Computer Practical: Metropolis-Hastings-based MCMC

Size: px
Start display at page:

Download "Computer Practical: Metropolis-Hastings-based MCMC"

Transcription

1 Computer Practical: Metropolis-Hastings-based MCMC Andrea Arnold and Franz Hamilton North Carolina State University July 30, 2016 A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

2 Markov Chain Monte Carlo (MCMC) Non-sequential Bayesian methods for parameter estimation use all available data in one batch. MCMC methods, most often employing a variation of the Metropolis-Hastings (MH) algorithm, are used to explore the posterior density π(θ D T ), D T = {b 1, b 2,..., b T }, which requires the forward map θ {b 1, b 2,..., b T }. Success of MCMC depends crucially on how effective the proposal distribution (MH kernel) is at producing good mixing and independent samples. A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

3 Adaptive MH-based MCMC Adaptive MH algorithms 1 : MH kernel is adjusted as the algorithm proceeds to better account for the size and shape of the target distribution. Adaptive Proposal (AP) Adaptive Metropolis (AM) Delayed Rejection (DR) Delayed Rejection Adaptive Metropolis (DRAM) 1 C. Andrieu and J. Thoms (2008) A tutorial on adaptive MCMC. Statistics and Computing, 18 (4), pp A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

4 Adaptive Proposal Initial tuning of the MH proposal can take a long time! Adaptive proposal 2 (AP): MH proposal updated as chain progresses using sample covariance calculated from a fixed number of previous points, thereby locally adapting the MCMC process to the target distribution. Assuming at time k a sample {x 0, x 1,..., x k M+1,..., x k 1, x k }, x j R d, j = 0, 1,..., k of at least M points has accumulated in the chain. 2 H. Haario, E. Saksman, and J. Tamminen (1999) Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Statist., 14, pp A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

5 Adaptive Proposal The proposal distribution q k for drawing the next proposed step y is chosen by q k (y x 0, x 1,..., x k ) N (x k, c 2 d R k) where R k R d d is the sample covariance matrix determined by the M points x k M+1,..., x k and c d is a scaling factor 3 depending only on the dimension d. The covariance is updated every η steps (update frequency). 3 A. G. Gelman, G. O. Roberts and W. R. Gilks (1996) Efficient Metropolis jumping rules, Bayesian Statistics V, pp (eds J.M. Bernardo, et al.). Oxford University Press. A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

6 Adaptive Metropolis Adaptive Metropolis 4 (AM): Extension of AP in which the proposal is continuously adapted to the target distribution, using the full information x 0, x 1,..., x k M+1,..., x k 1, x k accumulated up to that point. While AP updates the covariance of the Gaussian proposal locally using only a fixed number M of previous states, AM does so globally using the entire chain. One advantage: Starts adapting right away, ensuring that the search is more efficient in the early stages of simulation. 4 H. Haario, E. Saksman and J. Tamminen, An adaptive Metropolis algorithm Bernoulli 7, pp A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

7 Delayed Rejection Delayed Rejection 5 (DR): Reduces the number of outright rejected proposals by allowing for more than one candidate step per iteration Inserts a delaying process into the MH framework, allowing for a successive chain of candidate steps (stages) to be considered within the same iteration When a step is rejected, a new step can be proposed with an adjusted proposal and acceptance probability based on the current step and the first rejected step Note: Computation time for one iteration of DR may be considerably longer than one iteration of standard MH due to the multiple candidates at each iteration! 5 A. Mira, On Metropolis-Hastings algorithm with delayed rejection Metron, Vol. LIX, 3-4, pp A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

8 DRAM A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

9 DRAM DRAM 6 : Combines DR and AM at the benefit of both AM enhances the success of DR in situations when good proposals are not available DR speeds up the exploration of the target density when AM has a slow start One combination strategy: Nest AM within an r-stage DR 1 Adapt the first-stage proposal of DR as in AM, i.e., compute the first-stage covariance R 1 using all previous sample points in the chain via the AM recursion formula. 2 Compute the covariance R i of the ith stage, i = 2,..., r, as a scaled version of the first-stage covariance, i.e., R i = γ i R 1 for some scaling factor γ i. 6 H. Haario, M. Laine, A. Mira and E. Saksman, DRAM: Efficient adaptive MCMC, Statistics and Computing 16, pp A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

