An introduction to the possibilities of Materials Selection.

Size: px
Start display at page:

Download "An introduction to the possibilities of Materials Selection."

Transcription

1 Modernization of two cycles (MA, BA) of competence-based curricula in Material Engineering according to the best experience of Bologna Process An introduction to the possibilities of Materials Selection. Prof Dr ir Jan Ivens

2 2 Content Introduction The steps in materials selection Example: the underbody plate of a car

3 The Materials Library

4 Dependence on Non-renewable Materials 4

5 5 A CAR

6 6 A light car

7 7 A cheap car

8 8 An environmentally friendly car

9 9 The design process

10 10 Steps

11 11

12 12 Brainstorm Gather: o o What is the purpose of the component? function? What can all play a role in the materials selection? No restrictions Assess: what is important? What is not? o o o Need to have: primary elements Nice to have: secondary Others What is our design focus (goal)?

13 1 Translation s ranking screening

14 14 Our car: function

15 15 Objectives Minimise weight/cost/environmental impact of bottom plate of car w t L

16 16 Objective 1: minimize mass m = ρ L w t Osmium, commercial purity, hard Gold-Cu-Ag alloy, soft, wire, 1mm dia. (dental alloy) Cast iron, austenitic (flake), former BS L-NiCr 20 2 Low alloy steel, AISI 9255, tempered at 15 C & oil quenched Polyester SMC (0% glass fibre, slow-burning, low de Titanium, alpha-beta alloy, Ti-6Al-2Sn-4Zr-6Mo ( ) Aluminum, 7050, wrought, T7452 Massaranduba (t) Density (kg/m^) 1000 Polyester (glass fiber, preformed, chopped glass) Concrete (insulating lightweight) Satinwood (l) Kempas (l) 100 PVC cross-linked foam (rigid, closed cell, DH 0.100) 10 Melamine foam (0.011)

17 17 Objective 2: minimize material cost 1e6 C = = C C m m m ρ L w t Diamond Rhodium, commercial purity, hard Platinum-rhodium alloy, annealed, 40%Rh 1000 Al-47%SiC(f), transverse Price (GBP/kg) Glass/polyimide honeycomb, ±45 fabric (0.072), L Direction Elm (ulmus rubra) (l) 1 Pine (pinus caribaea) (l) Polyethylene terephthalate foam (closed cell, 0.2) Cement bonded particle board, perpendicular to board Asphalt concrete

18 18 Constraint 1 => Limited elastic deformation S F = δ EI C 1 L I = wt 12 F w t L

19 19 Constraint 2 => No plastic deformation or failure FL FL σ = C Z = C' wt 2 σ f F w t L

20 20 Constraint => No brittle fracture K Ic K = Y σ π a Maximum = yield strength Determined by defect detection limit

21 21 Simplest case Simplest case: Design with multiple constraints Design with Design one objective, with multiple meeting objectives a single constraint Function One Objective: one the performance metric metric Multiple Objectives: several performance metrics One Constraint Many Constraints One Constraint Many Constraints Rank by performance metric Rank by most most restrictive restrictive performance metric Penalty Trade-off and function value function method Combination of methods

22 22 Free variable(s) L & w are determined by car dimensions => constants t (thickness of bottom plate) can be varied => free variable

23 2 Case 1 A light car stiffness constraint Eliminate the free variable by combining objective and constraint function m = ρ x L x w x t Load S F = δ C 1 E I L m 2 12w L C 1 2 F δ ρ E I = t w 12 Geometry Material Properties

24 24 Material Index MI MI = ρ min Log(E)-log(ρ) = log(mi ) E E Log(E) = log(ρ) + log(mi ) MI ' = ρ max Y = mx +Q Slope =

25 25 Material Index Slope =

26 26 List of Materials Passing FOAMS and WOOD!

