Non-Parametric Bayesian Population Dynamics Inference

Size: px
Start display at page:

Download "Non-Parametric Bayesian Population Dynamics Inference"

Transcription

1 Non-Parametric Bayesian Population Dynamics Inference Philippe Lemey and Marc A. Suchard Department of Microbiology and Immunology K.U. Leuven, Belgium, and Departments of Biomathematics, Biostatistics and Human Genetics University of California, Los Angeles SISMID Lemey and Suchard (UCLA) SISMID 1 / 16 Review: Continuous-Time Coalescent Time measured in N generation units [ (k ) ] N=const u k Exp N = N(t) Pr(u k > t t k+1 )=e (k 2) R t+t k+1 t k+1 2 N N(u) du u k are not independent any more Constant population size Exponential growth Lemey and Suchard (UCLA) SISMID 2 / 16

2 Review: Continuous-Time Coalescent Time measured in N generation units [ (k ) ] N=const u k Exp N = N(t) Pr(u k > t t k+1 )=e (k 2) R t+t k+1 t k+1 2 N N(u) du u k are not independent any more Constant population size Exponential growth Lemey and Suchard (UCLA) SISMID 2 / 16 Review: Continuous-Time Coalescent Time t 1 t 2 t 3 t 4 u 2 u 3 u 4 Time measured in N generation units [ (k ) ] N=const u k Exp N = N(t) Pr(u k > t t k+1 )=e (k 2) R t+t k+1 t k+1 2 N N(u) du u k are not independent any more Constant population size Exponential growth Lemey and Suchard (UCLA) SISMID 2 / 16

3 Review: Continuous-Time Coalescent Time t 1 t 2 t 3 t 4 u 2 u 3 u 4 Time measured in N generation units [ (k ) ] N=const u k Exp 2 N = N(t) Pr(u k > t t k+1 )=e (k 2) R t+t k+1 t k+1 N N(u) du u k are not independent any more N(t) = N Constant population size Exponential growth N(t) = Ne 100t Lemey and Suchard (UCLA) SISMID 2 / 16 Sequence Data Population Model Parameters accggaaacgcgcgaaatttacacggggg accggaaacgcgcgaaatttacacggggg accggaaacgcgcgaaatttacacggggg Sequence Data accggaaacgcgcgaaatttacacggggg accggaaacgcgcgaaatttacacggggg Genealogy Pop. N(t) Dynamics Time More Formally (Bayesian Approach): Pr (G, Q, θ D) Pr (D G, Q) Pr (Q) Pr (G θ) Pr (θ) G -genealogywithbranchlengths Q -substitutionmatrix θ -populationgeneticsparameters D -sequencedata Pr (G θ) - Coalescent prior Lemey and Suchard (UCLA) SISMID 3 / 16

4 Piecewise Constant Demographic Model Number of Lineages: Isochronous Data N e (t) =θ k for t k < t t k 1. u 2,...,u n are independent Pr (u k θ k )= k(k 1) 2θ k e k(k 1)uk 2θ k u 2 u 3 u 4 t 1 t 2 t 3 t 4 t 5 = 0 u 5 Pr (F θ) n k=2 Pr (u k θ k ) Equivalent to estimating exponential mean from one observation. Need further restrictions to estimate θ! Lemey and Suchard (UCLA) SISMID 4 / 16 Piecewise Constant Demographic Model Number of Lineages: Heterochronous Data w 20,...,w njn are independent Pr(w k0 θ k )= n k0 (n k0 1) e n k0 (n k0 1)w k0 2θ k 2θ k Pr(w kj θ k )=e n kj (n kj 1)w kj 2θ k, j>0 u 2 w 20 u 3 u 4 u 5 w 30 w 40 w w 50 w w 51 Pr (F θ) Q n Q jk k=2 j=0 Pr `w kj θ k Equivalent to estimating exponential mean from one observation. Need further restrictions to estimate θ! Lemey and Suchard (UCLA) SISMID 4 / 16

