Bayesian Registration of Functions with a Gaussian Process Prior

Size: px
Start display at page:

Download "Bayesian Registration of Functions with a Gaussian Process Prior"

Transcription

1 Bayesian Registration of Functions with a Gaussian Process Prior

2 RELATED PROBLEMS Functions Curves Images Surfaces

3 FUNCTIONAL DATA Electrocardiogram Signals (Heart Disease) Gait Pressure Measurements (Parkinson s) Gene Expression Data Respiration Strain During 4D-CT Scan Signature Acceleration Curves (Fraud Detection) Hand-grip Strength (Arthritis) Spike Trains Growth Curves

4 ALIGNMENT PROBLEM DESCRIPTION

5 MAIN GOALS The function alignment problem has been referred to by many names including registration and warping. Note: I will use these terms interchangeably throughout this talk. Main Goals: 1. Function alignment: principled approach to separate the amplitude and phase variabilities of functional datasets for subsequent statistical analysis. 2. Alignment uncertainty: framework that allows computation of confidence values associated with alignment estimates. 3. Multiple plausible alignments: approach that provides a recipe for identifying multiple good registrations. 4. Statistical analysis of warping functions: tools for computing statistics on the space of warping functions including the mean, covariance, PCA, cluster analysis, etc.

6 RELATED WORK Bayesian alignment of functions and curves: B-splines: Telesca and Inoue, 2008 (JASA) Multiresolution approach or warplets : Claeskens et al., 2010 (JRSSB) SRVF with Dirichlet prior: Cheng et al., 2016 (Bayesian Analysis) Bayesian deformable models: Allassonniere et al., 2010 (Bernoulli) Computational anatomy: Ma et al., 2008 (NeuroImage); Tang et al., 2013 (PLoS ONE) Other works: Srivastava and Jermyn, 2009 (PAMI); Zhang and Fletcher, 2016 (Algorithmic Advances in Riemannian Geometry and Applications); Wassermann et al., 2014 (WBIR); Simpson et al., 2015 (Medical Image Analysis); etc.

7 PAIRWISE ALIGNMENT PROBLEM Observation space : set of absolutely continuous functions on [0,1]. Parameter space of warping functions: acts on the function space by composition:. PQRST complex f 1 and f 2 γ f 1, f 2 γ

8 PAIRWISE ALIGNMENT PROBLEM Most common optimization approach (Dynamic Time Warping): Known issues: (1) lack of symmetry, (2) pinching effect: (one can pinch the entire function f 2 to get arbitrarily close to f 1 in norm), (3) not a proper metric on the quotient space : cannot be used for statistical analysis. Another approach based on the norm: Adding a regularization penalty on γ eliminates the pinching effect, but the other drawbacks remain. The choice of the regularization parameter λ is not obvious in general cases.

9 SOLUTION BASED ON SRSF Square-root slope function (SRSF):. Inverse-mapping is well defined and easy to compute. Space of SRSFs:. Action of warping group on SRSF space:. Important property:. Equivalence class of SRSF under warping:. Distance can be efficiently computed using Dynamic Programming (DP): This approach overcomes all previously mentioned issues. Separate issue: this is a purely optimization-based approach, which does not allow the user to easily assess alignment uncertainty or to discover multiple plausible alignments.

10 OUTLINE OF PROPOSED APPROACH Bayesian Model + Riemannian Geometry + Markov Chain Monte Carlo (1) Bayesian Alignment Model: Allows comprehensive exploration of the variable space. Provides credible intervals of warping function estimates. Allows discovering multiple registration solutions through multimodal posteriors. (2) Riemannian Geometry of Warping Group: Enables efficient Riemannian computation on the space of warping functions: tools for computing statistics and implementation of a k-means clustering algorithm to discover multiple modes in the posterior. Allows a geometric prior distribution on the space of warpings. (3) Markov Chain Monte Carlo: Allows sampling from the posterior distribution. We use a specialized preconditioned Crank Nicolson algorithm for functional parameters.