27 27 Case 2 A cheap car strength constraint Eliminate the free variable by combining objective and constraint function C = Cm ρ L w t FL σ f C' wt 2 C C' w L Geometry Load F C m σ ρ Material Properties f

28 28 Material Index C m C σ σ m ρ f f ρ min max Log(σ f )-2log(C m ρ) = 2log(MI) Log(σ f ) = 2log(C m ρ) + 2log(MI) Y = mx +Q Slope = 2

29 29 Slope = 2

30 0 List of materials passing Name Stage 2: Index Aerated concrete 0,029 Hardboard (tempered), perpendicular to board 0,0242 Hardboard (standard), perpendicular to board 0,0216 Concrete (structural lightweight) 0,0216 Redwood (sequoia sempervirens (young)) (l) 0,0215 Hardboard (tempered), parallel to board 0,0214 Fir (abies procera) (l) 0,0206 Spruce (picea rubens) (l) 0,0198 Oak (quercus falcata var. pagodifolia) (l) 0,0197 Spruce (picea abies) (l) 0,0191 Fiberboard, hard, perpendicular to board 0,0191 Plywood ( ply, beech), parallel to face layer 0,019 Plywood (5 ply, beech), parallel to face layer 0,019 Plywood (7 ply, beech), parallel to face layer 0,019 Fiberboard, extra hard, perpendicular to board 0,0188 Pine (pinus spp.) (l) 0,0185 Douglas fir (pseudotsuga menziesii (northern)) (l) 0,0182 Larch (larix decidua) (l) 0,0177 Concrete (super sulfate cement) 0,0169 WOOD and CONCRETE

31 1 Case A cheap car no brittle fracture Eliminate the free variable by combining objective and constraint function C = Cm ρ L w t K Ic Yσ πa C YC' w L πa Load F C m K ρ Ic σ = C FL ' wt 2 Geometry Material Properties

32 2 Material Index C ρ C m K K Ic Ic mρ min max Log(Κ Ic )-2log(C m ρ) = 2log(MI) Log(Κ Ic ) = 2log(C m ρ) + 2log(MI) Y = mx +Q Slope = 2

33 Slope = 2

34 4 List of materials passing Name Stage 2: Index Aerated concrete 0,029 Hardboard (standard), perpendicular to board 0,0216 Redwood (sequoia sempervirens (young)) (l) 0,0215 Fir (abies procera) (l) 0,0206 Spruce (picea rubens) (l) 0,0198 Oak (quercus falcata var. pagodifolia) (l) 0,0197 Spruce (picea abies) (l) 0,0191 Pine (pinus spp.) (l) 0,0185 Larch (larix decidua) (l) 0,0177 Concrete (super sulfate cement) 0,0169 Wood chipboard, type C1, parallel to board 0,0167 Wood chipboard, type C1A, parallel to board 0,0159 Wood chipboard, type C, parallel to board 0,0158 Gypsum bonded particleboard, parallel to board 0,0156 Wood chipboard, type C1, perpendicular to board 0,0152 Wood chipboard, type C1A, perpendicular to board 0,0145 Wood chipboard, type C, perpendicular to board 0,0144 Palm (0.5) 0,0142 Gypsum bonded particleboard, perpendicular to board 0,0142 WOOD

35 5 One notch up in complexity: Single objective / Multiple constraints Function One Objective: one performance metric Conflicting Objectives: conflicting performance metrics One Constraint Conflicting Constraints One Constraint Conflicting Constraints Rank by performance metric Rank by most restrictive performance metric Penalty function method Combination of methods The most restrictive constraint determines the performance metric

36 6 Light car stiff and strong Function: Constraints: underbody panel L and w known must not deform too much must not yield or break Objective: minimal mass Free variables panel thickness t choice of material S F E wt = C1 δ 12L m σ f C 6FL wt 2 = ρ L w t

37 7 Performance metrics S E wt C1 12L m = ρ L w t σ f C 6FL wt 2 m 1 L 2 12w C 1 2 F δ ρ E m2 6C M1 w L F M 2 ρ σ f M Coupling constant 2 Fδ 6 1 = C' M 2 wl