5 Piecewise Constant Demographic Model Number of Lineages: Heterochronous Data w 20,...,w njn are independent Pr(w k0 θ k )= n k0 (n k0 1) e n k0 (n k0 1)w k0 2θ k 2θ k Pr(w kj θ k )=e n kj (n kj 1)w kj 2θ k, j>0 u 2 w 20 u 3 u 4 u 5 w 30 w 40 w w 50 w w 51 Pr (F θ) Q n Q jk k=2 j=0 Pr `w kj θ k Equivalent to estimating exponential mean from one observation. Need further restrictions to estimate θ! Lemey and Suchard (UCLA) SISMID 4 / 16 Current Approaches Strimmer and Pybus (2001) Make N e (t) constant across some inter-coalescent times Group inter-coalescent intervals with AIC Drummond et al. (2005) Multiple change-point model with fixed number of change-points Change-points allowed only at Coalescent events Joint estimation of phylogenies and population dynamics Opgen-Rhein et al. (2005) Multiple change-point model with random number of change-points Change-points allowed anywhere in interval (0, t 1 ] Posterior is approximated with rjmcmc Lemey and Suchard (UCLA) SISMID 5 / 16

6 Current Approaches Strimmer and Pybus (2001) Make N e (t) constant across some inter-coalescent times Group inter-coalescent intervals with AIC Drummond et al. (2005) Multiple change-point model with fixed number of change-points Change-points allowed only at Coalescent events Joint estimation of phylogenies and population dynamics Opgen-Rhein et al. (2005) Multiple change-point model with random number of change-points Change-points allowed anywhere in interval (0, t 1 ] Posterior is approximated with rjmcmc Lemey and Suchard (UCLA) SISMID 5 / 16 Current Approaches Strimmer and Pybus (2001) Make N e (t) constant across some inter-coalescent times Group inter-coalescent intervals with AIC Drummond et al. (2005) Multiple change-point model with fixed number of change-points Change-points allowed only at Coalescent events Joint estimation of phylogenies and population dynamics Opgen-Rhein et al. (2005) Multiple change-point model with random number of change-points Change-points allowed anywhere in interval (0, t 1 ] Posterior is approximated with rjmcmc Lemey and Suchard (UCLA) SISMID 5 / 16

7 Smoothing Prior (GMRF approach) Go to the log scale x k = log θ k [ Pr(x ω) ω (n 2)/2 exp ω 2 n 2 k=1 ] 1 (x k+1 x k ) 2 d k d 1 d 2 d 3 d n 2 x1 x 2 x3 x 4 x n 2 x n 1 Weighting Schemes 1 Uniform: d k = 1 2 Time-Aware: d k = u k+1+u k 2 Pr(x, ω) =Pr(x ω)pr(ω) Pr(ω) ω α 1 e βω,diffusepriorwithα = 0.01, β = 0.01 Lemey and Suchard (UCLA) SISMID 6 / 16 MCMC Algorithm Pr (G, Q, x D) Pr (D G, Q) Pr (Q) Pr (G x) Pr (x) Updating Population Size Trajectory Use fast GMRF sampling (Rue et al., 2001, 2004) Draw ω from an arbitrary univariate proposal distribution Use Gaussian approximation of Pr(x ω, G) to propose x Jointly accept/reject (ω, x ) in Metropolis-Hastings step Object-Oriented Reality? BEAST = Bayesian Evolutionary Analysis Sampling Trees Pr(G x, D, Q) -sampledbybeast Pr(Q G, D) -sampledbybeast Lemey and Suchard (UCLA) SISMID 7 / 16

8 Simulation: Constant Population Size Classical Skyline Plot ORMCP Model Beast MCP Effective Population Size Uniform GMRF Time Aware GMRF Beast GMRF Effective Population Size Lemey and Suchard (UCLA) SISMID 8 / 16 Simulation: Exponential Growth Classical Skyline Plot ORMCP Model Beast MCP Effective Population Size Uniform GMRF Time Aware GMRF Beast GMRF Effective Population Size Lemey and Suchard (UCLA) SISMID 9 / 16

9 Simulation: Exponential Growth with Bottleneck Classical Skyline Plot ORMCP Model Beast MCP Effective Population Size Uniform GMRF Time Aware GMRF Beast GMRF Effective Population Size Lemey and Suchard (UCLA) SISMID 10 / 16 Accuracy in Simulations Percent Error = TMRCA 0 N e (t) N e (t) dt 100, (1) N e (t) Table: Percent error in simulations. We compare percent errors, defined in equation (1), for the Opgen-Rhein multiple change-point (ORMCP), uniform and fixed-tree time-aware Gaussian Markov random field (GMRF) smoothing, BEAST multiple change-point (MCP) model, and BEAST GMRF smoothing. Model Constant Exponential Bottleneck ORMCP Uniform GMRF Time-Aware GMRF BEAST MCP BEAST GMRF Lemey and Suchard (UCLA) SISMID 11 / 16