10 Codes to Download! 1 Download (and unzip) the.zip-file mcmcstat.zip from lainema/mcmc/ 2 Download our practical-specific files from 3 Place these files in the same folder on your computer! A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

11 Example: Banana-shaped Distribution Banana distribution 7 : 2D Gaussian distribution with unit variances and covariances ρ = 0.9, twisted so that Gaussian coordinates x 1 and x 2 become ˆx 1 = ax 1 ˆx 2 = x 2 a b(ˆx2 1 + a 2 ) under transformation, where parameters a and b define the bananity of the target distribution. 7 Example 1 on lainema/dram/ A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

12 Example: Banana-shaped Distribution a = 1 b = Goal: Use MH-based MCMC algorithms to explore distribution! A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

13 Example: Banana-shaped Distribution MH: 62.1% < c50, 98.6% < c95 AM: 42.1% < c50, 97.9% < c x 2-4 x x x DR: 53.6% < c50, 97.6% < c DRAM: 55.7% < c50, 98.5% < c95 x 2-4 x x x 1 A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

14 Example: SIR Model Recall the SIR model given by ds dt di dt dr dt = δn δs γkis = γkis (r + δ)i = ri δr with initial conditions S(0) = S 0, I(0) = I 0, R(0) = R 0 and parameters θ = {γ, k, r, δ}. (as in Ralph Smith s UQ tutorial) Note that this parameter set is unidentifiable! A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

15 Example: SIR Model 0.6 gamma 0.6 k gamma k r delta r delta A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

16 Example: SIR Model gamma 0.4 k k 0.7 r delta r A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

17 Example: SIR Model Now modify so that ds dt di dt dr dt with parameters θ = {β, r, δ}. = δn δs βis = βis (r + δ)i = ri δr This parameter set is identifiable! A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

18 Example: SIR Model 0.03 beta 0.8 r beta r delta delta A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

19 r Example: SIR Model 0.7 beta r delta A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, / 19

Some Results on the Ergodicity of Adaptive MCMC Algorithms

Some Results on the Ergodicity of Adaptive MCMC Algorithms Some Results on the Ergodicity of Adaptive MCMC Algorithms Omar Khalil Supervisor: Jeffrey Rosenthal September 2, 2011 1 Contents 1 Andrieu-Moulines 4 2 Roberts-Rosenthal 7 3 Atchadé and Fort 8 4 Relationship

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014 Bayesian Prediction of Code Output ASA Albuquerque Chapter Short Course October 2014 Abstract This presentation summarizes Bayesian prediction methodology for the Gaussian process (GP) surrogate representation

More information

Markov chain Monte Carlo methods in atmospheric remote sensing

Markov chain Monte Carlo methods in atmospheric remote sensing 1 / 45 Markov chain Monte Carlo methods in atmospheric remote sensing Johanna Tamminen johanna.tamminen@fmi.fi ESA Summer School on Earth System Monitoring and Modeling July 3 Aug 11, 212, Frascati July,

More information

Advanced uncertainty evaluation of climate models by Monte Carlo methods

Advanced uncertainty evaluation of climate models by Monte Carlo methods Advanced uncertainty evaluation of climate models by Monte Carlo methods Marko Laine marko.laine@fmi.fi Pirkka Ollinaho, Janne Hakkarainen, Johanna Tamminen, Heikki Järvinen (FMI) Antti Solonen, Heikki

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

AEROSOL MODEL SELECTION AND UNCERTAINTY MODELLING BY RJMCMC TECHNIQUE

AEROSOL MODEL SELECTION AND UNCERTAINTY MODELLING BY RJMCMC TECHNIQUE AEROSOL MODEL SELECTION AND UNCERTAINTY MODELLING BY RJMCMC TECHNIQUE Marko Laine 1, Johanna Tamminen 1, Erkki Kyrölä 1, and Heikki Haario 2 1 Finnish Meteorological Institute, Helsinki, Finland 2 Lappeenranta

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Kernel Sequential Monte Carlo

Kernel Sequential Monte Carlo Kernel Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) * equal contribution April 25, 2016 1 / 37 Section