11 RIEMANNIAN GEOMETRY OF WARPINGS Riemannian metric on (, Fisher-Rao metric): This results in a non-trivial Riemannian geometry of. Simplification: Definition: Define the mapping. Then, given an element, define a new representation using the square-root of its derivative as. We refer to ψ as the square-root density (SRD). Main Result: simplifies to the positive orthant of the Hilbert sphere and the Fisher-Rao metric simplifies to the metric. The Riemannian geometry of the Hilbert sphere is well known providing efficient tools for statistical analysis on the warping group.

12 GEOMETRIC TOOLS Identity mapping, i.e. no warping:. denotes the inner product. Tangent space:. Geodesic distance:. Exponential and inverse-exponential maps:

13 STATISTICS OF WARPING FUNCTIONS Given: a sample of warping functions and their corresponding SRDs. Karcher Mean:. Geometric Median (Fletcher et al., 2009):. Both quantities found using a standard gradient descent algorithm. K-means clustering: utilize the Karcher mean and Fisher-Rao distance on the warping group.

14 PAIRWISE ALIGNMENT MODEL Function discretization:. Pairwise alignment model: Prior truncated to Ψ. C g : pre-specified covariance operator. a and b: pre-specified constants. Sampling from posterior via Metropolis within Gibbs: Update sequentially from full conditionals of g (Metropolis step using pcn) and (direct draw).

15 Z-MIXTURE pcn MCMC ALGORITHM We use the Z-mixture preconditioned Crank Nicolson (pcn) to update the function g (Cotter et al., 2013): 1. Propose. 2. Accept g with probability. (prior) via Karhunen-Loeve expansion: 1. Assume the eigenpairs of C g are (λ i2, b i (t); i 1). We use a Fourier basis. 2. Sample and let.

16 Z-MIXTURE pcn MCMC ALGORITHM β is a tuning parameter: 1. Large (small) values imply large (small) jumps in the parameter space. 2. We use a mixture to improve MCMC convergence. Advantages of mixture pcn MCMC algorithm: 1. The acceptance ratio is independent of the dimension of the discretized g. 2. The tuning parameter β is random; flexible to control size of jump.

17 MULTIPLE ALIGNMENT MODEL Multiple alignment model: Sampling from posterior by updating sequentially: g 1,,g C, q* (Metropolis steps using pcn) and (direct draw).

18 EXAMPLES: PAIRWISE SIMULATIONS Data: Three simulation settings: (1) randomly generate γ using the first pair of Fourier basis (fourier1), (2) randomly generate γ using the first 20 pairs of Fourier basis (fourier20), (3) generate γ by smoothing a random step function (random) Each simulation setting is repeated ten times. Evaluation: Fisher-Rao distance between posterior mean and true warping.

19 EXAMPLES: PAIRWISE SIMULATIONS

20 EXAMPLES: MULTIPLE ALIGNMENT Data: right knee flexion functions for 12 individuals

21 EXAMPLES: MULTIPLE ALIGNMENT Original Data Aligned Data Cross-sectional Averages Estimated Warps Simulated Gait Data: Pelvis Right Roll Spike Trains Pinch Force

22 SUMMARY AND FUTURE WORK Contributions: 1. We proposed a novel Bayesian model for pairwise and multiple alignment of functional data. 2. We use the Riemannian geometry of the space of warping functions for: defining a Gaussian prior; efficient sampling from the posterior distribution; computation of statistics of warping functions. 3. The proposed model is very good at exploring the entire variable space. In some cases, it performs better than the optimization-based DP algorithm. Future Work: 1. Theoretical properties of the model. 2. Sensitivity analysis. 3. Alternative priors and posterior sampling strategies for warping functions. 4. Extension to higher-dimensional curves, images and surfaces.