38 8 Coupling constant

39 9 One more notch up in complexity: Conflicting objectives / one constraint Function One Objective: one performance metric Conflicting Objectives: conflicting performance metrics One Constraint Multiple Constraints One Constraint Multiple Constraints Rank by performance metric Rank by most restrictive performance metric Penalty function method Combination of methods The highest penalty function determines the performance metric

40 40 Conflicting objectives Function: Constraints: underbody panel L and w known must not deform too much Objective: minimal mass minimal thickness Free variables panel thickness t choice of material S F E wt = C1 δ 12L m = ρ L w t

41 41 Performance metrics m E wt = ρ L w t S C1 12L M 2 m 2 12w L C 1 2 F δ ρ E M1 t 12S C w 1 L 1 E Penalty function Z = α 1 m + α2 t

42 42 Trade-off surface

43 4

44 44 Conflicting objectives Function: Constraints: underbody panel L and w known must not deform too much E at least 5 GPa Objective: minimal mass minimal material cost Free variables panel thickness t choice of material S F E wt = C1 δ 12L m = ρ L w t C = Cm ρ L w t

45 45 Performance metrics m E wt = ρ L w t S C1 12L C = Cm ρ L w t m : ρ C min m ρ C : min E E Penalty function Z = α m + C

46 46 CHEAP CAR LIGHT CAR Trade-off surface

47 47 Exchange constants (Upper bounds to) Exchange constants for mass saving in transport systems Transport System: mass saving Family car (based on fuel saving) Truck (based on payload) Civil aircraft (based on payload) Military aircraft (performance payload) Space vehicle (based on payload) α ( per kg) 0.5 ~ 5 5 to to to to 10000

48 48 The ultimate challenge Function One Objective: one performance metric Conflicting Objectives: conflicting performance metrics One Constraint Multiple Constraints One Constraint Multiple Constraints Rank by performance metric Rank by most restrictive performance metric Penalty function method Combination of methods

49 49 The ultimate Function: Constraints: underbody panel L and w known must not deform too much E at least 5 GPa must not plastically deform or fail must not have brittle failure must resist to water Objective: minimal mass minimal material cost minimal embodied energy Free variables panel thickness t choice of material

50 50 The objectives minimal mass m = ρ L w t minimal material cost C = Cm ρ L w t minimal embodied energy H = Hm ρ L w t

51 51 The constraints Screening constraints E at least 5 GPa must resist to water Ranking constraints must not deform too much must not plastically deform or fail must not have brittle failure Ewt S C1 12L 6FL σ f C 2 wt K Ic Yσ πa

52 52 Material index Objective Constraint Material index Mi Minimum mass Minimum mass Minimum mass Minimum cost Minimum cost Minimum cost Minimum energy Minimum energy Minimum energy Stiffness Strength Toughness Stiffness Strength Toughness Stiffness Strength Toughness ρ E ρ C m m ρ H m ρ H ρ K Ic σ y C ρ m E H m K ρ C m ρ Ic σ y ρ E K Ic σ y

53 5 Penalty functions Z = i α M i i Z = αi i M M i i,max Stage 1: Index Stage 2: Index Stage : Index Mi/Mmax Mi/Mmax Mi/Mmax SUM Name Polyester/E-glass fiber, pultruded composite rod, unidirectional laminate 0, , , ,00 1,00 1,00 20,00 Polyester/45wt% E-glass fiber, woven fabric composite, biaxial laminate 0, , , ,95 0,60 0,78 14,87 Polyester/E-glass fiber, non-crimp fabric composite, quasi-isotropic laminate 0,0015 0, , ,89 0,56 0,70 1,57 Aluminum, 7475, wrought, T651 0, ,0044 0,001 0,87 0,44 0,50 10,74 Aluminum, 7475, wrought, T7651 0, , ,0016 0,87 0,42 0,51 10,66 Aluminum, 5182, wrought, H19 0, ,0044 0, ,91 0,4 0,48 10,52 Aluminum, 6010, wrought, T6 0, , , ,89 0,42 0,47 10,29 Aluminum, 7475, wrought, T761 0, , , ,87 0,41 0,46 10,04 max 0, , , weight factor

