Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints. Hadi Mohasel Afshar Scott Sanner Christfried Webers

Size: px
Start display at page:

Download "Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints. Hadi Mohasel Afshar Scott Sanner Christfried Webers"

Transcription

1 Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints Hadi Mohasel Afshar Scott Sanner Christfried Webers

2 Inference in Hybrid Graphical Models / Probabilistic Programs Limitations of BUGS, PyMC, Anglican, and STAN They don t handle piecewise functions well i.e., slow convergence with conditionals if (t > 0) They don t handle simple algebraic constraints i.e., you cannot assign x = y + 1 (you have to add noise) Our solution efficiently handles piecewise functions and algebraic constraints

3 Sneak Preview: Sampling in Piecewise Models with Algebraic Constraints

4 Contribution 1: We present an effective sampler for GMs with piecewise factors Polynomial-piecewise fractional functions (PPFs) Fractional Polynomial Example: x y if x + y > 0 x 2 +y y 2 if x + y < 0, y > 0

5 PPFs can be used for: Representing truncated/finite support models Approximating arbitrary models

6 PPFs can be used for: Representing truncated/finite support models Approximating arbitrary models Probabilistic programming % Draw from uniform (0, 1) x = rand; if (x < 0.5) % Draw from standard Normal y = randn; else % Draw from Gamma(1, 1) y = randg + 2.0; end

7 PPFs can be used for: Representing truncated/finite support models Approximating arbitrary models Probabilistic programming Bayesian inference: piecewise priors and likelihoods Algebraic constraints!

8 Contribution 2: Algebraic Constraints An example: pr M 1 = U(M 1 ; 0.1, 2.1) pr M 2 = U(M 2 ; 0.1, 2.1) pr V 1 = U(V 1 ; 2, 2) pr V 2 V 1 = U(V 2 ; 2, V 1 ) Observation: P tot = 3 pr(v 1, M 2, V 2 P tot = 3)? Query: M 1 V 1 + M 2 V 2 = 3 pr V 1, M 2, V 2 P tot = 3 pr M 1, V 1, M 2, V 2 pr P tot M 1, V 1, M 2, V 2 dm 1 δ f x = r roots f x δ x r f x x P tot = M 1 V 1 + M 2 V 2, so: pr P tot = δ M 1 V 1 + M 2 V 2 3 = δ M 1 3 M 2V 2 V 1 V 1

9 Contribution 2: Algebraic Constraints An example: pr M 1 = U(M 1 ; 0.1, 2.1) pr M 2 = U(M 2 ; 0.1, 2.1) pr V 1 = U(V 1 ; 2, 2) pr V 2 V 1 = U(V 2 ; 2, V 1 ) Observation: P tot = 3 Query: Divisions, absolute values! pr(v 1, M 2, V 2 P tot = 3)? PPFs are closed under them pr V 1, M 2, V 2 P tot = 3 pr M 1, V 1, M 2, V 2 pr P tot M 1, V 1, M 2, V 2 dm 1 Next: PPFs are closed under fractional substitutions! δ f x = r roots f x δ x r f x x P tot = M 1 V 1 + M 2 V 2, so: pr P tot = δ M 1 V 1 + M 2 V 2 3 = δ M 1 3 M 2V 2 V 1 V 1

10 Collapse Algebraic Constraints Collapse out M 1 : pr M 1 = U(M 1 ; 0.1, 2.1) pr M 2 = U(M 2 ; 0.1, 2.1) pr V 1 = U(V 1 ; 2, 2) pr V 2 V 1 = U(V 2 ; 2, V 1 ) Observation: P tot = 3 that is, M 1 V 1 + M 2 V 2 = 3 Query: pr(v 1, M 2, V 2 P tot = 3)? pr P tot = δ M 1 3 M 2V 2 V 1 V 1 pr V 1, M 2, V 2 P tot = 3 pr M 1, V 1, M 2, V 2 pr P tot M 1, V 1, M 2, V 2 dm 1 1 if 0 < V 1, 0.1 < 3 M 2V 2 < 2.1, 1 < M P tot = M 1 V 1 V+ M 2 V 2, so: 2 < 3, V 1 (V 1 + 2) 1 2 < V pr P 1 < 2, 2 < V tot = δ M 1 V 1 + M 2 < V 2 V if 0 > V δ M 1 3 M 1, 0.1 < 3 M 2V 2 < 2.1, 1 < 2VM 2 V 2 < 3, V V = 1 1 (V 1 + 2) 1 2 < V 1 < 2, 2 < V 21 < V 1 0 otherwise

