Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model

Size: px
Start display at page:

Download "Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model"

Transcription

1 1 / 23 Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model Glen DePalma gdepalma@purdue.edu Bruce A. Craig bacraig@purdue.edu Eastern North American Region/International Biometric Society March 12, 2013

2 MIC/DIA Pathogen Susceptibility Tests 2 / 23

3 Current Practice - Error Rate Bounded Method (ERB) 3 / 23

4 4 / 23 Concerns with the ERB Method ERB method uses only observed results and does not properly take into account the measurement error of each test. Repeat runs of the ERB for the same drug can result in very different DIA breakpoints (low precision). DIA breakpoints are biased due to the different rounding in each test (poor accuracy).

5 5 / 23 Model-Based Approach Instead of focusing on observed test results, a model-based approach attempts to get to the underlying truth. Our model separates the scatterplot into three components. 1. The test procedures (i.e., rounding) and experimental variability. 2. The drug-specific relationship between the true MICs and DIAs. 3. The underlying distribution of pathogens (or MICs). The first component links the observed MIC/DIA pair with an underlying true MIC value. The second and third components describe the relationship between the true MIC and its corresponding true DIA.

6 Probability Model 6 / 23

7 7 / 23 Previous Work on Model-Based Approaches First model-based methods used a linear relationship to describe the MIC/DIA relationship based on observed data. Craig in 2000 proposed a much more reasonable logistic model that takes into account test characteristics. Drawbacks of Craig s model: 1. Some real data sets suggest poor fit for a logistic relationship. 2. Difficult for clinicians to implement in practice. We extend Craig s approach to a flexible nonparametric model. Key to implementation, we provide software for clinicians to use our nonparametric model in practice.

8 8 / Distribution of Observed Test Results For pathogen i, let m i and d i denote the true MIC and DIA. The joint distribution of observed MIC (x) and observed DIA (y) are modeled as: x i = m i + ɛ y i = [d i + δ] ɛ N(0, σ 2 m) δ N(0, σ 2 d ) where σ m and σ d represent the experimental variability evident in the MIC and DIA test.

9 2. True MIC/DIA Relationship We link the pair of observed test results by modeling the 1-1 relationship between the true MIC and DIA (d i = g(m i )). Since the relationship is of unknown functional form, we use the non-parametric approach of I-splines (Ramsay, 1988). I-splines ensure the relationship is monotonically decreasing given the spline coefficients are positive. I-spline bases for knots: 0,.2,.4,.6,.8, 1 9 / 23

10 10 / 23 Knot Selection Due to the unknown m and d values knot selection is a difficult problem. Knot selection based on fit statistics will not work. Propose two solutions: 1. Add, remove, or update knot location using RJMCMC Updates based on least square coefficient estimates 2. Constrain coefficients via random walk prior (Christensen et al. 2012) βt β 0...β t 1 N (β t 1, λ) Non-informative priors put on β0 and λ

11 11 / Underlying Distribution of MICs The collection of pathogen strains used to generate a scatterplot for the ERB method are commonly considered to a be a random sample of the pathogens that would be seen in patients at a hospital or clinic. We use the distribution of observed (MIC, DIA) pairs to estimate this population distribution. To allow for multi-modality and skewness, the underlying pathogen (true MIC) distribution is modeled with a Dirichlet Process Mixture of Normals (Ghosh and Ramamoorthi, 2003).

12 Bayesian Inference To use our model-based breakpoint determination procedure, all the model parameters must be estimated from a scatterplot. 1. Spline coefficients 2. Smoothness parameter or number and location of knots 3. Mixture of Normal components 4. True MIC values Bayesian inference is used to obtain the joint posterior of parameters. Use MCMC to approximate posterior. Our approach utilizes the posterior distribution of the model parameters to compute the probabilities of correct classification and determine the DIA breakpoints. 12 / 23

13 13 / 23 Probability of Correct Classification Probability model links observed MIC results to true MIC Therefore can determine probability of correct identification Given MIC breakpoints M L and M U ( ) ML m Pr(x M L ) = Φ σ m ( ) ( ) pmic(m) = MU 1 m ML m Pr(M L < x < M U ) = Φ Φ ( σ m ) σ m MU 1 m Pr(x M U ) = 1 Φ σ m m M L M L < m < M U m M U Similar calculations for DIA test (different rounding)

