BUGS Bayesian inference Using Gibbs Sampling

Size: px
Start display at page:

Download "BUGS Bayesian inference Using Gibbs Sampling"

Transcription

1 BUGS Bayesian inference Using Gibbs Sampling Glen DePalma Department of Statistics May 30, / 20

2 Bayesian Philosophy I [Pearl] turned Bayesian in 1971, as soon as I began reading Savage s monograph The Foundations of Statistical Inference [Savage, 1962]. The arguments were unassailable: i. It is plain silly to ignore what we know, ii. iii. It is natural and useful to cast what we know in the language of probabilities, and If our subjective probabilities are erroneous, their impact will get washed out in due time, as the number of observations increases. Note: He later would doubt the validity of (iii) 2 / 20

3 Bayesian Statistics Becoming more and more popular due to ease of simulation tools (R, SAS, BUGS,...) The main problem with frequentist statistics is there is a natural tendency to treat the p-value as if it was a Bayesian a-posterior probability that the null hypothesis is true (and hence 1-p is the probability that the alternative is true) or treating a frequentist confidence interval as a Bayesian credible interval (and hence assuming there is a 95% probability that the true value lies within a 95% confidence interval for the particular sample of data we have) I challenge you to find me in any published statistical analysis, outside of an introductory textbook, of a confidence interval given the correct interpretation. If you can find even one instance where the confidence interval is not interpreted as a credible interval, then I will eat your hat. - William Briggs 2012 The main objection to Bayesian statistics is the subjectivity in the prior (interestingly the subjectivity of the likelihood for frequentist approach is rarely mentioned) 3 / 20

4 Andrew Gelman Quotes The difference between significant and non-significant is not itself statistically significant I ve never in my professional life made a Type I error or a Type II error. But I ve made lots of errors. How can this be? A Type 1 error occurs only if the null hypothesis is true (typically if a certain parameter, or difference in parameters, equals zero). In the applications I ve worked on, in social science and public health, I ve never come across a null hypothesis that could actually be true, or a parameter that could actually be zero. A Type 2 error occurs only if I claim that the null hypothesis is true, and I would certainly not do that, given my statement above! 4 / 20

5 BUGS? Much of Bayesian analysis is done using Markov chain Monte Carlo (MCMC) to sample from the posterior. What does BUGS do? You define the model by specifying the relationships between the variables, BUGS handles the MCMC. Four (?) flavors: 1. WinBUGS (the original, development has ceased) 2. OpenBUGS (open source, still in development (?)) 3. JAGS (Just Another Gibbs Sampler) 4. STAN (New, Hamiltonian Monte Carlo) The syntax is very similar among the programs, examples in this presentation use JAGS: 5 / 20

6 Example 1 Out of 2,430 parts produced 219 were not shipped due to being defective. Our interest is in the probability of a defective part. Let us assume (unlikely) we know nothing apriori about the proportion of scrapped parts. y θ Binomial(2430, θ) θ Beta(1, 1) Exact Posterior is Beta( , ) 6 / 20

7 MCMC burnin =1000 nsim =5000 theta =.5 n=2430 y=219 a=1 b=1 t h e t a S a v e=rep (NA, nsim b u r n i n ) l l k =f u n c t i o n ( t h e t a ) r e t u r n ( dbinom ( y, n, t h e t a, l o g=true) ) l p r i o r=f u n c t i o n ( t h e t a ) r e t u r n ( dbeta ( t h e t a, a, b, l o g=true) ) f o r ( i i n 1 : nsim ){ # p r o p o s e new Theta thetanew=t h e t a+r u n i f ( 1,. 0 5,. 0 5 ) #Compute M H Acceptance i f ( thetanew > 0){ proposalllk= l l k ( thetanew )+l p r i o r ( thetanew ) l l k ( t h e t a ) l p r i o r ( t h e t a ) i f ( proposalllk>l o g ( r u n i f ( 1 ) ) ) t h e t a=thetanew i f ( i>b u r n i n ) thetasave [ i burnin ]= theta p l o t ( ( b u r n i n +1) : nsim, t h e tasave, t y p e= l, x l a b= I t e r a t i o n, y l a b= Theta ) summary ( t h e t a S a v e ) 7 / 20