10 GMRF Precision Prior Sensitivity ω -GMRFprecision,controls smoothness Usually Pr(ω D) is sensitive to perturbations of Pr(ω) Not in our Coalescent model! Density GMRF Precision Prior and Posterior prior posterior log τ Posterior of log τ GMRF Precision Sensitiviy to Prior Prior Mean of τ Lemey and Suchard (UCLA) SISMID 12 / 16 HCV Epidemics in Egypt Scaled Effective Pop. Size Estimated Genealogy Unconstrained Fixed Tree GMRF Time (Years Before 1993) Scaled Effective Pop. Size BEAST GMRF Constrained Fixed Tree GMRF PAT Starts Time (Years Before 1993) Random population sample No sign of population sub-structure Parenteral antischistosomal therapy (PAT) was practiced from 1920s to 1980s Bayes Factor 12,880 in favor of constant population size prior to 1920 Lemey and Suchard (UCLA) SISMID 13 / 16

11 Influenza Intra-Season Population Dynamics Season Scaled Effective Pop. Size October Time (Weeks before 03/01/00) Time (Weeks before 03/01/00) Season Scaled Effective Pop. Size October Time (Weeks before 03/21/02) Time (Weeks before 03/21/02) New York state hemagglutinin sequences serially sampled (Ghedin et al., 2005) Lemey and Suchard (UCLA) SISMID 14 / 16 Influenza Intra-Season Population Dynamics Season Scaled Effective Pop. Size October Time (Weeks before 03/21/02) Time (Weeks before 03/21/02) Season Scaled Effective Pop. Size October Time (Weeks before 02/05/04) Time (Weeks before 02/05/04) New York state hemagglutinin sequences serially sampled (Ghedin et al., 2005) Lemey and Suchard (UCLA) SISMID 14 / 16

12 Summary Genealogies inform us about population size trajectories Prior restrictions are necessary for non(semi)-parametric estimation of N e (t) Smoothing can be imposed by GMRF priors Software: The Skyride Implemented as a Coalescent prior in BEAST Exploits approximate Gibbs sampling Faster convergence? Better mixing? Reference: Minin,BloomquistandSuchard(2008)Molecular Biology & Evolution, 25, Lemey and Suchard (UCLA) SISMID 15 / 16 Active Ideas: GMRFs are Highly Generalizable Hierarchical Modeling Flu genes display similar (not equal) dynamics Incorporate multiple loci simultaneously Pool information for statistical power No need for strict equality Introducing Covariates Augment field at fixed observation times Formal statistical testing for: External factors (environment, drug tx) Population dynamics (bottle-necks, growth) Lemey and Suchard (UCLA) SISMID 16 / 16

Estimating Evolutionary Trees. Phylogenetic Methods

Estimating Evolutionary Trees. Phylogenetic Methods Estimating Evolutionary Trees v if the data are consistent with infinite sites then all methods should yield the same tree v it gets more complicated when there is homoplasy, i.e., parallel or convergent

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Taming the Beast Workshop

Taming the Beast Workshop Workshop and Chi Zhang June 28, 2016 1 / 19 Species tree Species tree the phylogeny representing the relationships among a group of species Figure adapted from [Rogers and Gibbs, 2014] Gene tree the phylogeny

More information

An Efficient Bayesian Inference Framework for Coalescent-Based Nonparametric Phylodynamics

An Efficient Bayesian Inference Framework for Coalescent-Based Nonparametric Phylodynamics Bioinformatics Advance Access published June 0, 015 An Efficient Bayesian nference Framework for Coalescent-Based Nonparametric Phylodynamics Shiwei Lan 1, Julia A. Palacios,3,4, Michael Karcher 5, Vladimir

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Discrete & continuous characters: The threshold model

Discrete & continuous characters: The threshold model Discrete & continuous characters: The threshold model Discrete & continuous characters: the threshold model So far we have discussed continuous & discrete character models separately for estimating ancestral

More information

Concepts and Methods in Molecular Divergence Time Estimation

Concepts and Methods in Molecular Divergence Time Estimation Concepts and Methods in Molecular Divergence Time Estimation 26 November 2012 Prashant P. Sharma American Museum of Natural History Overview 1. Why do we date trees? 2. The molecular clock 3. Local clocks

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints. Hadi Mohasel Afshar Scott Sanner Christfried Webers

Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints. Hadi Mohasel Afshar Scott Sanner Christfried Webers Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints Hadi Mohasel Afshar Scott Sanner Christfried Webers Inference in Hybrid Graphical Models / Probabilistic Programs Limitations