14 14 / 23 Estimating DIA Breakpoints Calculate DIA breakpoints based on loss function: L = min (0, p DIA (g(u)) p MIC (u)) 2 w(u) du

15 15 / 23 Simulation Study Assumed different true relationships between MIC and DIA 1. Simulated a scatterplot of 500 isolates 2. Calculated DIA breakpoints for the nonparametric and logistic models Repeated one and two 500 times and compared breakpoint accuracy between models

16 Simulation 1: Logistic Relationship 16 / 23

17 Simulation 1: Logistic Relationship 17 / 23

18 Simulation 2: Mild Departure 18 / 23

19 Simulation 2: Mild Departure 19 / 23

20 Simulation 3: Major Departure 20 / 23

21 Simulation 3: Major Departure 21 / 23

22 22 / 23 Conclusion Because of the increasing number of moderately susceptible and resistant isolates, choosing appropriate breakpoints has become more of a statistical problem. We ve proposed a flexible nonparametric model-based approach that estimates the diameter breakpoints based on the probability of correct classification instead of minimizing the observed discrepancies between the two tests. Working with the FDA and CLSI to assess true data. Online software, using the R package Shiny from RStudio, is available for clinicians to use our model in practice.

23 23 / 23 References Brooks, Steve et al. Handbook of Markov Chain Monte Carlo. Boca Raton: CRC/Taylor & Francis, Craig, Bruce A. "Modeling Approach to Diameter Breakpoint Determination." Diagnostic Microbiology and Infectious Disease 36.3 (2000): Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, Ramsay, J.O. "Monotone Regression Splines in Action." Statistical Science 3.4 (1988) Turnidge, J., and D.L. Paterson. "Setting and Revising Antibacterial Susceptibility Breakpoints." Clinical Microbiology Reviews 20.3 (2007): Thanks!

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application, CleverSet, Inc. STARMAP/DAMARS Conference Page 1 The research described in this presentation has been funded by the U.S.

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Statistical properties and inference of the antimicrobial MIC test

Statistical properties and inference of the antimicrobial MIC test Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2005 Statistical properties and inference of the antimicrobial MIC test Annis, David H. Statistics

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters

Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters Journal of Modern Applied Statistical Methods Volume 13 Issue 1 Article 26 5-1-2014 Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters Yohei Kawasaki Tokyo University

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

BUGS Bayesian inference Using Gibbs Sampling

BUGS Bayesian inference Using Gibbs Sampling BUGS Bayesian inference Using Gibbs Sampling Glen DePalma Department of Statistics May 30, 2013 www.stat.purdue.edu/~gdepalma 1 / 20 Bayesian Philosophy I [Pearl] turned Bayesian in 1971, as soon as I

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Assessing Regime Uncertainty Through Reversible Jump McMC

Assessing Regime Uncertainty Through Reversible Jump McMC Assessing Regime Uncertainty Through Reversible Jump McMC August 14, 2008 1 Introduction Background Research Question 2 The RJMcMC Method McMC RJMcMC Algorithm Dependent Proposals Independent Proposals

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Empirical Validation of the Critical Thinking Assessment Test: A Bayesian CFA Approach

Empirical Validation of the Critical Thinking Assessment Test: A Bayesian CFA Approach Empirical Validation of the Critical Thinking Assessment Test: A Bayesian CFA Approach CHI HANG AU & ALLISON AMES, PH.D. 1 Acknowledgement Allison Ames, PhD Jeanne Horst, PhD 2 Overview Features of the

More information

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles Jeremy Gaskins Department of Bioinformatics & Biostatistics University of Louisville Joint work with Claudio Fuentes

More information

New Insights into History Matching via Sequential Monte Carlo

New Insights into History Matching via Sequential Monte Carlo New Insights into History Matching via Sequential Monte Carlo Associate Professor Chris Drovandi School of Mathematical Sciences ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)

More information

Sample Size Calculations for ROC Studies: Parametric Robustness and Bayesian Nonparametrics

Sample Size Calculations for ROC Studies: Parametric Robustness and Bayesian Nonparametrics Baylor Health Care System From the SelectedWorks of unlei Cheng Spring January 30, 01 Sample Size Calculations for ROC Studies: Parametric Robustness and Bayesian Nonparametrics unlei Cheng, Baylor Health

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 18-16th March Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 18-16th March Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 18-16th March 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Trans-dimensional Markov chain Monte Carlo. Bayesian model for autoregressions.

