MIT /30 Gelman, Carpenter, Hoffman, Guo, Goodrich, Lee,... Stan for Bayesian data analysis

Size: px
Start display at page:

Download "MIT /30 Gelman, Carpenter, Hoffman, Guo, Goodrich, Lee,... Stan for Bayesian data analysis"

Transcription

1 MIT /30

2 Stan: a program for Bayesian data analysis with complex models Andrew Gelman, Bob Carpenter, and Matt Hoffman, Jiqiang Guo, Ben Goodrich, and Daniel Lee Department of Statistics, Columbia University, New York and others 12 Oct /30

3 Stan overview Fit open-ended Bayesian models Specify log posterior density in C++ Code a distribution once, then use it everywhere Hamiltonian No-U-Turn sampler Autodiff Runs from R; postprocessing 3/30

4 Example from toxicology 4/30

5 Sparse data 5/30

6 Validation using predictive simulations 6/30

7 Public opinion: Health care reform 7/30

8 Public opinion: School vouchers 8/30

9 Public opinion: Death penalty Hierarchical time series model Open-ended 9/30

10 Tree rings 10/30

11 Speed dating Each person meets dates Rate each date on Attractiveness, Sincerity, Intelligence, Ambition, Fun to be with, Shared interests Outcomes Do you want to see this person again? (Yes/No) How much do you like this person (1 10) How important are each of the 6 attributes? Logistic or linear regression Hierarchical model: coefficients vary by person 11/30

12 Steps of Bayesian data analysis Model building Inference Model checking Model understanding and improvement 12/30

13 Background on Bayesian computation Point estimates and standard errors Hierarchical models Posterior simulation Markov chain Monte Carlo (Gibbs sampler and Metropolis algorithm) Hamiltonian Monte Carlo 13/30

14 Hoffman and Gelman HMC Example Trajectory Blue ellipse is contour of target distribution Figure 2: Example of a trajectory generated during one iteration of NUTS. The blue ellipse is a contour of the target distribution, the black open circles are the positions θ traced Initial out byposition the leapfrog integrator at black and associated solid with elements of the set of visited states B, the black solid circle is the starting position, the red solid circles are Arrows positions associated indicate with astates U-turn that mustinbe momentum excluded from the set C of possible next samples because their joint probability is below the slice variable u, Gelman, Carpenter, and the positions Hoffman, with aguo, red x Goodrich, through Lee, them. correspond.. Stan to states for Bayesian that must data be analysis 14/30

15 Solving problems Problem: Gibbs too slow, Metropolis too problem-specific Solution: Hamiltonian Monte Carlo Problem: Interpreters too slow, won t scale Solution: Compilation Problem: Need gradients of log posterior for HMC Solution: Reverse-mode algorithmic differentation Problem: Existing algo-diff slow, limited, unextensible Solution: Our own algo-diff Problem: Algo-diff requires fully templated functions Solution: Our own density library, Eigen linear algebra 15/30

16 Radford Neal (2011) on Hamiltonian Monte Carlo One practical impediment to the use of Hamiltonian Monte Carlo is the need to select suitable values for the leapfrog stepsize, ɛ, and the number of leapfrog steps L... Tuning HMC will usually require preliminary runs with trial values for ɛ and L... Unfortunately, preliminary runs can be misleading... 16/30

17 The No U-Turn Sampler Created by Matt Hoffman Run the HMC steps until they start to turn around (bend with an angle > 180 ) Computationally efficient Requires no tuning of #steps Complications to preserve detailed balance 17/30

18 Hoffman and Gelman NUTS Example Trajectory Blue ellipse is contour of target distribution Figure 2: Example of a trajectory generated during one iteration of NUTS. The blue ellipse is a contour of the target distribution, the black open circles are the positions θ traced Initial out byposition the leapfrog integrator at black and associated solid with elements of the set of visited states B, the black solid circle is the starting position, the red solid circles are Arrows positions associated indicate with astates U-turn that mustinbe momentum excluded from the set C of possible next samples because their joint probability is below the slice variable u, Gelman, Carpenter, and the positions Hoffman, with aguo, red x Goodrich, through Lee, them. correspond.. Stan to states for Bayesian that must data be analysis 18/30

