.1 = e pt1 1 ln(1.1) = pt 1 ln.9 t 1 = p Likewise for y(t 2 ) =.9 r p t 2 = ln.1 p = 2.31 p =.11 p we get Thus rise time for a Single Pole is: T r = t 2 t 1 = 2.31 p.11 p = 2.2 p M. Peet Lecture 8: Control Systems 17 / 24
18 Step Response Characteristics Settling Time Definition 8. The Settling Time, T s, is the time it takes to reach and stay within.99 of the final value Figure : Complex Pair of Poles LINK: Bouncing Balls LINK: Newton s Cradle M. Peet Lecture 8: Control Systems 18 / 24
19 Step Response Characteristics Settling Time Will it stay there: How fast does it converge? Definition 9. The Settling Time, T s, is the time it takes to reach and stay within.99 of the final value. The time at y(t s ) =.99 r p.99 = e pts 1 is found as ln(.01) = pt s ln.01 T s = p = 4.6 p The settling time for a Single Pole is: T s = 4.6 p M. Peet Lecture 8: Control Systems 19 / 24
20 Solution for Complex Poles ŷ(s) = ω 2 d + σ2 s 2 + 2σs + ω 2 d + σ2 1 s = σ 2 + ω 2 d (s + σ) 2 + ω 2 d The poles are at s = σ ± ω d ı and s = 0. The solution is: y(t) = 1 e (cos(ω σt d t) σ ) sin(ω d t) ω d s 2σ = (s + σ) 2 + ωd s The result is oscillation with an Exponential Envelope. Envelope decays at rate σ Speed of oscillation is ω d, the Damped Frequency M. Peet Lecture 8: Control Systems 20 / 24
21 Damping We use several adjectives to describe exponential decay: Undamped Oscillation continues forever, σ = 0 Underdamped Oscillation continues for many cycles. Damped Critically Damped No oscillation or overshoot. ω d = 0 M. Peet Lecture 8: Control Systems 21 / 24
22 Step Response Characteristics Damping Ratio Besides ω d, there is another way to measure oscillation Im(s) Definition 10. The Natural Frequency of a pole at p = σ + ıω d is ω n = σ 2 + ω 2 d. ω n Re(s) 1 1 for ŷ(s) = s 2 +as+b s, ω n = b. Radius of the pole in complex plane. Resonant Frequency. Also known as resonant frequency M. Peet Lecture 8: Control Systems 22 / 24
23 Step Response Characteristics Damping Ratio Besides σ, there are other ways to measure damping Definition 11. The Damping Ratio of a pole at p = σ + ıω is ζ = σ ω n. 1 1 for ŷ(s) = s 2 +as+b s, ζ = a 2. b Gives the ratio by which the amplitude decreases per oscillation (almost...). M. Peet Lecture 8: Control Systems 23 / 24
24 Summary What have we learned today? Characteristics of the Response Real Poles SteadyState Error Rise Time Settling Time Complex Poles Complex Pole Locations Damped/Natural Frequency Damping and Damping Ratio Continued in Next Lecture M. Peet Lecture 8: Control Systems 24 / 24
AN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationTime Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p =
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationChapter 12. Feedback Control Characteristics of Feedback Systems
Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an openloop system (a system without feedbac) and a closedloop
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More informationDr. Ian R. Manchester
Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationLab Experiment 2: Performance of First order and second order systems
Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationLecture 7:Time Response PoleZero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion
Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 FirstOrder Specs: Step : Pole Real inputs contain
More information16.31 Homework 2 Solution
16.31 Homework Solution Prof. S. R. Hall Issued: September, 6 Due: September 9, 6 Problem 1. (Dominant Pole Locations) [FPE 3.36 (a),(c),(d), page 161]. Consider the second order system ωn H(s) = (s/p
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informationLab # 4 Time Response Analysis
Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an
More informationLecture 9 Timedomain properties of convolution systems
EE 12 spring 2122 Handout #18 Lecture 9 Timedomain properties of convolution systems impulse response step response fading memory DC gain peak gain stability 9 1 Impulse response if u = δ we have y(t)
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More information1 (30 pts) Dominant Pole
EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +
More information12.7 Steady State Error
Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there
More informationPoles, Zeros and System Response
Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired
More informationDynamic System Response. Dynamic System Response K. Craig 1
Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. NonLTI Behavior Solution of Linear, ConstantCoefficient, Ordinary Differential Equations Classical
More informationSecond Order and Higher Order Systems
Second Order and Higher Order Systems 1. Second Order System In this section, we shall obtain the response of a typical secondorder control system to a step input. In terms of damping ratio and natural
More informationRoot Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More informationProject Lab Report. Michael Hall. Hao Zhu. Neil Nevgi. Station 6. Ta: Yan Cui
Project Lab Report Michael Hall Hao Zhu Neil Nevgi Station 6 Ta: Yan Cui Nov. 12 th 2012 Table of Contents: Executive Summary 3 Modeling Report.47 System Identification 711 Control Design..1115 Simulation
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationModeling and Experimentation: MassSpringDamper System Dynamics
Modeling and Experimentation: MassSpringDamper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS STAFF NAME: Mr. P.NARASIMMAN BRANCH : ECE Mr.K.R.VENKATESAN YEAR : II SEMESTER
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationHomework 11 Solution  AME 30315, Spring 2015
1 Homework 11 Solution  AME 30315, Spring 2015 Problem 1 [10/10 pts] R +  K G(s) Y Gpsq Θpsq{Ipsq and we are interested in the closedloop pole locations as the parameter k is varied. Θpsq Ipsq k ωn
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationGoals for today 2.004
Goals for today Block diagrams revisited Block diagram components Block diagram cascade Summing and pickoff junctions Feedback topology Negative vs positive feedback Example of a system with feedback Derivation
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 5: Calculating the Laplace Transform of a Signal Introduction In this Lecture, you will learn: Laplace Transform of Simple
More informationFeedback Control part 2
Overview Feedback Control part EGR 36 April 19, 017 Concepts from EGR 0 Open and closedloop control Everything before chapter 7 are openloop systems Transient response Design criteria Translate criteria
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationEssence of the Root Locus Technique
Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general setup, namely for the case when the closedloop
More informationExample on Root Locus Sketching and Control Design
Example on Root Locus Sketching and Control Design MCE44  Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We
More informationRoot Locus Design Example #4
Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is
More informationProfessor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
More informationChemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University
Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this
More informationControl Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli
Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationME 375 System Modeling and Analysis. Homework 11 Solution. Out: 18 November 2011 Due: 30 November 2011 = + +
Out: 8 November Due: 3 November Problem : You are given the following system: Gs () =. s + s+ a) Using Lalace and Inverse Lalace, calculate the unit ste resonse of this system (assume zero initial conditions).