More information

Using phylogenetics to estimate species divergence times... Basics and basic issues for Bayesian inference of divergence times (plus some digression)

Using phylogenetics to estimate species divergence times... Basics and basic issues for Bayesian inference of divergence times (plus some digression) Using phylogenetics to estimate species divergence times... More accurately... Basics and basic issues for Bayesian inference of divergence times (plus some digression) "A comparison of the structures

More information

Coalescent based demographic inference. Daniel Wegmann University of Fribourg

Coalescent based demographic inference. Daniel Wegmann University of Fribourg Coalescent based demographic inference Daniel Wegmann University of Fribourg Introduction The current genetic diversity is the outcome of past evolutionary processes. Hence, we can use genetic diversity

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 18-16th March Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 18-16th March Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 18-16th March 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Trans-dimensional Markov chain Monte Carlo. Bayesian model for autoregressions.

More information

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo Hamiltonian Monte Carlo within Stan Daniel Lee Columbia University, Statistics Department bearlee@alum.mit.edu BayesComp mc-stan.org Why MCMC? Have data. Have a rich statistical model. No analytic solution.

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

eqr094: Hierarchical MCMC for Bayesian System Reliability

eqr094: Hierarchical MCMC for Bayesian System Reliability eqr094: Hierarchical MCMC for Bayesian System Reliability Alyson G. Wilson Statistical Sciences Group, Los Alamos National Laboratory P.O. Box 1663, MS F600 Los Alamos, NM 87545 USA Phone: 505-667-9167

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Image segmentation combining Markov Random Fields and Dirichlet Processes

Image segmentation combining Markov Random Fields and Dirichlet Processes Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Introduction to Phylogenetic Analysis

Introduction to Phylogenetic Analysis Introduction to Phylogenetic Analysis Tuesday 23 Wednesday 24 July, 2013 School of Biological Sciences Overview This workshop will provide an introduction to phylogenetic analysis, leading to a focus on

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Introduction to Phylogenetic Analysis

Introduction to Phylogenetic Analysis Introduction to Phylogenetic Analysis Tuesday 24 Wednesday 25 July, 2012 School of Biological Sciences Overview This free workshop provides an introduction to phylogenetic analysis, with a focus on the

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

Spatial Modelling of Economic Data for Southwest Germany

Spatial Modelling of Economic Data for Southwest Germany Spatial Modelling of Economic Data for Southwest Germany September 5, 2014 Background Spatial Statistics Gaussian Markov Random Fields (GMRFs) Data Exploratory Analysis Model Model Gibbs Sampling Analysis

More information

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

that of Phylotree.org, mtdna tree Build 1756 (Supplementary TableS2). is resulted in 78 individuals allocated to the hg B4a1a1 and three individuals to hg Q. e control region (nps 57372 and nps 1602416526)

More information

Demography April 10, 2015

Demography April 10, 2015 Demography April 0, 205 Effective Population Size The Wright-Fisher model makes a number of strong assumptions which are clearly violated in many populations. For example, it is unlikely that any population

More information

Generalized Exponential Random Graph Models: Inference for Weighted Graphs

Generalized Exponential Random Graph Models: Inference for Weighted Graphs Generalized Exponential Random Graph Models: Inference for Weighted Graphs James D. Wilson University of North Carolina at Chapel Hill June 18th, 2015 Political Networks, 2015 James D. Wilson GERGMs for

More information

Mathematical models in population genetics II

Mathematical models in population genetics II Mathematical models in population genetics II Anand Bhaskar Evolutionary Biology and Theory of Computing Bootcamp January 1, 014 Quick recap Large discrete-time randomly mating Wright-Fisher population

More information

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham MCMC 2: Lecture 2 Coding and output Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham Contents 1. General (Markov) epidemic model 2. Non-Markov epidemic model 3. Debugging

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model

Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model 1 / 23 Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric Variation of the Errors-in-Variables Model Glen DePalma gdepalma@purdue.edu Bruce A. Craig bacraig@purdue.edu Eastern North

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

An introduction to Bayesian statistics and model calibration and a host of related topics

An introduction to Bayesian statistics and model calibration and a host of related topics An introduction to Bayesian statistics and model calibration and a host of related topics Derek Bingham Statistics and Actuarial Science Simon Fraser University Cast of thousands have participated in the

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee September 03 05, 2017 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Linear Regression Linear regression is,