8 BUGS Code model{ # Model y d b i n ( t h e t a, n ) # P r i o r t h e t a dbeta ( a1, b1 ) 8 / 20

9 Example 2 - One Sample Normal Likelihood: y i N (µ, 1/τ) Priors: µ N (0,.001) τ Gamma(.001,.001) Posterior: n i=1 τ 2π exp ( τ(y i µ) 2 /2 ).001 2π exp (.001µ 2 /2 ) τ e.001τ Γ(.001) We could calculate the exact posteriors of µ and τ but let s use BUGS! 9 / 20

10 BUGS Code model{ # Model f o r ( i i n 1 : n ){ y [ i ] dnorm (mu, tau ) # P r i o r mu dnorm ( 0, ) tau dgamma ( , ) # E x t r a sigma < 1/ s q r t ( tau ) prob < s t e p (mu 4.8) 10 / 20

11 Example 3 - Regression Model: Likelihood: L(β, σ 2 ) = (2πσ 2 ) n/2 exp y i N (X T i β, σ 2 ) ( ) 1 2σ 2 (Y X β)t (Y X β) Priors: We will use non-informative priors for β and σ 2 and let BUGS handle the details. 11 / 20

12 BUGS Code model { f o r ( i i n 1 : n ){ l o s s [ i ] dnorm (mu [ i ], tau ) mu[ i ] < beta [1]+ beta [ 2 ] a i r [ i ]+ beta [ 3 ] water [ i ]+ beta [ 4 ] a c i d [ i ] #p r i o r s f o r ( i i n 1 : 4 ) { beta [ i ] dnorm ( 0, ) tau dgamma ( , ) sigma < 1/ s q r t ( tau ) #t e s t b e t a 4 beta4prob < step ( beta [4] 0) #P r e d i c t i o n s mu1 < beta [1]+ beta [ 2 ] beta [ 3 ] beta [ 4 ] pred1 dnorm (mu1, tau ) 12 / 20

13 Example 4 - One-way ANOVA Model: Lamb data: y ij = µ i + ɛ ij µ i N (0,.001) ɛ ij N (0, 1/τ) y ij = µ i + ɛ ij µ i N (β i, λ i ) β i N (5,.01) λ i Gamma(10, 1) ɛ ij N (0, 1/τ) i = / 20

14 BUGS Code model { f o r ( i i n 1 : n ){ y [ i ] dnorm (mu [ group [ i ] ], tau ) f o r ( i i n 1 : 5 ) { mu[ i ] dnorm ( beta [ i ], lambda [ i ] ) beta [ i ] dnorm ( 5,. 0 1 ) lambda [ i ] dgamma (1 0,1) tau dgamma ( , ) sigma < 1/ s q r t ( tau ) #########d i f f e r e n c e i n mus############ prob1< step (mu[2] mu [ 1 ] ) prob2< step (mu[2] mu [ 3 ] ) prob3< step (mu[2] mu [ 4 ] ) prob4< step (mu[2] mu [ 5 ] ) 14 / 20

15 Example 5 - Agricultural Experiment - 2 Way ANOVA Fertilizer was applied to four corn types and three different fertilizers. Let us be real Bayesians and use prior knowledge we have gathered from talking to the farmers and industry experts. Cell Means ANOVA Model: Y ij = θ i + ɛ ij where θ i N ( i=1 ) X i, σ2 4 i = j = ɛ ij N (0, σ 2 ) The variance of each observation is known to be around 20 (σ 2 = 20), therefore the variance of the thetas equals 5. Theta is expected to be around 125 with a possible range of Given this information, we use the following prior for theta: θ i N (µ i, 5) µ i N (125, 225) 15 / 20