11 Sneak Preview: Inference Results Even in this simple example, posteriors are multimodal and piecewise! pr M 1, V 1 P tot = 3, V 2 = 0.2) pr V 1, V 2 P tot = 3, M 1 = 2) pr M 1, V 1 P tot = 3) pr V 1, V 2 P tot = 3)

12 Where are we? We ve written down expressive PPF models We ve collapsed out determinism (constraints) We still need to do inference in the collapsed PPF model

13 Inference in Piecewise Algebraic Models Closed-form solution? Metropolis Hastings? Generally, impossible! Low acceptance rate! Due to high KL-divergence between the proposal and target densities

14 Inference in Piecewise Algebraic Models Closed-form solution? Generally, impossible! Metropolis Hastings? Low acceptance rate! Hamiltonian Monte Carlo? Low acceptance rate! Also no discrete variables! Since HMC leap-frog mechanism relies one the assumption of smoothness.

15 Inference in Piecewise Algebraic Models Closed-form solution? Metropolis Hastings? Hamiltonian Monte Carlo? Slice Sampling? Gibbs sampling? Generally, impossible! Low acceptance rate! Low acceptance rate! Poor performance on multimodal densities! Slow, due to per sample (multiple) CDF computation (integration)! We are going to make it fast!

16 Gibbs sampling Remember that in Gibbs, sampling from an n dimensional function is done in n steps. Current sample (X 1 = a, X 2 = b) Intermediate sample (X 1 = a, X 2 = b) X 2 X 1 ~ pr(x 1 X 2 = b) X 2 ~ pr(x 2 X 1 = a ) n univariate CDFs = n integrations per sample Next sample (X 1 = a, X 2 = b ) X 1

17 Gibbs sampling Remember that in Gibbs, sampling from an N dimensional What function if we can is compute done in N steps.idea Current sample (X 1 = a, X 2 = b) IDEA! CDFs symbolically and prior Intermediate sample (X 1 = a, X 2 = b) to sampling? X 2 X 1 ~ pr(x 1 X 2 = b) X 2 ~ pr(x 2 X 1 = a ) n univariate CDFs = n integrations per sample Next sample (X 1 = a, X 2 = b ) X 1

18 Gibbs sampling Remember that in Gibbs, sampling from an n dimensional function is done in n steps. Only need to do one integral which is possible for a large class of PPFs Mapping variables to symbolic CDFs X 2 X 1 n integrals rather than n #samples

19 Returning to our example: pr V 1, M 2, V 2 P tot = 3 1 V 1 (V 1 + 2) if 0 < V 1, V 1 < 30 10M 2 V 2, 3 M 2V 2 < V 2.1 1, 1 < M 2 < 3, 2 < V 1, V 1 < 2, 2 < V 2, V 2 < V 1 1 if 0 > V 1, V 1 > 30 10M 2 V 2, 3 M 2V 2 > V 2.1 1, 1 < M 2 < 3, V 1 (V 1 + 2) 2 < V 1 < 2, 2 < V 2 < V 1 0 otherwise, so: pr P tot = δ M 1 V 1 + M 2 V 2 3 = δ M 1 3 M 2V 2 V 1 V 1

20 Returning to our example: V 1 maps F V1 v 1 = v 1 V 1 = pr V 1, M 2, V 2 P tot = 3 v 1 V 1 = v 1 V 1 = + 1 V 1 (V 1 + 2) dv 1 Let s just consider one statement if 0 < V 1, V 1 < 30 10M 2 V 2, 3 M 2V 2 < V 2.1 1, 1 < M 2 < 3, 2 < V 1, V 1 < 2, 2 < V 2, V 2 < V 1 1 if 0 > V 1, V 1 > 30 10M 2 V 2, 3 M 2V 2 > V 2.1 1, 1 < M 2 < 3, V 1 (V 1 + 2) 2 < V 1 < 2, 2 < V 2 < V 1 0 otherwise, so: dv 1 dv 1

21 Returning to our example: Let s just consider one statement v 1 V 1 = 1 V 1 (V 1 + 2) if 0 < V 1, V 1 < 30 10M 2 V 2, 3 M 2V 2 < V 2.1 1, 1 < M 2 < 3, 2 < V 1, V 1 < 2, 2 < V 2, V 2 < V 1 dv 1, so:

22 Returning to our example: v 1 V 1 = 1 V 1 (V 1 + 2) if 0 < V 1, V 1 < 30 10M 2 V 2, 3 M 2V 2 < V 2.1 1, 1 < M 2 < 3, 2 < V 1, V 1 < 2, 2 < V 2, V 2 < V 1 dv 1 = min v 1,30 10 M 2 V 2, 2 V 1 =max {0,V 2, 3 M 2V 2 } if min {v dv 1, M 2 V 2, 2} > max 0, V 2, 3 M 2V 2 V 1 (V 1 + 2) < M 2 < 3, 2 < V 2 0 otherwise, A large set of algebraic functions have closed-form indefinite integrals i.e. here dv1 V1(V1+2) = log V 1 log (V 1 +2) 2

23 Inference in Piecewise Algebraic GMs 1. Collapse determinism Collapse one variable in each algebraic constraint 2. To take S samples from an N-dimensional model, In baseline Gibbs, S N (univariate) CDFs are computed. In Symbolic Gibbs, N (analytical) CDFs and S N function evaluations are required. Much faster!