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles
More informationAPPLICATIONS FOR ROBOTICS
Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationHomework Assignment 3
ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full
More informationDESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS
7 DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS Previous chapters, by introducing fundamental statespace concepts and analysis tools, have now set the stage for our initial foray into statespace methods
More informationFrequency Response of Linear Time Invariant Systems
ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z
More informationTradeoffs and Limits of Performance
Chapter 9 Tradeoffs and Limits of Performance 9. Introduction Fundamental limits of feedback systems will be investigated in this chapter. We begin in Section 9.2 by discussing the basic feedback loop
More informationSchool of Mechanical Engineering Purdue University. ME375 Feedback Control  1
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationCh 6.4: Differential Equations with Discontinuous Forcing Functions
Ch 6.4: Differential Equations with Discontinuous Forcing Functions! In this section focus on examples of nonhomogeneous initial value problems in which the forcing function is discontinuous. Example 1:
More information2.004 Dynamics and Control II Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8 I * * Massachusetts
More informationUnit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace
Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,
More informationEE102 Homework 2, 3, and 4 Solutions
EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of
More informationVibrations: Second Order Systems with One Degree of Freedom, Free Response
Single Degree of Freedom System 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 5//007 Lecture 0 Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single
More informationAn Introduction to Control Systems
An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a
More informationFrequency domain analysis
Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 20102011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 20102011
More informationa. Closedloop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a
Root Locus Simple definition Locus of points on the s plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation
More informationChapter 3. 1 st Order Sine Function Input. General Solution. Ce t. Measurement System Behavior Part 2
Chapter 3 Measurement System Behavior Part 2 1 st Order Sine Function Input Examples of Periodic: vibrating structure, vehicle suspension, reciprocating pumps, environmental conditions The frequency of
More informationLaboratory handouts, ME 340
Laboratory handouts, ME 340 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 4. 20142016 Harry Dankowicz, unless otherwise
More informationDynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52
1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n
More informationAutonomous Mobile Robot Design
Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:
More informationChapter 1. Harmonic Oscillator. 1.1 Energy Analysis
Chapter 1 Harmonic Oscillator Figure 1.1 illustrates the prototypical harmonic oscillator, the massspring system. A mass is attached to one end of a spring. The other end of the spring is attached to
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
More informationAn Internal Stability Example
An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several polezero cancellations between the controller and
More informationOverview of Bode Plots Transfer function review Piecewise linear approximations Firstorder terms Secondorder terms (complex poles & zeros)
Overview of Bode Plots Transfer function review Piecewise linear approximations Firstorder terms Secondorder terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationDamped Harmonic Oscillator
Damped Harmonic Oscillator Wednesday, 23 October 213 A simple harmonic oscillator subject to linear damping may oscillate with exponential decay, or it may decay biexponentially without oscillating, or
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More informationLecture 12. AO Control Theory
Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1 What are control systems? Control is the process of making a system variable
More informationThe requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot  in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
More informationChapter 5 HW Solution
Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, timeinvariant system. Let s see, I
More informationControl Systems Design
ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline InputOutput
More informationLinear Systems. Chapter Basic Definitions
Chapter 5 Linear Systems Few physical elements display truly linear characteristics. For example the relation between force on a spring and displacement of the spring is always nonlinear to some degree.
More informationCourse Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)
Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the splane
More informationK c < K u K c = K u K c > K u step 4 Calculate and implement PID parameters using the the ZieglerNichols tuning tables: 30
1.5 QUANTITIVE PID TUNING METHODS Tuning PID parameters is not a trivial task in general. Various tuning methods have been proposed for dierent model descriptions and performance criteria. 1.5.1 CONTINUOUS
More informationProfessor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 21 Jansen Sheng and Wenjie Chen, UC Berkeley 1. (15 pts) Partial fraction expansion (review) Find the inverse Laplace transform of the following
More informationLaplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
More informationEEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
More informationME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II
ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #27 Wednesday, March 17, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Discrete Delta Domain Models The
More informationControl Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard
Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control
More informationRobust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
More informationSpacecraft and Aircraft Dynamics
Spacecraft and Aircraft Dynamics Matthew M. Peet Illinois Institute of Technology Lecture 11: Longitudinal Dynamics Aircraft Dynamics Lecture 11 In this Lecture we will cover: Longitudinal Dynamics: Finding
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More information16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R +  E G c (s) G(s) C Figure 1: The standard block diagram
More informationRecitation 11: Time delays
Recitation : Time delays Emilio Frazzoli Laboratory for Information and Decision Systems Massachusetts Institute of Technology November, 00. Introduction and motivation. Delays are incurred when the controller
More informationLearn2Control Laboratory
Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should
More information