54 54 TEXTBOOKS

55 55 CES EDUPACK GrantaDesign

Materials Selection and Design Materials Selection - Practice

Materials Selection and Design Materials Selection - Practice Materials Selection and Design Materials Selection - Practice Each material is characterized by a set of attributes that include its mechanical, thermal, electrical, optical, and chemical properties; its

More information

Module 2 Selection of Materials and Shapes. IIT, Bombay

Module 2 Selection of Materials and Shapes. IIT, Bombay Module Selection of Materials and Shapes Lecture 3 Selection of Materials - II Instructional objectives This is a continuation of the previous lecture. By the end of this lecture, the student will further

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

2.2 - Screening and ranking for optimal selection. Outline

2.2 - Screening and ranking for optimal selection. Outline 2 - Ashby Method 2.2 - Screening and ranking for optimal selection Outline Basic steps of selection 1. Translation of design requirements into a material specification 2. Screening out of materials that

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Appendix. A 1 Properties of areas.* *Symbols used are: A = area I = moment of inertia S = Section modulus

Appendix. A 1 Properties of areas.* *Symbols used are: A = area I = moment of inertia S = Section modulus Appendix A 1 Properties of areas.* *Symbols used are: A = area I = moment of inertia S = Section modulus r = radius of gyration = I/A J = polar moment of inertia Z p = polar section modulus Circle R D

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon. Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Lecture 16-17, Sandwich Panel Notes, 3.054

Lecture 16-17, Sandwich Panel Notes, 3.054 Sandwich Panels Two stiff strong skins separated by a lightweight core Separation of skins by core increases moment of inertia, with little increase in weight Efficient for resisting bending and buckling

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

THE APPLICATION OF PARTICLE SWARM OPTIMISATION TO SANDWICH MATERIAL DESIGN

THE APPLICATION OF PARTICLE SWARM OPTIMISATION TO SANDWICH MATERIAL DESIGN THE APPLICATION OF PARTICLE SWARM OPTIMISATION TO SANDWICH MATERIAL DESIGN Craig W. Hudson, Joe J. Carruthers and A. Mark Robinson NewRail School of Mechanical & Systems Engineering, Newcastle University,

More information

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information

Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

More information

UNIT I SIMPLE STRESSES AND STRAINS

UNIT I SIMPLE STRESSES AND STRAINS Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García

PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García 23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-20 APRIL 2007 PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García Laboratorio Químico Central

More information

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.1 Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a free-body diagram),

More information

CHAPTER 9 FAILURE PROBLEM SOLUTIONS

CHAPTER 9 FAILURE PROBLEM SOLUTIONS Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has

More information

Johns Hopkins University What is Engineering? M. Karweit MATERIALS

Johns Hopkins University What is Engineering? M. Karweit MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: MATERIALS A. Composition

More information

Revision Guide for Chapter 4

Revision Guide for Chapter 4 Revision Guide for Chapter 4 Contents Student s Checklist Revision Notes Materials: properties and uses... 5 Materials selection charts... 5 Refraction... 8 Total internal reflection... 9 Conductors and

More information

How materials work. Compression Tension Bending Torsion

How materials work. Compression Tension Bending Torsion Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons (-) B. Neutral charge, i.e., # electrons = #

More information

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition

More information

Materials Selection Case Study 1 Bases and Mechanical Properties. Professors: Anne Mertens and Davide Ruffoni Assistant: Tommaso Maurizi Enrici

Materials Selection Case Study 1 Bases and Mechanical Properties. Professors: Anne Mertens and Davide Ruffoni Assistant: Tommaso Maurizi Enrici Materials Selection Case Study 1 Bases and Mechanical Properties Professors: Anne Mertens and Davide Ruffoni Assistant: Tommaso Maurizi Enrici Thursday, October 4, 2018 Mechanical Properties Case Studies

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

More information

MECHANICAL AND RHEOLOGICAL PROPERTIES

MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL PROPERTIES OF SOLIDS Extension Shear δ τ xy l 0 l l 0 θ σ Hooke's law σ = Eε Hooke's law τ = G γ xy xy MECHANICAL AND RHEOLOGICAL PROPERTIES RHEOLOGICAL

More information

Module 2 Selection of Materials and Shapes. IIT, Bombay

Module 2 Selection of Materials and Shapes. IIT, Bombay Module Selection o Materials and Shapes Lecture Selection o Materials - I Instructional objectives By the end o this lecture, the student will learn (a) what is a material index and how does it help in

More information

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS E ENGINEERING WWII: Liberty ships Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 6, John Wiley and Sons, Inc., 1996.