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

Phylogeography takes a relaxed random walk in continuous space and time

Phylogeography takes a relaxed random walk in continuous space and time Phylogeography takes a relaxed random walk in continuous space and time Philippe Lemey, Andrew Rambaut, John J. Welch, and Marc A. Suchard Department of Microbiology and Immunology, Katholieke Universiteit

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo 1 Motivation 1.1 Bayesian Learning Markov Chain Monte Carlo Yale Chang In Bayesian learning, given data X, we make assumptions on the generative process of X by introducing hidden variables Z: p(z): prior

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

Gene Genealogies Coalescence Theory. Annabelle Haudry Glasgow, July 2009

Gene Genealogies Coalescence Theory. Annabelle Haudry Glasgow, July 2009 Gene Genealogies Coalescence Theory Annabelle Haudry Glasgow, July 2009 What could tell a gene genealogy? How much diversity in the population? Has the demographic size of the population changed? How?

More information

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Wishart Priors Patrick Breheny March 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Introduction When more than two coefficients vary, it becomes difficult to directly model each element

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

A (short) introduction to phylogenetics

A (short) introduction to phylogenetics A (short) introduction to phylogenetics Thibaut Jombart, Marie-Pauline Beugin MRC Centre for Outbreak Analysis and Modelling Imperial College London Genetic data analysis with PR Statistics, Millport Field

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles

Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles John Novembre and Montgomery Slatkin Supplementary Methods To

More information

Approximate Bayesian Computation: a simulation based approach to inference

Approximate Bayesian Computation: a simulation based approach to inference Approximate Bayesian Computation: a simulation based approach to inference Richard Wilkinson Simon Tavaré 2 Department of Probability and Statistics University of Sheffield 2 Department of Applied Mathematics

More information

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information.

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. Model: where g(t) = a(t s)f(s)ds + e(t), a(t) t = (rapidly). The problem,

More information

Dating r8s, multidistribute

Dating r8s, multidistribute Phylomethods Fall 2006 Dating r8s, multidistribute Jun G. Inoue Software of Dating Molecular Clock Relaxed Molecular Clock r8s multidistribute r8s Michael J. Sanderson UC Davis Estimation of rates and

More information

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University Phylogenetics: Bayesian Phylogenetic Analysis COMP 571 - Spring 2015 Luay Nakhleh, Rice University Bayes Rule P(X = x Y = y) = P(X = x, Y = y) P(Y = y) = P(X = x)p(y = y X = x) P x P(X = x 0 )P(Y = y X

More information

Challenges when applying stochastic models to reconstruct the demographic history of populations.

Challenges when applying stochastic models to reconstruct the demographic history of populations. Challenges when applying stochastic models to reconstruct the demographic history of populations. Willy Rodríguez Institut de Mathématiques de Toulouse October 11, 2017 Outline 1 Introduction 2 Inverse

More information

CSci 8980: Advanced Topics in Graphical Models Analysis of Genetic Variation

CSci 8980: Advanced Topics in Graphical Models Analysis of Genetic Variation CSci 8980: Advanced Topics in Graphical Models Analysis of Genetic Variation Instructor: Arindam Banerjee November 26, 2007 Genetic Polymorphism Single nucleotide polymorphism (SNP) Genetic Polymorphism

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Full Likelihood Inference from the Site Frequency Spectrum based on the Optimal Tree Resolution

Full Likelihood Inference from the Site Frequency Spectrum based on the Optimal Tree Resolution Full Likelihood Inference from the Site Frequency Spectrum based on the Optimal Tree Resolution Raazesh Sainudiin 1, Amandine Véber 2 March 3, 2018 1 Department of Mathematics, Uppsala University, Uppsala,

More information

SpeciesNetwork Tutorial

SpeciesNetwork Tutorial SpeciesNetwork Tutorial Inferring Species Networks from Multilocus Data Chi Zhang and Huw A. Ogilvie E-mail: zhangchi@ivpp.ac.cn January 21, 2018 Introduction This tutorial covers SpeciesNetwork, a fully

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Transdimensional Markov Chain Monte Carlo Methods. Jesse Kolb, Vedran Lekić (Univ. of MD) Supervisor: Kris Innanen

Transdimensional Markov Chain Monte Carlo Methods. Jesse Kolb, Vedran Lekić (Univ. of MD) Supervisor: Kris Innanen Transdimensional Markov Chain Monte Carlo Methods Jesse Kolb, Vedran Lekić (Univ. of MD) Supervisor: Kris Innanen Motivation for Different Inversion Technique Inversion techniques typically provide a single

More information

An introduction to Approximate Bayesian Computation methods

An introduction to Approximate Bayesian Computation methods An introduction to Approximate Bayesian Computation methods M.E. Castellanos maria.castellanos@urjc.es (from several works with S. Cabras, E. Ruli and O. Ratmann) Valencia, January 28, 2015 Valencia Bayesian

More information

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch.