16 BUGS Code ##c e l l means anova model model { f o r ( i i n 1 : 1 2 ) { f o r ( j i n 1 : 4 ) { #x [ i, j ] i s t h e t a x [ i, j ] dnorm ( mu [ i ], 1/ 20) # p r i o r on t h e t a mu[ i ] dnorm (125,1 / 225) # Extra! ### Compute Main E f f e c t s o f F e r t i l i z e r and Corn c o r n [ 1 ] < mean (mu [ 1 : 3 ] ) c o r n [ 2 ] < mean (mu [ 4 : 6 ] ) c o r n [ 3 ] < mean (mu [ 7 : 9 ] ) c o r n [ 4 ] < mean (mu [ 1 0 : 1 2 ] ) f e r t [ 1 ] < (mu[1]+mu[4]+mu[7]+mu [ 1 0 ] ) /4 f e r t [ 2 ] < (mu[2]+mu[5]+mu[8]+mu [ 1 1 ] ) /4 f e r t [ 3 ] < (mu[3]+mu[6]+mu[9]+mu [ 1 2 ] ) /4 ### Prob main e f f e c t s b e s t f o r ( i i n 1 : 4 ) { probcorn [ i ] < e q u a l s ( c o r n [ i ], max( c o r n [ 1 : 4 ] ) ) f o r ( i i n 1 : 3 ) { p r o b F e r t [ i ] < e q u a l s ( f e r t [ i ], max( f e r t [ 1 : 3 ] ) ) ### Prob c e l l means b e s t f o r ( i i n 1 : 1 2 ) { probtrt [ i ] < e q u a l s (mu[ i ], max(mu [ 1 : 1 2 ] ) ) ### prob [ 4, 3 ] > [ 2, 1 ] prob1 < s t e p (mu[12] mu [ 4 ] ) 16 / 20

17 Reporting a Bayesian Analysis 1. Motivate the use of Bayesian analysis Richer and more informative, no reliance on p-values 2. Clearly describe the model and its parameters The posterior distribution is a distribution over the parameters 3. Clearly describe and justify the prior 4. Mention MCMC details 5. Interpret the posterior Report summary statistics of the parameters that are theoretically meaningful 6. Robustness of the posterior for different priors Conduct the analysis with different priors as a sensitivity test 7. Posterior Predictive Check Generate data from the posterior, do they match the actual data? 17 / 20

18 Convergence How do we know if we have converged to the correct posterior? Quick answer: we can t. Many fancy diagnostic theorems have been proposed, but none of them prove the property you really want a diagnostic to have. These theorems say that if the chain converges, then the diagnostic will probably say the chain has converged, but they do not say that if the chain pseudo-converges, then the diagnostic will probably say the chain did not converge. How do we know if we have converged to the correct posterior? Theorems that do claim pseudo-convergence have unverifiable conditions that make them useless. 18 / 20

19 Convergence II Your humble author has a dictum that the least one can do is make an overnight run. What better way for your computer to spend its time? In many problems that are not too complicated, this is millions or billions of iterations. If you do not make runs like that, you are not simply serious about MCMC. - Charles J. Geyer 19 / 20

20 Summary Frequentist statistics are a useful tool, but the future of effective data analysis is moving closer to Bayesian analyses BUGS makes it easy to do Bayesian Analysis Can handle a wide variety of models Presented only basic (but common!) examples Roughly 100 examples: However BUGS can t do everything (but it is getting close..): Models that require a specialized likelihood (not Normal, Binomial,...) Reversible Jump Markov Chain Monte Carlo (RJMCMC) Still very important to learn how to fully program a Bayesian analysis Frequentist methods still have a place / 20

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment Bayesian Networks in Educational Assessment Estimating Parameters with MCMC Bayesian Inference: Expanding Our Context Roy Levy Arizona State University Roy.Levy@asu.edu 2017 Roy Levy MCMC 1 MCMC 2 Posterior

More information

Advanced Statistical Modelling

Advanced Statistical Modelling Markov chain Monte Carlo (MCMC) Methods and Their Applications in Bayesian Statistics School of Technology and Business Studies/Statistics Dalarna University Borlänge, Sweden. Feb. 05, 2014. Outlines 1

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Bayesian Graphical Models

Bayesian Graphical Models Graphical Models and Inference, Lecture 16, Michaelmas Term 2009 December 4, 2009 Parameter θ, data X = x, likelihood L(θ x) p(x θ). Express knowledge about θ through prior distribution π on θ. Inference

More information

Bayesian philosophy Bayesian computation Bayesian software. Bayesian Statistics. Petter Mostad. Chalmers. April 6, 2017

Bayesian philosophy Bayesian computation Bayesian software. Bayesian Statistics. Petter Mostad. Chalmers. April 6, 2017 Chalmers April 6, 2017 Bayesian philosophy Bayesian philosophy Bayesian statistics versus classical statistics: War or co-existence? Classical statistics: Models have variables and parameters; these are