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 Delamination Studies in Fibre-Reinforced Polymer Composites K.Kantha Rao, Dr P. Shailesh, K. Vijay Kumar 1 Associate Professor, Narasimha Reddy Engineering College Hyderabad. 2 Professor, St. Peter s Engineering

More information

LAMSS-COMPOSITES. Note: MATLAB compiler runtime 9.1 is required to run LAMSS_COMPOSITES_V1.0. Step2: Download LAMSS-COMPOSITES_V1.zip.

LAMSS-COMPOSITES. Note: MATLAB compiler runtime 9.1 is required to run LAMSS_COMPOSITES_V1.0. Step2: Download LAMSS-COMPOSITES_V1.zip. LAMSS-COMPOSITES 1.1 INSTALLATION Note: MATLAB compiler runtime 9.1 is required to run LAMSS_COMPOSITES_V1.0 Step1: Download MCRinstaller91.zip. Unzip and install MCRinstaller.exe. Step2: Download LAMSS-COMPOSITES_V1.zip.

More information

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH M. R. Wisnom University of Bristol Advanced Composites Centre for Innovation and Science University Walk, Bristol BS8 1TR, UK M.Wisnom@bristol.ac.uk

More information

Dynamic analysis of Composite Micro Air Vehicles

Dynamic analysis of Composite Micro Air Vehicles Dynamic analysis of Composite Micro Air Vehicles Shishir Kr. Sahu Professor and Head, Civil Engineering, National Institute of Technology, Rourkela, India E-mail: sksahu@nitrkl.ac.in ABSTRACT The present

More information

Materials and Structures. Indian Institute of Technology Kanpur

Materials and Structures. Indian Institute of Technology Kanpur Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 16 Behavior of Unidirectional Composites Lecture Overview Mt Material ilaxes in unidirectional

More information

BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED, FLAT, RECTANGULAR SANDWICH PANELS UNDER BIAXIAL COMPRESSION

BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED, FLAT, RECTANGULAR SANDWICH PANELS UNDER BIAXIAL COMPRESSION U. S. FOREST SERVICE RESEARCH PAPER FPL 135 APRIL 1970 BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED, FLAT, RECTANGULAR SANDWICH PANELS UNDER BIAXIAL COMPRESSION FOREST PRODUCTS LABORATORY, FOREST SERVICE

More information

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,

More information

Mechanical Properties

Mechanical Properties Mechanical Properties Elastic deformation Plastic deformation Fracture I. Elastic Deformation S s u s y e u e T I II III e For a typical ductile metal: I. Elastic deformation II. Stable plastic deformation

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N 5. Calculate the energy for vacancy formation in silver, given that the equilibrium number of vacancies at 800 C (1073 K) is 3.6 10 3 m 3. The atomic weight and density (at 800 C) for silver are, respectively,

More information

International Journal for Ignited Minds (IJIMIINDS) Design and Analysis of Effect of Core Thickness in UAV Wing

International Journal for Ignited Minds (IJIMIINDS) Design and Analysis of Effect of Core Thickness in UAV Wing International Journal for Ignited Minds (IJIMIINDS) Design and Analysis of Effect of Core Thickness in UAV Wing Puttappa H R 1, Ravi Prakash M 2 & Madhusudhan Reddy 3 1 P G Scholar, Dept of Mechanical

More information

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software Fundamentals of Durability Page 1 Your single provider of solutions System simulation solutions 3D simulation solutions Test-based engineering solutions Engineering services - Deployment services Troubleshooting

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

More information

Stress concentrations, fracture and fatigue

Stress concentrations, fracture and fatigue Stress concentrations, fracture and fatigue Piet Schreurs Department of Mechanical Engineering Eindhoven University of Technology http://www.mate.tue.nl/ piet December 1, 2016 Overview Stress concentrations

More information

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural

More information

, to obtain a way to calculate stress from the energy function U(r).