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch. Sampling Methods Oliver Schulte - CMP 419/726 Bishop PRML Ch. 11 Recall Inference or General Graphs Junction tree algorithm is an exact inference method for arbitrary graphs A particular tree structure

More information

On Gaussian Process Models for High-Dimensional Geostatistical Datasets

On Gaussian Process Models for High-Dimensional Geostatistical Datasets On Gaussian Process Models for High-Dimensional Geostatistical Datasets Sudipto Banerjee Joint work with Abhirup Datta, Andrew O. Finley and Alan E. Gelfand University of California, Los Angeles, USA May

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Nonparametric Bayesian Models --Learning/Reasoning in Open Possible Worlds Eric Xing Lecture 7, August 4, 2009 Reading: Eric Xing Eric Xing @ CMU, 2006-2009 Clustering Eric Xing

More information

State Space and Hidden Markov Models

State Space and Hidden Markov Models State Space and Hidden Markov Models Kunsch H.R. State Space and Hidden Markov Models. ETH- Zurich Zurich; Aliaksandr Hubin Oslo 2014 Contents 1. Introduction 2. Markov Chains 3. Hidden Markov and State

More information

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem?

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem? Who was Bayes? Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 The Reverand Thomas Bayes was born in London in 1702. He was the

More information

Bayesian Phylogenetics

Bayesian Phylogenetics Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 Bayesian Phylogenetics 1 / 27 Who was Bayes? The Reverand Thomas Bayes was born

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Riemann Manifold Methods in Bayesian Statistics

Riemann Manifold Methods in Bayesian Statistics Ricardo Ehlers ehlers@icmc.usp.br Applied Maths and Stats University of São Paulo, Brazil Working Group in Statistical Learning University College Dublin September 2015 Bayesian inference is based on Bayes

More information

Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load Forecasting

Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load Forecasting Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load Forecasting Anne Philippe Laboratoire de Mathématiques Jean Leray Université de Nantes Workshop EDF-INRIA,

More information

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods Markov Chain Monte Carlo Methods John Geweke University of Iowa, USA 2005 Institute on Computational Economics University of Chicago - Argonne National Laboaratories July 22, 2005 The problem p (θ, ω I)

More information

A primer on phylogenetic biogeography and DEC models. March 13, 2017 Michael Landis Bodega Bay Workshop Sunny California

A primer on phylogenetic biogeography and DEC models. March 13, 2017 Michael Landis Bodega Bay Workshop Sunny California A primer on phylogenetic biogeography and DEC models March 13, 2017 Michael Landis Bodega Bay Workshop Sunny California Epidemiology Air travel communities H3N2 Influenza virus samples 2000 2007 CE Flu,

More information

Local and relaxed clocks: the best of both worlds

Local and relaxed clocks: the best of both worlds Local and relaxed clocks: the best of both worlds Mathieu Fourment and Aaron E. Darling ithree institute, University of Technology Sydney, Sydney, Australia ABSTRACT Time-resolved phylogenetic methods

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models

Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models Modelling and forecasting of offshore wind power fluctuations with Markov-Switching models 02433 - Hidden Markov Models Pierre-Julien Trombe, Martin Wæver Pedersen, Henrik Madsen Course week 10 MWP, compiled

More information

Bayesian Inference for Clustered Extremes

Bayesian Inference for Clustered Extremes Newcastle University, Newcastle-upon-Tyne, U.K. lee.fawcett@ncl.ac.uk 20th TIES Conference: Bologna, Italy, July 2009 Structure of this talk 1. Motivation and background 2. Review of existing methods Limitations/difficulties

More information

Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms

Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms Joost van Rosmalen 1, David Dejardin 2,3, and Emmanuel Lesaffre

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling 1 / 27 Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 27 Monte Carlo Integration The big question : Evaluate E p(z) [f(z)]

More information

Variational Learning : From exponential families to multilinear systems

Variational Learning : From exponential families to multilinear systems Variational Learning : From exponential families to multilinear systems Ananth Ranganathan th February 005 Abstract This note aims to give a general overview of variational inference on graphical models.

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Sampling Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information