23 CBMS CONFERENCE CBMS Conference: Elastic Functional and Shape Data Analysis (EFSDA) Where: The Ohio State University, Columbus, OH When: July 16-20, 2018 Primary Lecturer: Prof. Anuj Srivastava Organizers: Sebastian Kurtek (Statistics, OSU), Facundo Memoli (Mathematics, OSU), Yusu Wang (Computer Science and Engineering, OSU), Tingting Zhang (Statistics, University of Virginia), Hongtu Zhu (Biostatistics, MD Anderson Cancer Center)

24 THANK YOU! QUESTIONS?

Alignment and Analysis of Proteomics Data using Square Root Slope Function Framework

Alignment and Analysis of Proteomics Data using Square Root Slope Function Framework Alignment and Analysis of Proteomics Data using Square Root Slope Function Framework J. Derek Tucker 1 1 Department of Statistics Florida State University Tallahassee, FL 32306 CTW: Statistics of Warpings

More information

The Square Root Velocity Framework for Curves in a Homogeneous Space

The Square Root Velocity Framework for Curves in a Homogeneous Space The Square Root Velocity Framework for Curves in a Homogeneous Space Zhe Su 1 Eric Klassen 1 Martin Bauer 1 1 Florida State University October 8, 2017 Zhe Su (FSU) SRVF for Curves in a Homogeneous Space

More information

Registration of Functional Data Using Fisher-Rao Metric

Registration of Functional Data Using Fisher-Rao Metric Registration of Functional Data Using Fisher-Rao Metric arxiv:3.387v [math.st] 6 May A. Srivastava, W. Wu, S. Kurtek, E. Klassen, and J. S. Marron Dept. of Statistics & Dept. of Mathematics, Florida State

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Stéphanie Allassonnière CIS, JHU July, 15th 28 Context : Computational Anatomy Context and motivations :

More information

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010 Model-Averaged l 1 Regularization using Markov Chain Monte Carlo Model Composition Technical Report No. 541 Department of Statistics, University of Washington Chris Fraley and Daniel Percival August 22,

More information

Supervised Dimension Reduction:

Supervised Dimension Reduction: Supervised Dimension Reduction: A Tale of Two Manifolds S. Mukherjee, K. Mao, F. Liang, Q. Wu, M. Maggioni, D-X. Zhou Department of Statistical Science Institute for Genome Sciences & Policy Department

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Bayesian Nonparametric Regression for Diabetes Deaths

Bayesian Nonparametric Regression for Diabetes Deaths Bayesian Nonparametric Regression for Diabetes Deaths Brian M. Hartman PhD Student, 2010 Texas A&M University College Station, TX, USA David B. Dahl Assistant Professor Texas A&M University College Station,

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles Jeremy Gaskins Department of Bioinformatics & Biostatistics University of Louisville Joint work with Claudio Fuentes

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians Kenneth Lange Numerical Analysis for Statisticians Springer Contents Preface v 1 Recurrence Relations 1 1.1 Introduction 1 1.2 Binomial CoefRcients 1 1.3 Number of Partitions of a Set 2 1.4 Horner's Method

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES FUNCTIONAL COMPONENT ANALYSIS AND REGRESSION USING ELASTIC METHODS J.

FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES FUNCTIONAL COMPONENT ANALYSIS AND REGRESSION USING ELASTIC METHODS J. FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES FUNCTIONAL COMPONENT ANALYSIS AND REGRESSION USING ELASTIC METHODS By J. DEREK TUCKER A Dissertation submitted to the Department of Statistics in partial

More information

Bayesian Inference of Multiple Gaussian Graphical Models

Bayesian Inference of Multiple Gaussian Graphical Models Bayesian Inference of Multiple Gaussian Graphical Models Christine Peterson,, Francesco Stingo, and Marina Vannucci February 18, 2014 Abstract In this paper, we propose a Bayesian approach to inference

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Reducing The Computational Cost of Bayesian Indoor Positioning Systems

Reducing The Computational Cost of Bayesian Indoor Positioning Systems Reducing The Computational Cost of Bayesian Indoor Positioning Systems Konstantinos Kleisouris, Richard P. Martin Computer Science Department Rutgers University WINLAB Research Review May 15 th, 2006 Motivation

More information

A Bayesian Approach to Phylogenetics

A Bayesian Approach to Phylogenetics A Bayesian Approach to Phylogenetics Niklas Wahlberg Based largely on slides by Paul Lewis (www.eeb.uconn.edu) An Introduction to Bayesian Phylogenetics Bayesian inference in general Markov chain Monte

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 5 April 26 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Srivastava, A. and Jermyn, I.H.