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31 Hierarchical models Dr. Jarad Niemi Iowa State University August 31, 2017 Jarad Niemi (Iowa State) Hierarchical models August 31, 2017 1 / 31 Normal hierarchical model Let Y ig N(θ g, σ 2 ) for i = 1,...,

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Kobe University Repository : Kernel

Kobe University Repository : Kernel Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI URL Note on the Sampling Distribution for the Metropolis-

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 13-28 February 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Limitations of Gibbs sampling. Metropolis-Hastings algorithm. Proof

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Parameter Selection, Model Calibration, and Uncertainty Propagation for Physical Models

Parameter Selection, Model Calibration, and Uncertainty Propagation for Physical Models Parameter Selection, Model Calibration, and Uncertainty Propagation for Physical Models Ralph C. Smith Department of Mathematics North Carolina State University Experimental Setup! d 2 T s 2(a + b) = dx2

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model UNIVERSITY OF TEXAS AT SAN ANTONIO Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model Liang Jing April 2010 1 1 ABSTRACT In this paper, common MCMC algorithms are introduced

More information

Computer intensive statistical methods

Computer intensive statistical methods Lecture 13 MCMC, Hybrid chains October 13, 2015 Jonas Wallin jonwal@chalmers.se Chalmers, Gothenburg university MH algorithm, Chap:6.3 The metropolis hastings requires three objects, the distribution of

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

An introduction to adaptive MCMC

An introduction to adaptive MCMC An introduction to adaptive MCMC Gareth Roberts MIRAW Day on Monte Carlo methods March 2011 Mainly joint work with Jeff Rosenthal. http://www2.warwick.ac.uk/fac/sci/statistics/crism/ Conferences and workshops

More information

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling G. B. Kingston, H. R. Maier and M. F. Lambert Centre for Applied Modelling in Water Engineering, School

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Approximate Bayesian Computation: a simulation based approach to inference

Approximate Bayesian Computation: a simulation based approach to inference Approximate Bayesian Computation: a simulation based approach to inference Richard Wilkinson Simon Tavaré 2 Department of Probability and Statistics University of Sheffield 2 Department of Applied Mathematics

More information

Examples of Adaptive MCMC

Examples of Adaptive MCMC Examples of Adaptive MCMC by Gareth O. Roberts * and Jeffrey S. Rosenthal ** (September 2006; revised January 2008.) Abstract. We investigate the use of adaptive MCMC algorithms to automatically tune the

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

Examples of Adaptive MCMC

Examples of Adaptive MCMC Examples of Adaptive MCMC by Gareth O. Roberts * and Jeffrey S. Rosenthal ** (September, 2006.) Abstract. We investigate the use of adaptive MCMC algorithms to automatically tune the Markov chain parameters

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

TUNING OF MARKOV CHAIN MONTE CARLO ALGORITHMS USING COPULAS

TUNING OF MARKOV CHAIN MONTE CARLO ALGORITHMS USING COPULAS U.P.B. Sci. Bull., Series A, Vol. 73, Iss. 1, 2011 ISSN 1223-7027 TUNING OF MARKOV CHAIN MONTE CARLO ALGORITHMS USING COPULAS Radu V. Craiu 1 Algoritmii de tipul Metropolis-Hastings se constituie într-una

More information

MCMC algorithms for Subset Simulation

MCMC algorithms for Subset Simulation To appear in Probabilistic Engineering Mechanics June 2015 MCMC algorithms for Subset Simulation Iason Papaioannou *, Wolfgang Betz, Kilian Zwirglmaier, Daniel Straub Engineering Risk Analysis Group, Technische

More information

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J.