More information

36-463/663Multilevel and Hierarchical Models

36-463/663Multilevel and Hierarchical Models 36-463/663Multilevel and Hierarchical Models From Bayes to MCMC to MLMs Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline Bayesian Statistics and MCMC Distribution of Skill Mastery in a Population

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bayesian Inference for Regression Parameters

Bayesian Inference for Regression Parameters Bayesian Inference for Regression Parameters 1 Bayesian inference for simple linear regression parameters follows the usual pattern for all Bayesian analyses: 1. Form a prior distribution over all unknown

More information

MCMC for Cut Models or Chasing a Moving Target with MCMC

MCMC for Cut Models or Chasing a Moving Target with MCMC MCMC for Cut Models or Chasing a Moving Target with MCMC Martyn Plummer International Agency for Research on Cancer MCMSki Chamonix, 6 Jan 2014 Cut models What do we want to do? 1. Generate some random

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

PIER HLM Course July 30, 2011 Howard Seltman. Discussion Guide for Bayes and BUGS

PIER HLM Course July 30, 2011 Howard Seltman. Discussion Guide for Bayes and BUGS PIER HLM Course July 30, 2011 Howard Seltman Discussion Guide for Bayes and BUGS 1. Classical Statistics is based on parameters as fixed unknown values. a. The standard approach is to try to discover,

More information

Robust Bayesian Regression

Robust Bayesian Regression Readings: Hoff Chapter 9, West JRSSB 1984, Fúquene, Pérez & Pericchi 2015 Duke University November 17, 2016 Body Fat Data: Intervals w/ All Data Response % Body Fat and Predictor Waist Circumference 95%

More information

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution MH I Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution a lot of Bayesian mehods rely on the use of MH algorithm and it s famous

More information

Weakness of Beta priors (or conjugate priors in general) They can only represent a limited range of prior beliefs. For example... There are no bimodal beta distributions (except when the modes are at 0

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Hypothesis Testing and Estimation under a Bayesian Approach

Hypothesis Testing and Estimation under a Bayesian Approach Hypothesis Testing and Estimation under a Bayesian Approach L.R. Pericchi* and M.E. Pérez 1 1 Department of Mathematics Universidad de Puerto Rico, Río Piedras Campus *Co-Leader of Biostatistics, Epidemiology

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Hierarchical Linear Models

Hierarchical Linear Models Hierarchical Linear Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin The linear regression model Hierarchical Linear Models y N(Xβ, Σ y ) β σ 2 p(β σ 2 ) σ 2 p(σ 2 ) can be extended

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Metric Predicted Variable on One Group

Metric Predicted Variable on One Group Metric Predicted Variable on One Group Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. Prior Homework

More information

Bayes: All uncertainty is described using probability.

Bayes: All uncertainty is described using probability. Bayes: All uncertainty is described using probability. Let w be the data and θ be any unknown quantities. Likelihood. The probability model π(w θ) has θ fixed and w varying. The likelihood L(θ; w) is π(w

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model Regression: Part II Linear Regression y~n X, 2 X Y Data Model β, σ 2 Process Model Β 0,V β s 1,s 2 Parameter Model Assumptions of Linear Model Homoskedasticity No error in X variables Error in Y variables

More information

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School Bayesian modelling Hans-Peter Helfrich University of Bonn Theodor-Brinkmann-Graduate School H.-P. Helfrich (University of Bonn) Bayesian modelling Brinkmann School 1 / 22 Overview 1 Bayesian modelling

More information

Bayesian Computation

Bayesian Computation Bayesian Computation CAS Centennial Celebration and Annual Meeting New York, NY November 10, 2014 Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut CAS Antitrust

More information

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition. Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer" Contents Preface to the Second Edition Preface

More information

Tutorial on Probabilistic Programming with PyMC3

Tutorial on Probabilistic Programming with PyMC3 185.A83 Machine Learning for Health Informatics 2017S, VU, 2.0 h, 3.0 ECTS Tutorial 02-04.04.2017 Tutorial on Probabilistic Programming with PyMC3 florian.endel@tuwien.ac.at http://hci-kdd.org/machine-learning-for-health-informatics-course

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Bayesian Modeling of Accelerated Life Tests with Random Effects