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data

Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data Stéphanie Allassonnière with J.B. Schiratti, O. Colliot and S. Durrleman Université Paris Descartes & Ecole Polytechnique

More information

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration Miaomiao Zhang and P. Thomas Fletcher School of Computing, University of Utah, Salt Lake City, USA Abstract. Computing a concise

More information

Development of Stochastic Artificial Neural Networks for Hydrological Prediction

Development of Stochastic Artificial Neural Networks for Hydrological Prediction Development of Stochastic Artificial Neural Networks for Hydrological Prediction G. B. Kingston, M. F. Lambert and H. R. Maier Centre for Applied Modelling in Water Engineering, School of Civil and Environmental

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES Author: Abhishek Bhattacharya Coauthor: David Dunson Department of Statistical Science, Duke University 7 th Workshop on Bayesian Nonparametrics Collegio

More information

Manifold Monte Carlo Methods

Manifold Monte Carlo Methods Manifold Monte Carlo Methods Mark Girolami Department of Statistical Science University College London Joint work with Ben Calderhead Research Section Ordinary Meeting The Royal Statistical Society October

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Small-variance Asymptotics for Dirichlet Process Mixtures of SVMs

Small-variance Asymptotics for Dirichlet Process Mixtures of SVMs Small-variance Asymptotics for Dirichlet Process Mixtures of SVMs Yining Wang Jun Zhu Tsinghua University July, 2014 Y. Wang and J. Zhu (Tsinghua University) Max-Margin DP-means July, 2014 1 / 25 Outline

More information

Efficient Bayesian Multivariate Surface Regression

Efficient Bayesian Multivariate Surface Regression Efficient Bayesian Multivariate Surface Regression Feng Li (joint with Mattias Villani) Department of Statistics, Stockholm University October, 211 Outline of the talk 1 Flexible regression models 2 The

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

Forward Problems and their Inverse Solutions

Forward Problems and their Inverse Solutions Forward Problems and their Inverse Solutions Sarah Zedler 1,2 1 King Abdullah University of Science and Technology 2 University of Texas at Austin February, 2013 Outline 1 Forward Problem Example Weather

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Gaussian Mixture Model

Gaussian Mixture Model Case Study : Document Retrieval MAP EM, Latent Dirichlet Allocation, Gibbs Sampling Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 5 th,

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Algorithms for Variational Learning of Mixture of Gaussians

Algorithms for Variational Learning of Mixture of Gaussians Algorithms for Variational Learning of Mixture of Gaussians Instructors: Tapani Raiko and Antti Honkela Bayes Group Adaptive Informatics Research Center 28.08.2008 Variational Bayesian Inference Mixture

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

Part IV: Monte Carlo and nonparametric Bayes

Part IV: Monte Carlo and nonparametric Bayes Part IV: Monte Carlo and nonparametric Bayes Outline Monte Carlo methods Nonparametric Bayesian models Outline Monte Carlo methods Nonparametric Bayesian models The Monte Carlo principle The expectation

More information

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS023) p.3938 An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Vitara Pungpapong

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 Sequential parallel tempering With the development of science and technology, we more and more need to deal with high dimensional systems. For example, we need to align a group of protein or DNA sequences

More information

Monte Carlo methods for sampling-based Stochastic Optimization

Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Lelièvre, G. Stoltz from ENPC and E. Kuhn from

More information

David B. Dahl. Department of Statistics, and Department of Biostatistics & Medical Informatics University of Wisconsin Madison