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J. Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox fox@physics.otago.ac.nz Richard A. Norton, J. Andrés Christen Topics... Backstory (?) Sampling in linear-gaussian hierarchical

More information

Adaptive Independence Samplers

Adaptive Independence Samplers Adaptive Independence Samplers J. M. Keith a,1,2, D. P. Kroese b,1, G. Yu. Sofronov b,1, a School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434 Brisbane, Qld 4001, Australia

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Session 3A: Markov chain Monte Carlo (MCMC)

Session 3A: Markov chain Monte Carlo (MCMC) Session 3A: Markov chain Monte Carlo (MCMC) John Geweke Bayesian Econometrics and its Applications August 15, 2012 ohn Geweke Bayesian Econometrics and its Session Applications 3A: Markov () chain Monte

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method Madeleine B. Thompson Radford M. Neal Abstract The shrinking rank method is a variation of slice sampling that is efficient at

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Optimizing and Adapting the Metropolis Algorithm

Optimizing and Adapting the Metropolis Algorithm 6 Optimizing and Adapting the Metropolis Algorithm Jeffrey S. Rosenthal University of Toronto, Toronto, ON 6.1 Introduction Many modern scientific questions involve high-dimensional data and complicated

More information

Bayesian Inference. Chapter 1. Introduction and basic concepts

Bayesian Inference. Chapter 1. Introduction and basic concepts Bayesian Inference Chapter 1. Introduction and basic concepts M. Concepción Ausín Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master

More information

SAMPLING ALGORITHMS. In general. Inference in Bayesian models

SAMPLING ALGORITHMS. In general. Inference in Bayesian models SAMPLING ALGORITHMS SAMPLING ALGORITHMS In general A sampling algorithm is an algorithm that outputs samples x 1, x 2,... from a given distribution P or density p. Sampling algorithms can for example be

More information

eqr094: Hierarchical MCMC for Bayesian System Reliability

eqr094: Hierarchical MCMC for Bayesian System Reliability eqr094: Hierarchical MCMC for Bayesian System Reliability Alyson G. Wilson Statistical Sciences Group, Los Alamos National Laboratory P.O. Box 1663, MS F600 Los Alamos, NM 87545 USA Phone: 505-667-9167

More information

Advanced Statistical Modelling

Advanced Statistical Modelling Markov chain Monte Carlo (MCMC) Methods and Their Applications in Bayesian Statistics School of Technology and Business Studies/Statistics Dalarna University Borlänge, Sweden. Feb. 05, 2014. Outlines 1

More information

SUPPLEMENT TO MARKET ENTRY COSTS, PRODUCER HETEROGENEITY, AND EXPORT DYNAMICS (Econometrica, Vol. 75, No. 3, May 2007, )

SUPPLEMENT TO MARKET ENTRY COSTS, PRODUCER HETEROGENEITY, AND EXPORT DYNAMICS (Econometrica, Vol. 75, No. 3, May 2007, ) Econometrica Supplementary Material SUPPLEMENT TO MARKET ENTRY COSTS, PRODUCER HETEROGENEITY, AND EXPORT DYNAMICS (Econometrica, Vol. 75, No. 3, May 2007, 653 710) BY SANGHAMITRA DAS, MARK ROBERTS, AND

More information

Introduction to Markov Chain Monte Carlo & Gibbs Sampling

Introduction to Markov Chain Monte Carlo & Gibbs Sampling Introduction to Markov Chain Monte Carlo & Gibbs Sampling Prof. Nicholas Zabaras Sibley School of Mechanical and Aerospace Engineering 101 Frank H. T. Rhodes Hall Ithaca, NY 14853-3801 Email: zabaras@cornell.edu

More information

Monte Carlo methods for sampling-based Stochastic Optimization

Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Lelièvre, G. Stoltz from ENPC and E. Kuhn from

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Karl Oskar Ekvall Galin L. Jones University of Minnesota March 12, 2019 Abstract Practically relevant statistical models often give rise to probability distributions that are analytically

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

Precision Engineering

Precision Engineering Precision Engineering 38 (2014) 18 27 Contents lists available at ScienceDirect Precision Engineering j o ur nal homep age : www.elsevier.com/locate/precision Tool life prediction using Bayesian updating.