Bayesian Modeling of Accelerated Life Tests with Random Effects Bayesian Modeling of Accelerated Life Tests with Random Effects Ramón V. León Avery J. Ashby Jayanth Thyagarajan Joint Statistical Meeting August, 00 Toronto, Canada Abstract We show how to use Bayesian

More information

Metric Predicted Variable on Two Groups

Metric Predicted Variable on Two Groups Metric Predicted Variable on Two Groups Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. Goals

More information

Confidence Intervals. CAS Antitrust Notice. Bayesian Computation. General differences between Bayesian and Frequntist statistics 10/16/2014

Confidence Intervals. CAS Antitrust Notice. Bayesian Computation. General differences between Bayesian and Frequntist statistics 10/16/2014 CAS Antitrust Notice Bayesian Computation CAS Centennial Celebration and Annual Meeting New York, NY November 10, 2014 Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Bayesian Inference and Decision Theory

Bayesian Inference and Decision Theory Bayesian Inference and Decision Theory Instructor: Kathryn Blackmond Laskey Room 2214 ENGR (703) 993-1644 Office Hours: Tuesday and Thursday 4:30-5:30 PM, or by appointment Spring 2018 Unit 6: Gibbs Sampling

More information

Weakness of Beta priors (or conjugate priors in general) They can only represent a limited range of prior beliefs. For example... There are no bimodal beta distributions (except when the modes are at 0

More information

Why Bayesian approaches? The average height of a rare plant

Why Bayesian approaches? The average height of a rare plant Why Bayesian approaches? The average height of a rare plant Estimation and comparison of averages is an important step in many ecological analyses and demographic models. In this demonstration you will

More information

Preface 5. Introduction 6. A Hands-on Example 8. Regression Models 12. Model Checking & Diagnostics 20. Contents. Bayesian Probability 7

Preface 5. Introduction 6. A Hands-on Example 8. Regression Models 12. Model Checking & Diagnostics 20. Contents. Bayesian Probability 7 M I C H A E L C L A R K C E N T E R F O R S TAT I S T I C A L C O N S U LTAT I O N A N D R E S E A R C H U N I V E R S I T Y O F M I C H I G A N B AY E S I A N B A S I C S A C O N C E P T U A L I N T R

More information

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC Stat 451 Lecture Notes 07 12 Markov Chain Monte Carlo Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapters 8 9 in Givens & Hoeting, Chapters 25 27 in Lange 2 Updated: April 4, 2016 1 / 42 Outline

More information

MIT /30 Gelman, Carpenter, Hoffman, Guo, Goodrich, Lee,... Stan for Bayesian data analysis

MIT /30 Gelman, Carpenter, Hoffman, Guo, Goodrich, Lee,... Stan for Bayesian data analysis MIT 1985 1/30 Stan: a program for Bayesian data analysis with complex models Andrew Gelman, Bob Carpenter, and Matt Hoffman, Jiqiang Guo, Ben Goodrich, and Daniel Lee Department of Statistics, Columbia

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

WinBUGS : part 2. Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert. Gabriele, living with rheumatoid arthritis

WinBUGS : part 2. Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert. Gabriele, living with rheumatoid arthritis WinBUGS : part 2 Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert Gabriele, living with rheumatoid arthritis Agenda 2! Hierarchical model: linear regression example! R2WinBUGS Linear Regression

More information

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation. PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.. Beta Distribution We ll start by learning about the Beta distribution, since we end up using

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Biol 206/306 Advanced Biostatistics Lab 12 Bayesian Inference

Biol 206/306 Advanced Biostatistics Lab 12 Bayesian Inference Biol 206/306 Advanced Biostatistics Lab 12 Bayesian Inference By Philip J. Bergmann 0. Laboratory Objectives 1. Learn what Bayes Theorem and Bayesian Inference are 2. Reinforce the properties of Bayesian

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

Monte Carlo Inference Methods

Monte Carlo Inference Methods Monte Carlo Inference Methods Iain Murray University of Edinburgh http://iainmurray.net Monte Carlo and Insomnia Enrico Fermi (1901 1954) took great delight in astonishing his colleagues with his remarkably

More information

36-463/663: Hierarchical Linear Models

36-463/663: Hierarchical Linear Models 36-463/663: Hierarchical Linear Models Taste of MCMC / Bayes for 3 or more levels Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline Practical Bayes Mastery Learning Example A brief taste of JAGS