24 Results

25 Results

26 Conclusions Expressive Graphical Models / Probabilistic Programs Allow algebraic constraints Represent factors as polynomial-piecewise fractions (PPFs) Sufficient for rich class of probabilistic programs Among many other applications Result 1: Collapse all algebraic constraints (determism) Yields symbolic substitutions into PPF form Result 2: PPFs are one-time integrable! Symbolically pre-compute all conditions for Gibbs sampling Leads to very fast Gibbs sampler! Expressive Exact GM / PP MCMC Inference!

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Tutorial on Probabilistic Programming with PyMC3

Tutorial on Probabilistic Programming with PyMC3 185.A83 Machine Learning for Health Informatics 2017S, VU, 2.0 h, 3.0 ECTS Tutorial 02-04.04.2017 Tutorial on Probabilistic Programming with PyMC3 florian.endel@tuwien.ac.at http://hci-kdd.org/machine-learning-for-health-informatics-course

More information

Monte Carlo Inference Methods

Monte Carlo Inference Methods Monte Carlo Inference Methods Iain Murray University of Edinburgh http://iainmurray.net Monte Carlo and Insomnia Enrico Fermi (1901 1954) took great delight in astonishing his colleagues with his remarkably

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Sampling Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Monte Carlo integration

Monte Carlo integration Monte Carlo integration Eample of a Monte Carlo sampler in D: imagine a circle radius L/ within a square of LL. If points are randoml generated over the square, what s the probabilit to hit within circle?

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Bayes Nets: Sampling

Bayes Nets: Sampling Bayes Nets: Sampling [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Approximate Inference:

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo Hamiltonian Monte Carlo within Stan Daniel Lee Columbia University, Statistics Department bearlee@alum.mit.edu BayesComp mc-stan.org Why MCMC? Have data. Have a rich statistical model. No analytic solution.

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

CS 188: Artificial Intelligence. Bayes Nets

CS 188: Artificial Intelligence. Bayes Nets CS 188: Artificial Intelligence Probabilistic Inference: Enumeration, Variable Elimination, Sampling Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22.

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22. Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 15: Bayes Nets 3 Midterms graded Assignment 2 graded Announcements Rob Fergus Dept of Computer Science, Courant Institute, NYU Slides

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Linear-time Gibbs Sampling in Piecewise Graphical Models

Linear-time Gibbs Sampling in Piecewise Graphical Models Linear-time Gibbs Sampling in Piecewise Graphical Models Hadi Mohasel Afshar ANU & NICTA Canberra, Australia hadiafshar@anueduau Scott Sanner NICTA & ANU Canberra, Australia ssanner@nictacomau Ehsan Abbasnejad

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

I. Bayesian econometrics

I. Bayesian econometrics I. Bayesian econometrics A. Introduction B. Bayesian inference in the univariate regression model C. Statistical decision theory D. Large sample results E. Diffuse priors F. Numerical Bayesian methods

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Forward Problems and their Inverse Solutions

Forward Problems and their Inverse Solutions Forward Problems and their Inverse Solutions Sarah Zedler 1,2 1 King Abdullah University of Science and Technology 2 University of Texas at Austin February, 2013 Outline 1 Forward Problem Example Weather

More information

MIT /30 Gelman, Carpenter, Hoffman, Guo, Goodrich, Lee,... Stan for Bayesian data analysis

MIT /30 Gelman, Carpenter, Hoffman, Guo, Goodrich, Lee,... Stan for Bayesian data analysis MIT 1985 1/30 Stan: a program for Bayesian data analysis with complex models Andrew Gelman, Bob Carpenter, and Matt Hoffman, Jiqiang Guo, Ben Goodrich, and Daniel Lee Department of Statistics, Columbia

More information

18 : Advanced topics in MCMC. 1 Gibbs Sampling (Continued from the last lecture)