More information

Adaptive Monte Carlo methods

Adaptive Monte Carlo methods Adaptive Monte Carlo methods Jean-Michel Marin Projet Select, INRIA Futurs, Université Paris-Sud joint with Randal Douc (École Polytechnique), Arnaud Guillin (Université de Marseille) and Christian Robert

More information

A note on slice sampling

A note on slice sampling A note on slice sampling Christophe Planas and Alessandro Rossi Joint Research Centre of the European Commission April 215 Abstract We review some fundamental characteristics of the slice sampler algorithm

More information

A generalization of the Multiple-try Metropolis algorithm for Bayesian estimation and model selection

A generalization of the Multiple-try Metropolis algorithm for Bayesian estimation and model selection A generalization of the Multiple-try Metropolis algorithm for Bayesian estimation and model selection Silvia Pandolfi Francesco Bartolucci Nial Friel University of Perugia, IT University of Perugia, IT

More information

Delayed Rejection Algorithm to Estimate Bayesian Social Networks

Delayed Rejection Algorithm to Estimate Bayesian Social Networks Dublin Institute of Technology ARROW@DIT Articles School of Mathematics 2014 Delayed Rejection Algorithm to Estimate Bayesian Social Networks Alberto Caimo Dublin Institute of Technology, alberto.caimo@dit.ie

More information

POSTERIOR ANALYSIS OF THE MULTIPLICATIVE HETEROSCEDASTICITY MODEL

POSTERIOR ANALYSIS OF THE MULTIPLICATIVE HETEROSCEDASTICITY MODEL COMMUN. STATIST. THEORY METH., 30(5), 855 874 (2001) POSTERIOR ANALYSIS OF THE MULTIPLICATIVE HETEROSCEDASTICITY MODEL Hisashi Tanizaki and Xingyuan Zhang Faculty of Economics, Kobe University, Kobe 657-8501,

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Adaptively scaling the Metropolis algorithm using expected squared jumped distance

Adaptively scaling the Metropolis algorithm using expected squared jumped distance Adaptively scaling the Metropolis algorithm using expected squared jumped distance Cristian Pasarica Andrew Gelman January 25, 2005 Abstract Using existing theory on efficient jumping rules and on adaptive

More information

Lecture 6: Markov Chain Monte Carlo

Lecture 6: Markov Chain Monte Carlo Lecture 6: Markov Chain Monte Carlo D. Jason Koskinen koskinen@nbi.ku.dk Photo by Howard Jackman University of Copenhagen Advanced Methods in Applied Statistics Feb - Apr 2016 Niels Bohr Institute 2 Outline

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo Hamiltonian Monte Carlo within Stan Daniel Lee Columbia University, Statistics Department bearlee@alum.mit.edu BayesComp mc-stan.org Why MCMC? Have data. Have a rich statistical model. No analytic solution.

More information

Bayesian Gaussian Process Regression

Bayesian Gaussian Process Regression Bayesian Gaussian Process Regression STAT8810, Fall 2017 M.T. Pratola October 7, 2017 Today Bayesian Gaussian Process Regression Bayesian GP Regression Recall we had observations from our expensive simulator,

More information

Kernel Adaptive Metropolis-Hastings

Kernel Adaptive Metropolis-Hastings Kernel Adaptive Metropolis-Hastings Arthur Gretton,?? Gatsby Unit, CSML, University College London NIPS, December 2015 Arthur Gretton (Gatsby Unit, UCL) Kernel Adaptive Metropolis-Hastings 12/12/2015 1

More information

Metropolis-Hastings sampling

Metropolis-Hastings sampling Metropolis-Hastings sampling Gibbs sampling requires that a sample from each full conditional distribution. In all the cases we have looked at so far the conditional distributions were conjugate so sampling

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Surveying the Characteristics of Population Monte Carlo

Surveying the Characteristics of Population Monte Carlo International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 2251-838X / Vol, 7 (9): 522-527 Science Explorer Publications Surveying the Characteristics of

More information

Adaptive HMC via the Infinite Exponential Family

Adaptive HMC via the Infinite Exponential Family Adaptive HMC via the Infinite Exponential Family Arthur Gretton Gatsby Unit, CSML, University College London RegML, 2017 Arthur Gretton (Gatsby Unit, UCL) Adaptive HMC via the Infinite Exponential Family

More information

An Adaptive Sequential Monte Carlo Sampler

An Adaptive Sequential Monte Carlo Sampler Bayesian Analysis (2013) 8, Number 2, pp. 411 438 An Adaptive Sequential Monte Carlo Sampler Paul Fearnhead * and Benjamin M. Taylor Abstract. Sequential Monte Carlo (SMC) methods are not only a popular