More information

Bayesian hypothesis testing for the distribution of insurance claim counts using the Gibbs sampler

Bayesian hypothesis testing for the distribution of insurance claim counts using the Gibbs sampler Journal of Computational Methods in Sciences and Engineering 5 (2005) 201 214 201 IOS Press Bayesian hypothesis testing for the distribution of insurance claim counts using the Gibbs sampler Athanassios

More information

0.1 normal.bayes: Bayesian Normal Linear Regression

0.1 normal.bayes: Bayesian Normal Linear Regression 0.1 normal.bayes: Bayesian Normal Linear Regression Use Bayesian regression to specify a continuous dependent variable as a linear function of specified explanatory variables. The model is implemented

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Computer intensive statistical methods

Computer intensive statistical methods Lecture 13 MCMC, Hybrid chains October 13, 2015 Jonas Wallin jonwal@chalmers.se Chalmers, Gothenburg university MH algorithm, Chap:6.3 The metropolis hastings requires three objects, the distribution of

More information

Probabilities for climate projections

Probabilities for climate projections Probabilities for climate projections Claudia Tebaldi, Reinhard Furrer Linda Mearns, Doug Nychka National Center for Atmospheric Research Richard Smith - UNC-Chapel Hill Steve Sain - CU-Denver Statistical

More information

DIC: Deviance Information Criterion

DIC: Deviance Information Criterion (((( Welcome Page Latest News DIC: Deviance Information Criterion Contact us/bugs list WinBUGS New WinBUGS examples FAQs DIC GeoBUGS DIC (Deviance Information Criterion) is a Bayesian method for model

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS

Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS Statistics in Environmental Research (BUC Workshop Series) II Problem sheet - WinBUGS - SOLUTIONS 1. (a) The posterior mean estimate of α is 14.27, and the posterior mean for the standard deviation of

More information

INTRODUCTION TO BAYESIAN STATISTICS

INTRODUCTION TO BAYESIAN STATISTICS INTRODUCTION TO BAYESIAN STATISTICS Sarat C. Dass Department of Statistics & Probability Department of Computer Science & Engineering Michigan State University TOPICS The Bayesian Framework Different Types

More information

Down by the Bayes, where the Watermelons Grow

Down by the Bayes, where the Watermelons Grow Down by the Bayes, where the Watermelons Grow A Bayesian example using SAS SUAVe: Victoria SAS User Group Meeting November 21, 2017 Peter K. Ott, M.Sc., P.Stat. Strategic Analysis 1 Outline 1. Motivating

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Deciding, Estimating, Computing, Checking

Deciding, Estimating, Computing, Checking Deciding, Estimating, Computing, Checking How are Bayesian posteriors used, computed and validated? Fundamentalist Bayes: The posterior is ALL knowledge you have about the state Use in decision making:

More information

Deciding, Estimating, Computing, Checking. How are Bayesian posteriors used, computed and validated?

Deciding, Estimating, Computing, Checking. How are Bayesian posteriors used, computed and validated? Deciding, Estimating, Computing, Checking How are Bayesian posteriors used, computed and validated? Fundamentalist Bayes: The posterior is ALL knowledge you have about the state Use in decision making:

More information

A Parameter Expansion Approach to Bayesian SEM Estimation

A Parameter Expansion Approach to Bayesian SEM Estimation A Parameter Expansion Approach to Bayesian SEM Estimation Ed Merkle and Yves Rosseel Utrecht University 24 June 2016 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 1 / 51 overview

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Bayesian Statistics: An Introduction

Bayesian Statistics: An Introduction : An Introduction Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. Outline 1. Bayesian statistics,

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

0.1 factor.bayes: Bayesian Factor Analysis

0.1 factor.bayes: Bayesian Factor Analysis 0.1 factor.bayes: Bayesian Factor Analysis Given some unobserved explanatory variables and observed dependent variables, the Normal theory factor analysis model estimates the latent factors. The model

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

FAV i R This paper is produced mechanically as part of FAViR. See for more information.