19 NUTS vs. Gibbs andthe Metropolis No-U-Turn Sampler Two dimensions of highly correlated 250-dim distribution igure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots compare 1M samples 1,000 independent from Metropolis, draws from1ma highly from correlated Gibbs (thin 250-dimensional to 1K) distribu- 1K(right) samples with 1,000,000 from NUTS, samples 1K(thinned independent to 1,000 samples draws for display) generated by tion random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display) generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS (second from right). Only the first two dimensions are shown here. 19/30

20 Hoffman and Gelman NUTS vs. Basic HMC 250-D normal and logistic regression models Vertical axis shows effective #sims (big is good) (Left) NUTS; (Right) HMC with increasing t = ɛl 20/30

21 NUTS vs. Basic HMC II Hierarchical logistic regression and stochastic volatility igure 6: Effective Simulation sampletime size is (ESS) stepas size a function ɛ times of #steps δ and L(for HMC) simulation length L for the multivariate normal, logistic regression, hierarchical logistic regression NUTS can beat optimally tuned HMC and stochastic volatility models. Each point shows the ESS divided by the numbe 21/30 Gelman, of Carpenter, gradient Hoffman, evaluations Guo, Goodrich, for alee, separate... Stan experiment; for Bayesian data lines analysis denote the average of th

22 Solving more problems in Stan Problem: Need ease of use of BUGS Solution: Compile directed graphical model language Problem: Need to tune parameters for HMC Solution: Auto tuning, adaptation Problem: Efficient up-to-proportion density calcs Solution: Density template metaprogramming Problem: Limited error checking, recovery Solution: Static model typing, informative exceptions Problem: Poor boundary behavior Solution: Calculate limits (e.g. lim x 0 x log x) Problem: Restrictive licensing (e.g., closed, GPL, etc.) Solution: Open-source, BSD license 22/30

23 A simple hierarchical model in Stan data { int<lower=0> J; // number of schools real y[j]; // estimated treatment effects real<lower=0> sigma[j]; // s.e. of effect estimates } parameters { real mu; real<lower=0> tau; real eta[j]; } transformed parameters { real theta[j]; for (j in 1:J) theta[j] <- mu + tau * eta[j]; } model { eta ~ normal(0, 1); y ~ normal(theta, sigma); } 23/30

24 Example: the Kumaraswamy distribution p(θ a, b) = a b x θ 1 (1 θ a )(b 1) for a, b > 0 and θ (0, 1) model { // Put priors on a and b here if you want } // Put in the rest of your model // Kumaraswamy log-likelihood lp <- lp + N*(log(a)+log(b))+(a-1)*sum_log_theta; for (i in 1:N) lp <- lp + (b-1)*log1m(pow(theta[i],a)); 24/30

25 Check that it worked R code: N < a <- 3 b <- 2 theta <- rbeta(n,1,b)^(1/a) Kumaraswamy <- stan (file="kumaraswamy.stan", data=list(n=n,x=x)) print (Kumaraswamy) Result: Inference for Stan model: Kumaraswamy. 4 chains: each with iter=2000; warmup=1000; thin=1; 2000 saved. mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat a b lp /30

26 Scalability Big data Big models 26/30

27 What do we mean by Artificial Intelligence? 27/30

28 A possible model of Bayesian data analysis Computer does step 2 (Bayesian inference); homunculus does step 1 (model building) and step 3 (model checking) 28/30

29 29/30 Summary delta ESS per gradient NUTS Automatic Bayesian inference as good as (or better than) programming it yourself Open architecture, active user and developer communities (mc-stan.org) Goals: Fit more models Run faster Tools for Bayesian data analysis

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo Hamiltonian Monte Carlo within Stan Daniel Lee Columbia University, Statistics Department bearlee@alum.mit.edu BayesComp mc-stan.org Why MCMC? Have data. Have a rich statistical model. No analytic solution.