More information

Introduction to Hamiltonian Monte Carlo Method

Introduction to Hamiltonian Monte Carlo Method Introduction to Hamiltonian Monte Carlo Method Mingwei Tang Department of Statistics University of Washington mingwt@uw.edu November 14, 2017 1 Hamiltonian System Notation: q R d : position vector, p R

More information

arxiv: v1 [stat.co] 23 Apr 2018

arxiv: v1 [stat.co] 23 Apr 2018 Bayesian Updating and Uncertainty Quantification using Sequential Tempered MCMC with the Rank-One Modified Metropolis Algorithm Thomas A. Catanach and James L. Beck arxiv:1804.08738v1 [stat.co] 23 Apr

More information

Adaptive Metropolis with Online Relabeling

Adaptive Metropolis with Online Relabeling Adaptive Metropolis with Online Relabeling Anonymous Unknown Abstract We propose a novel adaptive MCMC algorithm named AMOR (Adaptive Metropolis with Online Relabeling) for efficiently simulating from

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9 Metropolis Hastings Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 9 1 The Metropolis-Hastings algorithm is a general term for a family of Markov chain simulation methods

More information

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham MCMC 2: Lecture 2 Coding and output Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham Contents 1. General (Markov) epidemic model 2. Non-Markov epidemic model 3. Debugging

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

Gradient-based Monte Carlo sampling methods

Gradient-based Monte Carlo sampling methods Gradient-based Monte Carlo sampling methods Johannes von Lindheim 31. May 016 Abstract Notes for a 90-minute presentation on gradient-based Monte Carlo sampling methods for the Uncertainty Quantification

More information

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013 Eco517 Fall 2013 C. Sims MCMC October 8, 2013 c 2013 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained

More information

Markov Chain Monte Carlo in Practice

Markov Chain Monte Carlo in Practice Markov Chain Monte Carlo in Practice Edited by W.R. Gilks Medical Research Council Biostatistics Unit Cambridge UK S. Richardson French National Institute for Health and Medical Research Vilejuif France

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

Bayesian room-acoustic modal analysis

Bayesian room-acoustic modal analysis Bayesian room-acoustic modal analysis Wesley Henderson a) Jonathan Botts b) Ning Xiang c) Graduate Program in Architectural Acoustics, School of Architecture, Rensselaer Polytechnic Institute, Troy, New

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

A Repelling-Attracting Metropolis Algorithm for Multimodality

A Repelling-Attracting Metropolis Algorithm for Multimodality A Repelling-Attracting Metropolis Algorithm for Multimodality arxiv:1601.05633v5 [stat.me] 20 Oct 2017 Hyungsuk Tak Statistical and Applied Mathematical Sciences Institute Xiao-Li Meng Department of Statistics,

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Markov chain Monte Carlo Lecture 9

Markov chain Monte Carlo Lecture 9 Markov chain Monte Carlo Lecture 9 David Sontag New York University Slides adapted from Eric Xing and Qirong Ho (CMU) Limitations of Monte Carlo Direct (unconditional) sampling Hard to get rare events

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

University of Toronto Department of Statistics

University of Toronto Department of Statistics Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC by V. Radu Craiu Department of Statistics University of Toronto and Jeffrey S. Rosenthal Department of Statistics University of Toronto

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

The Recycling Gibbs Sampler for Efficient Learning

The Recycling Gibbs Sampler for Efficient Learning The Recycling Gibbs Sampler for Efficient Learning L. Martino, V. Elvira, G. Camps-Valls Universidade de São Paulo, São Carlos (Brazil). Télécom ParisTech, Université Paris-Saclay. (France), Universidad

More information

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements Jeffrey N. Rouder Francis Tuerlinckx Paul L. Speckman Jun Lu & Pablo Gomez May 4 008 1 The Weibull regression model

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

Dereversibilizing Metropolis-Hastings: simple implementation of non-reversible MCMC methods

Dereversibilizing Metropolis-Hastings: simple implementation of non-reversible MCMC methods 1st Symposium on Advances in Approximate Bayesian Inference, 2018 1 6 Dereversibilizing Metropolis-Hastings: simple implementation of non-reversible MCMC methods Florian Maire maire@dms.umontreal.ca Département

More information