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data

Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data Stéphanie Allassonnière with J.B. Schiratti, O. Colliot and S. Durrleman Université Paris Descartes & Ecole Polytechnique

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

A Bayesian Approach to Phylogenetics

A Bayesian Approach to Phylogenetics A Bayesian Approach to Phylogenetics Niklas Wahlberg Based largely on slides by Paul Lewis (www.eeb.uconn.edu) An Introduction to Bayesian Phylogenetics Bayesian inference in general Markov chain Monte

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Spatially Adaptive Smoothing Splines

Spatially Adaptive Smoothing Splines Spatially Adaptive Smoothing Splines Paul Speckman University of Missouri-Columbia speckman@statmissouriedu September 11, 23 Banff 9/7/3 Ordinary Simple Spline Smoothing Observe y i = f(t i ) + ε i, =

More information

Bayesian Inference of Interactions and Associations

Bayesian Inference of Interactions and Associations Bayesian Inference of Interactions and Associations Jun Liu Department of Statistics Harvard University http://www.fas.harvard.edu/~junliu Based on collaborations with Yu Zhang, Jing Zhang, Yuan Yuan,

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Luke B Smith and Brian J Reich North Carolina State University May 21, 2013

Luke B Smith and Brian J Reich North Carolina State University May 21, 2013 BSquare: An R package for Bayesian simultaneous quantile regression Luke B Smith and Brian J Reich North Carolina State University May 21, 2013 BSquare in an R package to conduct Bayesian quantile regression

More information

Bayesian Nonparametric Regression through Mixture Models

Bayesian Nonparametric Regression through Mixture Models Bayesian Nonparametric Regression through Mixture Models Sara Wade Bocconi University Advisor: Sonia Petrone October 7, 2013 Outline 1 Introduction 2 Enriched Dirichlet Process 3 EDP Mixtures for Regression

More information

Bayesian Nonparametrics

Bayesian Nonparametrics Bayesian Nonparametrics Peter Orbanz Columbia University PARAMETERS AND PATTERNS Parameters P(X θ) = Probability[data pattern] 3 2 1 0 1 2 3 5 0 5 Inference idea data = underlying pattern + independent

More information

The STS Surgeon Composite Technical Appendix

The STS Surgeon Composite Technical Appendix The STS Surgeon Composite Technical Appendix Overview Surgeon-specific risk-adjusted operative operative mortality and major complication rates were estimated using a bivariate random-effects logistic

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Bayesian model selection: methodology, computation and applications

Bayesian model selection: methodology, computation and applications Bayesian model selection: methodology, computation and applications David Nott Department of Statistics and Applied Probability National University of Singapore Statistical Genomics Summer School Program

More information

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Kuangyu Wen & Ximing Wu Texas A&M University Info-Metrics Institute Conference: Recent Innovations in Info-Metrics October

More information

Functional Estimation in Systems Defined by Differential Equation using Bayesian Smoothing Methods

Functional Estimation in Systems Defined by Differential Equation using Bayesian Smoothing Methods Université Catholique de Louvain Institut de Statistique, Biostatistique et Sciences Actuarielles Functional Estimation in Systems Defined by Differential Equation using Bayesian Smoothing Methods 19th

More information

A NOTE ON ROBUST ESTIMATION IN LOGISTIC REGRESSION MODEL

A NOTE ON ROBUST ESTIMATION IN LOGISTIC REGRESSION MODEL Discussiones Mathematicae Probability and Statistics 36 206 43 5 doi:0.75/dmps.80 A NOTE ON ROBUST ESTIMATION IN LOGISTIC REGRESSION MODEL Tadeusz Bednarski Wroclaw University e-mail: t.bednarski@prawo.uni.wroc.pl

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Jeffrey N. Rouder Francis Tuerlinckx Paul L. Speckman Jun Lu & Pablo Gomez May 4 008 1 The Weibull regression model

More information

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline:

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline: CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity Outline: 1. NIEHS Uterine Fibroid Study Design of Study Scientific Questions Difficulties 2.