More information

Tutorial on Probabilistic Programming with PyMC3

Tutorial on Probabilistic Programming with PyMC3 185.A83 Machine Learning for Health Informatics 2017S, VU, 2.0 h, 3.0 ECTS Tutorial 02-04.04.2017 Tutorial on Probabilistic Programming with PyMC3 florian.endel@tuwien.ac.at http://hci-kdd.org/machine-learning-for-health-informatics-course

More information

Have I Converged? Diagnosis and Remediation

Have I Converged? Diagnosis and Remediation Have I Converged? Diagnosis and Remediation Bob Carpenter Columbia University Stan 2.17 (January 2018) http://mc-stan.org Computation Target Expectations of Function of R.V. Suppose f (θ) is a function

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Introduction to Hamiltonian Monte Carlo Method

Introduction to Hamiltonian Monte Carlo Method Introduction to Hamiltonian Monte Carlo Method Mingwei Tang Department of Statistics University of Washington mingwt@uw.edu November 14, 2017 1 Hamiltonian System Notation: q R d : position vector, p R

More information

Non-analytic; can only be solved with MCMC. Last model isn t found in any package.

Non-analytic; can only be solved with MCMC. Last model isn t found in any package. DAY 2 STAN WORKSHOP RECAP RECAP Ran multiple Stan programs! Wrote multiple Stan programs. Non-analytic; can only be solved with MCMC. Last model isn t found in any package. Started learning a new language.

More information

Paul Karapanagiotidis ECO4060

Paul Karapanagiotidis ECO4060 Paul Karapanagiotidis ECO4060 The way forward 1) Motivate why Markov-Chain Monte Carlo (MCMC) is useful for econometric modeling 2) Introduce Markov-Chain Monte Carlo (MCMC) - Metropolis-Hastings (MH)

More information

Understanding Automatic Differentiation to Improve Performance

Understanding Automatic Differentiation to Improve Performance Understanding Automatic Differentiation to Improve Performance Charles Margossian Columbia University, Department of Statistics July 22nd 2018 Sampler Metropolis Hasting, Gibbs Hamiltonian Monte Carlo

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo Chapter 7 Hamiltonian Monte Carlo As with the Metropolis Hastings algorithm, Hamiltonian (or hybrid) Monte Carlo (HMC) is an idea that has been knocking around in the physics literature since the 1980s

More information

17 : Optimization and Monte Carlo Methods

17 : Optimization and Monte Carlo Methods 10-708: Probabilistic Graphical Models Spring 2017 17 : Optimization and Monte Carlo Methods Lecturer: Avinava Dubey Scribes: Neil Spencer, YJ Choe 1 Recap 1.1 Monte Carlo Monte Carlo methods such as rejection

More information

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method Madeleine B. Thompson Radford M. Neal Abstract The shrinking rank method is a variation of slice sampling that is efficient at

More information

Introduction to Stan for Markov Chain Monte Carlo

Introduction to Stan for Markov Chain Monte Carlo Introduction to Stan for Markov Chain Monte Carlo Matthew Simpson Department of Statistics, University of Missouri April 25, 2017 These slides and accompanying R and Stan files are available at http://stsn.missouri.edu/education-and-outreach.shtml

More information

Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo

Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo Michael Betancourt arxiv:1604.00695v1 [stat.me] 3 Apr 2016 Abstract. When properly tuned, Hamiltonian Monte Carlo scales to some

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Monte Carlo Inference Methods

Monte Carlo Inference Methods Monte Carlo Inference Methods Iain Murray University of Edinburgh http://iainmurray.net Monte Carlo and Insomnia Enrico Fermi (1901 1954) took great delight in astonishing his colleagues with his remarkably

More information

Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints. Hadi Mohasel Afshar Scott Sanner Christfried Webers

Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints. Hadi Mohasel Afshar Scott Sanner Christfried Webers Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints Hadi Mohasel Afshar Scott Sanner Christfried Webers Inference in Hybrid Graphical Models / Probabilistic Programs Limitations

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

1 Geometry of high dimensional probability distributions

1 Geometry of high dimensional probability distributions Hamiltonian Monte Carlo October 20, 2018 Debdeep Pati References: Neal, Radford M. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo 2.11 (2011): 2. Betancourt, Michael. A conceptual

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Hierarchical Linear Models

Hierarchical Linear Models Hierarchical Linear Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin The linear regression model Hierarchical Linear Models y N(Xβ, Σ y ) β σ 2 p(β σ 2 ) σ 2 p(σ 2 ) can be extended