David B. Dahl. Department of Statistics, and Department of Biostatistics & Medical Informatics University of Wisconsin Madison AN IMPROVED MERGE-SPLIT SAMPLER FOR CONJUGATE DIRICHLET PROCESS MIXTURE MODELS David B. Dahl dbdahl@stat.wisc.edu Department of Statistics, and Department of Biostatistics & Medical Informatics University

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: (Finish) Expectation Maximization Principal Component Analysis (PCA) Readings: Barber 15.1-15.4 Dhruv Batra Virginia Tech Administrativia Poster Presentation:

More information

Designing Kernel Functions Using the Karhunen-Loève Expansion

Designing Kernel Functions Using the Karhunen-Loève Expansion July 7, 2004. Designing Kernel Functions Using the Karhunen-Loève Expansion 2 1 Fraunhofer FIRST, Germany Tokyo Institute of Technology, Japan 1,2 2 Masashi Sugiyama and Hidemitsu Ogawa Learning with Kernels

More information

Markov chain Monte Carlo methods in atmospheric remote sensing

Markov chain Monte Carlo methods in atmospheric remote sensing 1 / 45 Markov chain Monte Carlo methods in atmospheric remote sensing Johanna Tamminen johanna.tamminen@fmi.fi ESA Summer School on Earth System Monitoring and Modeling July 3 Aug 11, 212, Frascati July,

More information

Lecture Note 1: Background

Lecture Note 1: Background ECE5463: Introduction to Robotics Lecture Note 1: Background Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 1 (ECE5463 Sp18)

More information

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007 Bayesian inference Fredrik Ronquist and Peter Beerli October 3, 2007 1 Introduction The last few decades has seen a growing interest in Bayesian inference, an alternative approach to statistical inference.

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Markov Chain Monte Carlo Algorithms for Gaussian Processes

Markov Chain Monte Carlo Algorithms for Gaussian Processes Markov Chain Monte Carlo Algorithms for Gaussian Processes Michalis K. Titsias, Neil Lawrence and Magnus Rattray School of Computer Science University of Manchester June 8 Outline Gaussian Processes Sampling

More information

Computer Practical: Metropolis-Hastings-based MCMC

Computer Practical: Metropolis-Hastings-based MCMC Computer Practical: Metropolis-Hastings-based MCMC Andrea Arnold and Franz Hamilton North Carolina State University July 30, 2016 A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, 2016 1 / 19 Markov

More information

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition. Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer" Contents Preface to the Second Edition Preface

More information

Dimension-Independent likelihood-informed (DILI) MCMC

Dimension-Independent likelihood-informed (DILI) MCMC Dimension-Independent likelihood-informed (DILI) MCMC Tiangang Cui, Kody Law 2, Youssef Marzouk Massachusetts Institute of Technology 2 Oak Ridge National Laboratory 2 August 25 TC, KL, YM DILI MCMC USC

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Non-convex optimization. Issam Laradji

Non-convex optimization. Issam Laradji Non-convex optimization Issam Laradji Strongly Convex Objective function f(x) x Strongly Convex Objective function Assumptions Gradient Lipschitz continuous f(x) Strongly convex x Strongly Convex Objective

More information

Statistical techniques for data analysis in Cosmology

Statistical techniques for data analysis in Cosmology Statistical techniques for data analysis in Cosmology arxiv:0712.3028; arxiv:0911.3105 Numerical recipes (the bible ) Licia Verde ICREA & ICC UB-IEEC http://icc.ub.edu/~liciaverde outline Lecture 1: Introduction

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

Elastic Handling of Predictor Phase in Functional Regression Models

Elastic Handling of Predictor Phase in Functional Regression Models Elastic Handling of Predictor Phase in Functional Regression Models Kyungmin Ahn Department of Statistics Florida State University Tallahassee, FL k.ahn@stat.fsu.edu J. Derek Tucker Sandia National Laboratories

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester Physics 403 Numerical Methods, Maximum Likelihood, and Least Squares Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Quadratic Approximation