18 : Advanced topics in MCMC. 1 Gibbs Sampling (Continued from the last lecture) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 18 : Advanced topics in MCMC Lecturer: Eric P. Xing Scribes: Jessica Chemali, Seungwhan Moon 1 Gibbs Sampling (Continued from the last lecture)

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC CompSci 590.02 Instructor: AshwinMachanavajjhala Lecture 4 : 590.02 Spring 13 1 Recap: Monte Carlo Method If U is a universe of items, and G is a subset satisfying some property,

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

StarAI Full, 6+1 pages Short, 2 page position paper or abstract

StarAI Full, 6+1 pages Short, 2 page position paper or abstract StarAI 2015 Fifth International Workshop on Statistical Relational AI At the 31st Conference on Uncertainty in Artificial Intelligence (UAI) (right after ICML) In Amsterdam, The Netherlands, on July 16.

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Introduction to Hamiltonian Monte Carlo Method

Introduction to Hamiltonian Monte Carlo Method Introduction to Hamiltonian Monte Carlo Method Mingwei Tang Department of Statistics University of Washington mingwt@uw.edu November 14, 2017 1 Hamiltonian System Notation: q R d : position vector, p R

More information

Markov Networks.

Markov Networks. Markov Networks www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts Markov network syntax Markov network semantics Potential functions Partition function

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo 1 Motivation 1.1 Bayesian Learning Markov Chain Monte Carlo Yale Chang In Bayesian learning, given data X, we make assumptions on the generative process of X by introducing hidden variables Z: p(z): prior

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) School of Computer Science 10-708 Probabilistic Graphical Models Markov Chain Monte Carlo (MCMC) Readings: MacKay Ch. 29 Jordan Ch. 21 Matt Gormley Lecture 16 March 14, 2016 1 Homework 2 Housekeeping Due

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods Markov Chain Monte Carlo Methods John Geweke University of Iowa, USA 2005 Institute on Computational Economics University of Chicago - Argonne National Laboaratories July 22, 2005 The problem p (θ, ω I)

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Theory of Stochastic Processes 8. Markov chain Monte Carlo

Theory of Stochastic Processes 8. Markov chain Monte Carlo Theory of Stochastic Processes 8. Markov chain Monte Carlo Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo June 8, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Paul Karapanagiotidis ECO4060

Paul Karapanagiotidis ECO4060 Paul Karapanagiotidis ECO4060 The way forward 1) Motivate why Markov-Chain Monte Carlo (MCMC) is useful for econometric modeling 2) Introduce Markov-Chain Monte Carlo (MCMC) - Metropolis-Hastings (MH)

More information

Approximate Bayesian Computation: a simulation based approach to inference

Approximate Bayesian Computation: a simulation based approach to inference Approximate Bayesian Computation: a simulation based approach to inference Richard Wilkinson Simon Tavaré 2 Department of Probability and Statistics University of Sheffield 2 Department of Applied Mathematics

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Bayesian Inference and Decision Theory

Bayesian Inference and Decision Theory Bayesian Inference and Decision Theory Instructor: Kathryn Blackmond Laskey Room 2214 ENGR (703) 993-1644 Office Hours: Tuesday and Thursday 4:30-5:30 PM, or by appointment Spring 2018 Unit 6: Gibbs Sampling

More information

Solar Spectral Analyses with Uncertainties in Atomic Physical Models

Solar Spectral Analyses with Uncertainties in Atomic Physical Models Solar Spectral Analyses with Uncertainties in Atomic Physical Models Xixi Yu Imperial College London xixi.yu16@imperial.ac.uk 3 April 2018 Xixi Yu (Imperial College London) Statistical methods in Astrophysics

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Hierarchical Bayesian Modeling

Hierarchical Bayesian Modeling Hierarchical Bayesian Modeling Making scientific inferences about a population based on many individuals Angie Wolfgang NSF Postdoctoral Fellow, Penn State Astronomical Populations Once we discover an

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

MCMC Review. MCMC Review. Gibbs Sampling. MCMC Review

MCMC Review. MCMC Review. Gibbs Sampling. MCMC Review MCMC Review http://jackman.stanford.edu/mcmc/icpsr99.pdf http://students.washington.edu/fkrogsta/bayes/stat538.pdf http://www.stat.berkeley.edu/users/terry/classes/s260.1998 /Week9a/week9a/week9a.html

More information

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch.