More information

Hamiltonian Monte Carlo with Fewer Momentum Reversals

Hamiltonian Monte Carlo with Fewer Momentum Reversals Hamiltonian Monte Carlo with ewer Momentum Reversals Jascha Sohl-Dickstein December 6, 2 Hamiltonian dynamics with partial momentum refreshment, in the style of Horowitz, Phys. ett. B, 99, explore the

More information

A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models

A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models Russell Almond Florida State University College of Education Educational Psychology and Learning Systems ralmond@fsu.edu BMAW 2014 1

More information

4.2 centering Chris Parrish July 2, 2016

4.2 centering Chris Parrish July 2, 2016 4.2 centering Chris Parrish July 2, 2016 Contents centering and standardizing 1 centering.................................................. 1 data.................................................. 1 model.................................................

More information

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment Bayesian Networks in Educational Assessment Estimating Parameters with MCMC Bayesian Inference: Expanding Our Context Roy Levy Arizona State University Roy.Levy@asu.edu 2017 Roy Levy MCMC 1 MCMC 2 Posterior

More information

BUGS Bayesian inference Using Gibbs Sampling

BUGS Bayesian inference Using Gibbs Sampling BUGS Bayesian inference Using Gibbs Sampling Glen DePalma Department of Statistics May 30, 2013 www.stat.purdue.edu/~gdepalma 1 / 20 Bayesian Philosophy I [Pearl] turned Bayesian in 1971, as soon as I

More information

(Moderately) Advanced Hierarchical Models

(Moderately) Advanced Hierarchical Models (Moderately) Advanced Hierarchical Models Ben Goodrich StanCon: January 12, 2018 Ben Goodrich Advanced Hierarchical Models StanCon 1 / 18 Obligatory Disclosure Ben is an employee of Columbia University,

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Roll-back Hamiltonian Monte Carlo

Roll-back Hamiltonian Monte Carlo Roll-back Hamiltonian Monte Carlo Kexin Yi Department of Physics Harvard University Cambridge, MA, 02138 kyi@g.harvard.edu Finale Doshi-Velez School of Engineering and Applied Sciences Harvard University

More information

The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo

The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo The No-U-Turn Sampler The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo Matthew D. Hoffman Department of Statistics Columbia University New York, NY 10027, USA Andrew Gelman

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School Bayesian modelling Hans-Peter Helfrich University of Bonn Theodor-Brinkmann-Graduate School H.-P. Helfrich (University of Bonn) Bayesian modelling Brinkmann School 1 / 22 Overview 1 Bayesian modelling

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Riemann Manifold Methods in Bayesian Statistics

Riemann Manifold Methods in Bayesian Statistics Ricardo Ehlers ehlers@icmc.usp.br Applied Maths and Stats University of São Paulo, Brazil Working Group in Statistical Learning University College Dublin September 2015 Bayesian inference is based on Bayes

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Probabilistic programming and Stan. mc-stan.org

Probabilistic programming and Stan. mc-stan.org Probabilistic programming and Stan mc-stan.org Outline What is probabilistic programming Stan now Stan in the future A bit about other software Probabilistic programming Probabilistic programming framework

More information

Efficiency and Reliability of Bayesian Calibration of Energy Supply System Models

Efficiency and Reliability of Bayesian Calibration of Energy Supply System Models Efficiency and Reliability of Bayesian Calibration of Energy Supply System Models Kathrin Menberg 1,2, Yeonsook Heo 2, Ruchi Choudhary 1 1 University of Cambridge, Department of Engineering, Cambridge,

More information

R-squared for Bayesian regression models

R-squared for Bayesian regression models R-squared for Bayesian regression models Andrew Gelman Ben Goodrich Jonah Gabry Imad Ali 8 Nov 2017 Abstract The usual definition of R 2 (variance of the predicted values divided by the variance of the

More information

Bayesian leave-one-out cross-validation for large data sets

Bayesian leave-one-out cross-validation for large data sets 1st Symposium on Advances in Approximate Bayesian Inference, 2018 1 5 Bayesian leave-one-out cross-validation for large data sets Måns Magnusson Michael Riis Andersen Aki Vehtari Aalto University mans.magnusson@aalto.fi

More information

Computing lp. proportionality constants and (automatic) transforms. Daniel Lee May 22, Stan Meetup.