FAV i R This paper is produced mechanically as part of FAViR. See  for more information. Bayesian Claim Severity Part 2 Mixed Exponentials with Trend, Censoring, and Truncation By Benedict Escoto FAV i R This paper is produced mechanically as part of FAViR. See http://www.favir.net for more

More information

Model comparison: Deviance-based approaches

Model comparison: Deviance-based approaches Model comparison: Deviance-based approaches Patrick Breheny February 19 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/23 Model comparison Thus far, we have looked at residuals in a fairly

More information

A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models

A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models Russell Almond Florida State University College of Education Educational Psychology and Learning Systems ralmond@fsu.edu BMAW 2014 1

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Jim Albert March 18, 2018 A Selected Data Problem Here is an interesting problem with selected data. Suppose you are measuring the speeds of cars driving on an

More information

Advanced Statistical Methods. Lecture 6

Advanced Statistical Methods. Lecture 6 Advanced Statistical Methods Lecture 6 Convergence distribution of M.-H. MCMC We denote the PDF estimated by the MCMC as. It has the property Convergence distribution After some time, the distribution

More information

Lecture 6. Prior distributions

Lecture 6. Prior distributions Summary Lecture 6. Prior distributions 1. Introduction 2. Bivariate conjugate: normal 3. Non-informative / reference priors Jeffreys priors Location parameters Proportions Counts and rates Scale parameters

More information

Bayesian Statistical Methods. Jeff Gill. Department of Political Science, University of Florida

Bayesian Statistical Methods. Jeff Gill. Department of Political Science, University of Florida Bayesian Statistical Methods Jeff Gill Department of Political Science, University of Florida 234 Anderson Hall, PO Box 117325, Gainesville, FL 32611-7325 Voice: 352-392-0262x272, Fax: 352-392-8127, Email:

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Jamie Monogan University of Georgia Spring 2013 For more information, including R programs, properties of Markov chains, and Metropolis-Hastings, please see: http://monogan.myweb.uga.edu/teaching/statcomp/mcmc.pdf

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Reducing The Computational Cost of Bayesian Indoor Positioning Systems

Reducing The Computational Cost of Bayesian Indoor Positioning Systems Reducing The Computational Cost of Bayesian Indoor Positioning Systems Konstantinos Kleisouris, Richard P. Martin Computer Science Department Rutgers University WINLAB Research Review May 15 th, 2006 Motivation

More information

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application, CleverSet, Inc. STARMAP/DAMARS Conference Page 1 The research described in this presentation has been funded by the U.S.

More information

Bayesian Methods in Multilevel Regression

Bayesian Methods in Multilevel Regression Bayesian Methods in Multilevel Regression Joop Hox MuLOG, 15 september 2000 mcmc What is Statistics?! Statistics is about uncertainty To err is human, to forgive divine, but to include errors in your design

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Probabilistic programming and Stan. mc-stan.org

Probabilistic programming and Stan. mc-stan.org Probabilistic programming and Stan mc-stan.org Outline What is probabilistic programming Stan now Stan in the future A bit about other software Probabilistic programming Probabilistic programming framework

More information

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics Estimating a proportion using the beta/binomial model A fundamental task in statistics is to estimate a proportion using a series of trials: What is the success probability of a new cancer treatment? What

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 2) Fall 2017 1 / 19 Part 2: Markov chain Monte

More information

Biol 206/306 Advanced Biostatistics Lab 12 Bayesian Inference Fall 2016

Biol 206/306 Advanced Biostatistics Lab 12 Bayesian Inference Fall 2016 Biol 206/306 Advanced Biostatistics Lab 12 Bayesian Inference Fall 2016 By Philip J. Bergmann 0. Laboratory Objectives 1. Learn what Bayes Theorem and Bayesian Inference are 2. Reinforce the properties

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Part 7: Hierarchical Modeling

Part 7: Hierarchical Modeling Part 7: Hierarchical Modeling!1 Nested data It is common for data to be nested: i.e., observations on subjects are organized by a hierarchy Such data are often called hierarchical or multilevel For example,

More information

Statistical Computing with R

Statistical Computing with R Statistical Computing with R Eric Slud, Math. Dept., UMCP October 21, 2009 Overview of Course This course was originally developed jointly with Benjamin Kedem and Paul Smith. It consists of modules as

More information

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont.

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont. TCELL 9/4/205 36-309/749 Experimental Design for Behavioral and Social Sciences Simple Regression Example Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted

More information

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Lecture 5 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information