More information

Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model

Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model 1 / 23 Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model Glen DePalma gdepalma@purdue.edu Bruce A. Craig bacraig@purdue.edu Eastern North

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 4 Problem: Density Estimation We have observed data, y 1,..., y n, drawn independently from some unknown

More information

Consistent Downscaling of Seismic Inversions to Cornerpoint Flow Models SPE

Consistent Downscaling of Seismic Inversions to Cornerpoint Flow Models SPE Consistent Downscaling of Seismic Inversions to Cornerpoint Flow Models SPE 103268 Subhash Kalla LSU Christopher D. White LSU James S. Gunning CSIRO Michael E. Glinsky BHP-Billiton Contents Method overview

More information

Advanced Statistical Computing

Advanced Statistical Computing Advanced Statistical Computing Fall 206 Steve Qin Outline Collapsing, predictive updating Sequential Monte Carlo 2 Collapsing and grouping Want to sample from = Regular Gibbs sampler: Sample t+ from π

More information

Blind Equalization via Particle Filtering

Blind Equalization via Particle Filtering Blind Equalization via Particle Filtering Yuki Yoshida, Kazunori Hayashi, Hideaki Sakai Department of System Science, Graduate School of Informatics, Kyoto University Historical Remarks A sequential Monte

More information

Spatial Normalized Gamma Process

Spatial Normalized Gamma Process Spatial Normalized Gamma Process Vinayak Rao Yee Whye Teh Presented at NIPS 2009 Discussion and Slides by Eric Wang June 23, 2010 Outline Introduction Motivation The Gamma Process Spatial Normalized Gamma

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

Riemannian Stein Variational Gradient Descent for Bayesian Inference

Riemannian Stein Variational Gradient Descent for Bayesian Inference Riemannian Stein Variational Gradient Descent for Bayesian Inference Chang Liu, Jun Zhu 1 Dept. of Comp. Sci. & Tech., TNList Lab; Center for Bio-Inspired Computing Research State Key Lab for Intell. Tech.

More information

Gentle Introduction to Infinite Gaussian Mixture Modeling

Gentle Introduction to Infinite Gaussian Mixture Modeling Gentle Introduction to Infinite Gaussian Mixture Modeling with an application in neuroscience By Frank Wood Rasmussen, NIPS 1999 Neuroscience Application: Spike Sorting Important in neuroscience and for

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Metamorphic Geodesic Regression

Metamorphic Geodesic Regression Metamorphic Geodesic Regression Yi Hong, Sarang Joshi 3, Mar Sanchez 4, Martin Styner, and Marc Niethammer,2 UNC-Chapel Hill/ 2 BRIC, 3 University of Utah, 4 Emory University Abstract. We propose a metamorphic

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning More Approximate Inference Mark Schmidt University of British Columbia Winter 2018 Last Time: Approximate Inference We ve been discussing graphical models for density estimation,

More information

Bayesian model selection: methodology, computation and applications

Bayesian model selection: methodology, computation and applications Bayesian model selection: methodology, computation and applications David Nott Department of Statistics and Applied Probability National University of Singapore Statistical Genomics Summer School Program

More information

Can we do statistical inference in a non-asymptotic way? 1

Can we do statistical inference in a non-asymptotic way? 1 Can we do statistical inference in a non-asymptotic way? 1 Guang Cheng 2 Statistics@Purdue www.science.purdue.edu/bigdata/ ONR Review Meeting@Duke Oct 11, 2017 1 Acknowledge NSF, ONR and Simons Foundation.

More information

Probability for Statistics and Machine Learning

Probability for Statistics and Machine Learning ~Springer Anirban DasGupta Probability for Statistics and Machine Learning Fundamentals and Advanced Topics Contents Suggested Courses with Diffe~ent Themes........................... xix 1 Review of Univariate

More information

CSC 446 Notes: Lecture 13

CSC 446 Notes: Lecture 13 CSC 446 Notes: Lecture 3 The Problem We have already studied how to calculate the probability of a variable or variables using the message passing method. However, there are some times when the structure

More information