Computing lp. proportionality constants and (automatic) transforms. Daniel Lee May 22, Stan Meetup. Computing lp proportionality constants and (automatic) transforms Daniel Lee daniel@generable.com May 22, 2018. Stan Meetup. Who am I? Stan developer since 2011 CTO of Generable Tools in pharma for analysis

More information

Solar Spectral Analyses with Uncertainties in Atomic Physical Models

Solar Spectral Analyses with Uncertainties in Atomic Physical Models Solar Spectral Analyses with Uncertainties in Atomic Physical Models Xixi Yu Imperial College London xixi.yu16@imperial.ac.uk 3 April 2018 Xixi Yu (Imperial College London) Statistical methods in Astrophysics

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Jim Albert March 18, 2018 A Selected Data Problem Here is an interesting problem with selected data. Suppose you are measuring the speeds of cars driving on an

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

36-463/663Multilevel and Hierarchical Models

36-463/663Multilevel and Hierarchical Models 36-463/663Multilevel and Hierarchical Models From Bayes to MCMC to MLMs Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline Bayesian Statistics and MCMC Distribution of Skill Mastery in a Population

More information

Scaling up Bayesian Inference

Scaling up Bayesian Inference Scaling up Bayesian Inference David Dunson Departments of Statistical Science, Mathematics & ECE, Duke University May 1, 2017 Outline Motivation & background EP-MCMC amcmc Discussion Motivation & background

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) School of Computer Science 10-708 Probabilistic Graphical Models Markov Chain Monte Carlo (MCMC) Readings: MacKay Ch. 29 Jordan Ch. 21 Matt Gormley Lecture 16 March 14, 2016 1 Homework 2 Housekeeping Due

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Hierarchical Bayesian Modeling

Hierarchical Bayesian Modeling Hierarchical Bayesian Modeling Making scientific inferences about a population based on many individuals Angie Wolfgang NSF Postdoctoral Fellow, Penn State Astronomical Populations Once we discover an

More information

Hamiltonian Monte Carlo for Scalable Deep Learning

Hamiltonian Monte Carlo for Scalable Deep Learning Hamiltonian Monte Carlo for Scalable Deep Learning Isaac Robson Department of Statistics and Operations Research, University of North Carolina at Chapel Hill isrobson@email.unc.edu BIOS 740 May 4, 2018

More information

An Overview of Edward: A Probabilistic Programming System. Dustin Tran Columbia University

An Overview of Edward: A Probabilistic Programming System. Dustin Tran Columbia University An Overview of Edward: A Probabilistic Programming System Dustin Tran Columbia University Alp Kucukelbir Eugene Brevdo Andrew Gelman Adji Dieng Maja Rudolph David Blei Dawen Liang Matt Hoffman Kevin Murphy

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Theory of Stochastic Processes 8. Markov chain Monte Carlo

Theory of Stochastic Processes 8. Markov chain Monte Carlo Theory of Stochastic Processes 8. Markov chain Monte Carlo Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo June 8, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Assessing Regime Uncertainty Through Reversible Jump McMC

Assessing Regime Uncertainty Through Reversible Jump McMC Assessing Regime Uncertainty Through Reversible Jump McMC August 14, 2008 1 Introduction Background Research Question 2 The RJMcMC Method McMC RJMcMC Algorithm Dependent Proposals Independent Proposals

More information

Probabilistic Programming Language

Probabilistic Programming Language Stan Probabilistic Programming Language Core Development Team: Andrew Gelman, Bob Carpenter, Matt Hoffman Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, Allen Riddell,

More information

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel The Bias-Variance dilemma of the Monte Carlo method Zlochin Mark 1 and Yoram Baram 1 Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel fzmark,baramg@cs.technion.ac.il Abstract.