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch. Sampling Methods Oliver Schulte - CMP 419/726 Bishop PRML Ch. 11 Recall Inference or General Graphs Junction tree algorithm is an exact inference method for arbitrary graphs A particular tree structure

More information

Advances and Applications in Perfect Sampling

Advances and Applications in Perfect Sampling and Applications in Perfect Sampling Ph.D. Dissertation Defense Ulrike Schneider advisor: Jem Corcoran May 8, 2003 Department of Applied Mathematics University of Colorado Outline Introduction (1) MCMC

More information

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF)

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF) Case Study 4: Collaborative Filtering Review: Probabilistic Matrix Factorization Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 2 th, 214 Emily Fox 214 1 Probabilistic

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Symbolic Variable Elimination in Discrete and Continuous Graphical Models. Scott Sanner Ehsan Abbasnejad

Symbolic Variable Elimination in Discrete and Continuous Graphical Models. Scott Sanner Ehsan Abbasnejad Symbolic Variable Elimination in Discrete and Continuous Graphical Models Scott Sanner Ehsan Abbasnejad Inference for Dynamic Tracking No one previously did this inference exactly in closed-form! Exact

More information

Hamiltonian Monte Carlo for Scalable Deep Learning

Hamiltonian Monte Carlo for Scalable Deep Learning Hamiltonian Monte Carlo for Scalable Deep Learning Isaac Robson Department of Statistics and Operations Research, University of North Carolina at Chapel Hill isrobson@email.unc.edu BIOS 740 May 4, 2018

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

Luminosity Functions

Luminosity Functions Department of Statistics, Harvard University May 15th, 2012 Introduction: What is a Luminosity Function? Figure: A galaxy cluster. Introduction: Project Goal The Luminosity Function specifies the relative

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Results: MCMC Dancers, q=10, n=500

Results: MCMC Dancers, q=10, n=500 Motivation Sampling Methods for Bayesian Inference How to track many INTERACTING targets? A Tutorial Frank Dellaert Results: MCMC Dancers, q=10, n=500 1 Probabilistic Topological Maps Results Real-Time

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Machine Learning using Bayesian Approaches

Machine Learning using Bayesian Approaches Machine Learning using Bayesian Approaches Sargur N. Srihari University at Buffalo, State University of New York 1 Outline 1. Progress in ML and PR 2. Fully Bayesian Approach 1. Probability theory Bayes

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9 Metropolis Hastings Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 9 1 The Metropolis-Hastings algorithm is a general term for a family of Markov chain simulation methods

More information

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition. Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer" Contents Preface to the Second Edition Preface

More information

Monte Carlo Methods for Inference and Learning

Monte Carlo Methods for Inference and Learning Monte Carlo Methods for Inference and Learning Ryan Adams University of Toronto CIFAR NCAP Summer School 14 August 2010 http://www.cs.toronto.edu/~rpa Thanks to: Iain Murray, Marc Aurelio Ranzato Overview

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Lecture 5 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Multimodal Nested Sampling

Multimodal Nested Sampling Multimodal Nested Sampling Farhan Feroz Astrophysics Group, Cavendish Lab, Cambridge Inverse Problems & Cosmology Most obvious example: standard CMB data analysis pipeline But many others: object detection,

More information

A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models

A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models A Comparison of Two MCMC Algorithms for Hierarchical Mixture Models Russell Almond Florida State University College of Education Educational Psychology and Learning Systems ralmond@fsu.edu BMAW 2014 1

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

eqr094: Hierarchical MCMC for Bayesian System Reliability

eqr094: Hierarchical MCMC for Bayesian System Reliability eqr094: Hierarchical MCMC for Bayesian System Reliability Alyson G. Wilson Statistical Sciences Group, Los Alamos National Laboratory P.O. Box 1663, MS F600 Los Alamos, NM 87545 USA Phone: 505-667-9167

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel The Bias-Variance dilemma of the Monte Carlo method Zlochin Mark 1 and Yoram Baram 1 Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel fzmark,baramg@cs.technion.ac.il Abstract.

More information

Advanced Statistical Modelling

Advanced Statistical Modelling Markov chain Monte Carlo (MCMC) Methods and Their Applications in Bayesian Statistics School of Technology and Business Studies/Statistics Dalarna University Borlänge, Sweden. Feb. 05, 2014. Outlines 1

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Quantifying Uncertainty

Quantifying Uncertainty Sai Ravela M. I. T Last Updated: Spring 2013 1 Markov Chain Monte Carlo Monte Carlo sampling made for large scale problems via Markov Chains Monte Carlo Sampling Rejection Sampling Importance Sampling

More information

Introduction to MCMC. DB Breakfast 09/30/2011 Guozhang Wang

Introduction to MCMC. DB Breakfast 09/30/2011 Guozhang Wang Introduction to MCMC DB Breakfast 09/30/2011 Guozhang Wang Motivation: Statistical Inference Joint Distribution Sleeps Well Playground Sunny Bike Ride Pleasant dinner Productive day Posterior Estimation

More information