More information

Bayesian Nonparametric Regression for Diabetes Deaths

Bayesian Nonparametric Regression for Diabetes Deaths Bayesian Nonparametric Regression for Diabetes Deaths Brian M. Hartman PhD Student, 2010 Texas A&M University College Station, TX, USA David B. Dahl Assistant Professor Texas A&M University College Station,

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

A Shape Constrained Estimator of Bidding Function of First-Price Sealed-Bid Auctions

A Shape Constrained Estimator of Bidding Function of First-Price Sealed-Bid Auctions A Shape Constrained Estimator of Bidding Function of First-Price Sealed-Bid Auctions Yu Yvette Zhang Abstract This paper is concerned with economic analysis of first-price sealed-bid auctions with risk

More information

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations John R. Michael, Significance, Inc. and William R. Schucany, Southern Methodist University The mixture

More information

A nonparametric Bayesian approach to copula estimation

A nonparametric Bayesian approach to copula estimation A nonparametric Bayesian approach to copula estimation Abstract We propose a novel Dirichlet-based Pólya tree (D-P tree) prior on the copula and a nonparametric Bayesian inference procedure based on the

More information

Nonparametric Bayes Estimator of Survival Function for Right-Censoring and Left-Truncation Data

Nonparametric Bayes Estimator of Survival Function for Right-Censoring and Left-Truncation Data Nonparametric Bayes Estimator of Survival Function for Right-Censoring and Left-Truncation Data Mai Zhou and Julia Luan Department of Statistics University of Kentucky Lexington, KY 40506-0027, U.S.A.

More information

5.5.3 Statistical Innovative Trend Test Application Crossing Trend Analysis Methodology Rational Concept...

5.5.3 Statistical Innovative Trend Test Application Crossing Trend Analysis Methodology Rational Concept... Contents 1 Introduction.... 1 1.1 General... 1 1.2 Trend Definition and Analysis... 3 1.2.1 Conceptual and Visual Trends.... 4 1.2.2 Mathematical Trend.... 7 1.2.3 Statistical Trend.... 9 1.3 Trend in

More information

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A. Linero and M. Daniels UF, UT-Austin SRC 2014, Galveston, TX 1 Background 2 Working model

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University July 31, 2018

More information

Determining the number of components in mixture models for hierarchical data

Determining the number of components in mixture models for hierarchical data Determining the number of components in mixture models for hierarchical data Olga Lukočienė 1 and Jeroen K. Vermunt 2 1 Department of Methodology and Statistics, Tilburg University, P.O. Box 90153, 5000

More information

Gaussian Mixture Model

Gaussian Mixture Model Case Study : Document Retrieval MAP EM, Latent Dirichlet Allocation, Gibbs Sampling Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 5 th,

More information

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment Bayesian Networks in Educational Assessment Estimating Parameters with MCMC Bayesian Inference: Expanding Our Context Roy Levy Arizona State University Roy.Levy@asu.edu 2017 Roy Levy MCMC 1 MCMC 2 Posterior

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Markov Chain Monte Carlo in Practice

Markov Chain Monte Carlo in Practice Markov Chain Monte Carlo in Practice Edited by W.R. Gilks Medical Research Council Biostatistics Unit Cambridge UK S. Richardson French National Institute for Health and Medical Research Vilejuif France

More information

Chapter 2. Data Analysis

Chapter 2. Data Analysis Chapter 2 Data Analysis 2.1. Density Estimation and Survival Analysis The most straightforward application of BNP priors for statistical inference is in density estimation problems. Consider the generic

More information

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I

Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I Bayesian rules of probability as principles of logic [Cox] Notation: pr(x I) is the probability (or pdf) of x being true given information I 1 Sum rule: If set {x i } is exhaustive and exclusive, pr(x

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

A nonparametric Bayesian approach to inference for non-homogeneous. Poisson processes. Athanasios Kottas 1. (REVISED VERSION August 23, 2006)

A nonparametric Bayesian approach to inference for non-homogeneous. Poisson processes. Athanasios Kottas 1. (REVISED VERSION August 23, 2006) A nonparametric Bayesian approach to inference for non-homogeneous Poisson processes Athanasios Kottas 1 Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Monte Carlo Inference Methods

Monte Carlo Inference Methods Monte Carlo Inference Methods Iain Murray University of Edinburgh http://iainmurray.net Monte Carlo and Insomnia Enrico Fermi (1901 1954) took great delight in astonishing his colleagues with his remarkably

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Infer relationships among three species: Outgroup:

Infer relationships among three species: Outgroup: Infer relationships among three species: Outgroup: Three possible trees (topologies): A C B A B C Model probability 1.0 Prior distribution Data (observations) probability 1.0 Posterior distribution Bayes

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bayesian Nonparametric Rasch Modeling: Methods and Software

Bayesian Nonparametric Rasch Modeling: Methods and Software Bayesian Nonparametric Rasch Modeling: Methods and Software George Karabatsos University of Illinois-Chicago Keynote talk Friday May 2, 2014 (9:15-10am) Ohio River Valley Objective Measurement Seminar

More information

Non-Parametric Bayesian Population Dynamics Inference

Non-Parametric Bayesian Population Dynamics Inference Non-Parametric Bayesian Population Dynamics Inference Philippe Lemey and Marc A. Suchard Department of Microbiology and Immunology K.U. Leuven, Belgium, and Departments of Biomathematics, Biostatistics

More information

Image segmentation combining Markov Random Fields and Dirichlet Processes

Image segmentation combining Markov Random Fields and Dirichlet Processes Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO

More information

Quantile POD for Hit-Miss Data

Quantile POD for Hit-Miss Data Quantile POD for Hit-Miss Data Yew-Meng Koh a and William Q. Meeker a a Center for Nondestructive Evaluation, Department of Statistics, Iowa State niversity, Ames, Iowa 50010 Abstract. Probability of detection

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Semiparametric Bayesian Inference for. Multilevel Repeated Measurement Data

Semiparametric Bayesian Inference for. Multilevel Repeated Measurement Data Semiparametric Bayesian Inference for Multilevel Repeated Measurement Data Peter Müller, Fernando A. Quintana and Gary L. Rosner Department of Biostatistics & Applied Mathematics, The University of Texas,

More information

COMPOSITIONAL IDEAS IN THE BAYESIAN ANALYSIS OF CATEGORICAL DATA WITH APPLICATION TO DOSE FINDING CLINICAL TRIALS

COMPOSITIONAL IDEAS IN THE BAYESIAN ANALYSIS OF CATEGORICAL DATA WITH APPLICATION TO DOSE FINDING CLINICAL TRIALS COMPOSITIONAL IDEAS IN THE BAYESIAN ANALYSIS OF CATEGORICAL DATA WITH APPLICATION TO DOSE FINDING CLINICAL TRIALS M. Gasparini and J. Eisele 2 Politecnico di Torino, Torino, Italy; mauro.gasparini@polito.it

More information

Forward Problems and their Inverse Solutions

Forward Problems and their Inverse Solutions Forward Problems and their Inverse Solutions Sarah Zedler 1,2 1 King Abdullah University of Science and Technology 2 University of Texas at Austin February, 2013 Outline 1 Forward Problem Example Weather

More information

Bayes methods for categorical data. April 25, 2017

Bayes methods for categorical data. April 25, 2017 Bayes methods for categorical data April 25, 2017 Motivation for joint probability models Increasing interest in high-dimensional data in broad applications Focus may be on prediction, variable selection,

More information

Bayesian Estimation and Inference for the Generalized Partial Linear Model

Bayesian Estimation and Inference for the Generalized Partial Linear Model Bayesian Estimation Inference for the Generalized Partial Linear Model Haitham M. Yousof 1, Ahmed M. Gad 2 1 Department of Statistics, Mathematics Insurance, Benha University, Egypt. 2 Department of Statistics,

More information

Efficient adaptive covariate modelling for extremes

Efficient adaptive covariate modelling for extremes Efficient adaptive covariate modelling for extremes Slides at www.lancs.ac.uk/ jonathan Matthew Jones, David Randell, Emma Ross, Elena Zanini, Philip Jonathan Copyright of Shell December 218 1 / 23 Structural

More information

Density Modeling and Clustering Using Dirichlet Diffusion Trees

Density Modeling and Clustering Using Dirichlet Diffusion Trees BAYESIAN STATISTICS 7, pp. 619 629 J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West (Eds.) c Oxford University Press, 2003 Density Modeling and Clustering

More information

Statistical Inference for Stochastic Epidemic Models

Statistical Inference for Stochastic Epidemic Models Statistical Inference for Stochastic Epidemic Models George Streftaris 1 and Gavin J. Gibson 1 1 Department of Actuarial Mathematics & Statistics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS,