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Bayesian Regression for a Dirichlet Distributed Response using Stan

Bayesian Regression for a Dirichlet Distributed Response using Stan Bayesian Regression for a Dirichlet Distributed Response using Stan Holger Sennhenn-Reulen 1 1 Department of Growth and Yield, Northwest German Forest Research Institute, Göttingen, Germany arxiv:1808.06399v1

More information

BAYESIAN INFERENCE IN STAN

BAYESIAN INFERENCE IN STAN BAYESIAN INFERENCE IN STAN DANIEL LEE bearlee@alum.mit.edu http://mc-stan.org OBLIGATORY DISCLOSURE I am a researcher at Columbia University. I am a cofounder of Stan Group Inc. and have equity. I am required

More information

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang Chapter 4 Dynamic Bayesian Networks 2016 Fall Jin Gu, Michael Zhang Reviews: BN Representation Basic steps for BN representations Define variables Define the preliminary relations between variables Check

More information

Probabilistic machine learning group, Aalto University Bayesian theory and methods, approximative integration, model

Probabilistic machine learning group, Aalto University  Bayesian theory and methods, approximative integration, model Aki Vehtari, Aalto University, Finland Probabilistic machine learning group, Aalto University http://research.cs.aalto.fi/pml/ Bayesian theory and methods, approximative integration, model assessment and

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 2) Fall 2017 1 / 19 Part 2: Markov chain Monte

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Bayesian GLMs and Metropolis-Hastings Algorithm

Bayesian GLMs and Metropolis-Hastings Algorithm Bayesian GLMs and Metropolis-Hastings Algorithm We have seen that with conjugate or semi-conjugate prior distributions the Gibbs sampler can be used to sample from the posterior distribution. In situations,

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

An introduction to adaptive MCMC

An introduction to adaptive MCMC An introduction to adaptive MCMC Gareth Roberts MIRAW Day on Monte Carlo methods March 2011 Mainly joint work with Jeff Rosenthal. http://www2.warwick.ac.uk/fac/sci/statistics/crism/ Conferences and workshops

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Bayesian inference for multivariate extreme value distributions

Bayesian inference for multivariate extreme value distributions Bayesian inference for multivariate extreme value distributions Sebastian Engelke Clément Dombry, Marco Oesting Toronto, Fields Institute, May 4th, 2016 Main motivation For a parametric model Z F θ of

More information

Gaussian Processes for Regression. Carl Edward Rasmussen. Department of Computer Science. Toronto, ONT, M5S 1A4, Canada.

Gaussian Processes for Regression. Carl Edward Rasmussen. Department of Computer Science. Toronto, ONT, M5S 1A4, Canada. In Advances in Neural Information Processing Systems 8 eds. D. S. Touretzky, M. C. Mozer, M. E. Hasselmo, MIT Press, 1996. Gaussian Processes for Regression Christopher K. I. Williams Neural Computing

More information

Bayesian Estimation of Expected Cell Counts by Using R

Bayesian Estimation of Expected Cell Counts by Using R Bayesian Estimation of Expected Cell Counts by Using R Haydar Demirhan 1 and Canan Hamurkaroglu 2 Department of Statistics, Hacettepe University, Beytepe, 06800, Ankara, Turkey Abstract In this article,

More information

Computer intensive statistical methods

Computer intensive statistical methods Lecture 13 MCMC, Hybrid chains October 13, 2015 Jonas Wallin jonwal@chalmers.se Chalmers, Gothenburg university MH algorithm, Chap:6.3 The metropolis hastings requires three objects, the distribution of

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

MCMC notes by Mark Holder

MCMC notes by Mark Holder MCMC notes by Mark Holder Bayesian inference Ultimately, we want to make probability statements about true values of parameters, given our data. For example P(α 0 < α 1 X). According to Bayes theorem:

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian course - problem set 5 (lecture 6)

Bayesian course - problem set 5 (lecture 6) Bayesian course - problem set 5 (lecture 6) Ben Lambert November 30, 2016 1 Stan entry level: discoveries data The file prob5 discoveries.csv contains data on the numbers of great inventions and scientific

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics Bayesian phylogenetics the one true tree? the methods we ve learned so far try to get a single tree that best describes the data however, they admit that they don t search everywhere, and that it is difficult

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee September 03 05, 2017 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Linear Regression Linear regression is,

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information