More information

Bayesian Registration of Functions with a Gaussian Process Prior

Bayesian Registration of Functions with a Gaussian Process Prior Bayesian Registration of Functions with a Gaussian Process Prior RELATED PROBLEMS Functions Curves Images Surfaces FUNCTIONAL DATA Electrocardiogram Signals (Heart Disease) Gait Pressure Measurements (Parkinson

More information

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC Stat 451 Lecture Notes 07 12 Markov Chain Monte Carlo Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapters 8 9 in Givens & Hoeting, Chapters 25 27 in Lange 2 Updated: April 4, 2016 1 / 42 Outline

More information

Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models

Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models 02433 - Hidden Markov Models Pierre-Julien Trombe, Martin Wæver Pedersen, Henrik Madsen Course week 10 MWP, compiled

More information

Hmms with variable dimension structures and extensions

Hmms with variable dimension structures and extensions Hmm days/enst/january 21, 2002 1 Hmms with variable dimension structures and extensions Christian P. Robert Université Paris Dauphine www.ceremade.dauphine.fr/ xian Hmm days/enst/january 21, 2002 2 1 Estimating

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

Scaling up Bayesian Inference

Scaling up Bayesian Inference Scaling up Bayesian Inference David Dunson Departments of Statistical Science, Mathematics & ECE, Duke University May 1, 2017 Outline Motivation & background EP-MCMC amcmc Discussion Motivation & background

More information

Modelling Receiver Operating Characteristic Curves Using Gaussian Mixtures

Modelling Receiver Operating Characteristic Curves Using Gaussian Mixtures Modelling Receiver Operating Characteristic Curves Using Gaussian Mixtures arxiv:146.1245v1 [stat.me] 5 Jun 214 Amay S. M. Cheam and Paul D. McNicholas Abstract The receiver operating characteristic curve

More information

Bayesian estimation of the discrepancy with misspecified parametric models

Bayesian estimation of the discrepancy with misspecified parametric models Bayesian estimation of the discrepancy with misspecified parametric models Pierpaolo De Blasi University of Torino & Collegio Carlo Alberto Bayesian Nonparametrics workshop ICERM, 17-21 September 2012

More information

Session 5B: A worked example EGARCH model

Session 5B: A worked example EGARCH model Session 5B: A worked example EGARCH model John Geweke Bayesian Econometrics and its Applications August 7, worked example EGARCH model August 7, / 6 EGARCH Exponential generalized autoregressive conditional

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Markov chain Monte Carlo (MCMC) Gibbs and Metropolis Hastings Slice sampling Practical details Iain Murray http://iainmurray.net/ Reminder Need to sample large, non-standard distributions:

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Dawn Woodard Operations Research & Information Engineering Cornell University Johns Hopkins Dept. of Biostatistics, April

More information

Bayesian PalaeoClimate Reconstruction from proxies:

Bayesian PalaeoClimate Reconstruction from proxies: Bayesian PalaeoClimate Reconstruction from proxies: Framework Bayesian modelling of space-time processes General Circulation Models Space time stochastic process C = {C(x,t) = Multivariate climate at all

More information

Tutorial on Probabilistic Programming with PyMC3

Tutorial on Probabilistic Programming with PyMC3 185.A83 Machine Learning for Health Informatics 2017S, VU, 2.0 h, 3.0 ECTS Tutorial 02-04.04.2017 Tutorial on Probabilistic Programming with PyMC3 florian.endel@tuwien.ac.at http://hci-kdd.org/machine-learning-for-health-informatics-course

More information

Fundamental Issues in Bayesian Functional Data Analysis. Dennis D. Cox Rice University

Fundamental Issues in Bayesian Functional Data Analysis. Dennis D. Cox Rice University Fundamental Issues in Bayesian Functional Data Analysis Dennis D. Cox Rice University 1 Introduction Question: What are functional data? Answer: Data that are functions of a continuous variable.... say

More information

A Flexible Class of Models for Data Arising from a thorough QT/QTc study

A Flexible Class of Models for Data Arising from a thorough QT/QTc study A Flexible Class of Models for Data Arising from a thorough QT/QTc study Suraj P. Anand and Sujit K. Ghosh Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA Institute

More information

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham MCMC 2: Lecture 2 Coding and output Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham Contents 1. General (Markov) epidemic model 2. Non-Markov epidemic model 3. Debugging

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information