, to obtain a way to calculate stress from the energy function U(r). BIOEN 36 014 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Failure analysis of serial pinned joints in composite materials

Failure analysis of serial pinned joints in composite materials Indian Journal of Engineering & Materials Sciences Vol. 18, April 2011, pp. 102-110 Failure analysis of serial pinned joints in composite materials Alaattin Aktaş* Department of Mechanical Engineering,

More information

Mechanical Design in Optical Engineering. For a prismatic bar of length L in tension by axial forces P we have determined:

Mechanical Design in Optical Engineering. For a prismatic bar of length L in tension by axial forces P we have determined: Deformation of Axial Members For a prismatic bar of length L in tension by axial forces P we have determined: σ = P A δ ε = L It is important to recall that the load P must act on the centroid of the cross

More information

Theory at a Glance (for IES, GATE, PSU)

Theory at a Glance (for IES, GATE, PSU) 1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

More information

p l a s t i c i n j e c t i o n m o l d i n g p a r t 2 d e s i g n o f p l a s t i c p a r t s a n d p r o d u c t s e r i k d e l a n g e

p l a s t i c i n j e c t i o n m o l d i n g p a r t 2 d e s i g n o f p l a s t i c p a r t s a n d p r o d u c t s e r i k d e l a n g e p l a s t i c i n j e c t i o n m o l d i n g p a r t 2 d e s i g n o f p l a s t i c p a r t s a n d p r o d u c t s e r i k d e l a n g e H R O R o t t e r d a m B r n o U T j o i n t p r o j e c t 1

More information

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA What programs are in PROMAL? Master Menu The master menu screen with five separate applications from

More information

THE TRANSVERSE OFF-AXIS STIFFNESS AND STRENGTH OF SOFTWOODS. Abstract

THE TRANSVERSE OFF-AXIS STIFFNESS AND STRENGTH OF SOFTWOODS. Abstract THE TRANSVERSE OFF-AXIS STIFFNESS AND STRENGTH OF SOFTWOODS Carl S. Moden 1, Jessica Polycarpe 1 and Lars A. Berglund 2 1 Dept. of Aeronautical and Vehicle Engineering The Royal Institute of Technology

More information

ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL

ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL 5 th International Conference Advanced Composite Materials Engineering COMAT 2014 16-17 October 2014, Braşov, Romania ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE

More information

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Mechanical Testing and Diagnosis ISSN 2247 9635, 2012 (II), Volume 3, 79-85 SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Valeriu DULGHERU, Viorel BOSTAN, Marin GUŢU Technical University

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

Degree Thesis Flexural Rigidity (D) in Beams. Author: Zious Karis. Instructor: Rene Herrmann

Degree Thesis Flexural Rigidity (D) in Beams. Author: Zious Karis. Instructor: Rene Herrmann Degree Thesis Flexural Rigidity (D) in Beams Author: Zious Karis Instructor: Rene Herrmann Degree Thesis Materials Processing Technology 2017 DEGREE THESIS Arcada University of Applied Sciences, Helsinki,

More information

σ = F/A ε = L/L σ ε a σ = Eε

σ = F/A ε = L/L σ ε a σ = Eε Material and Property Information This chapter includes material from the book Practical Finite Element Analysis. It also has been reviewed and has additional material added by Sascha Beuermann. Hooke

More information

Introduction to Fracture

Introduction to Fracture Introduction to Fracture Introduction Design of a component Yielding Strength Deflection Stiffness Buckling critical load Fatigue Stress and Strain based Vibration Resonance Impact High strain rates Fracture

More information

CPO Science Foundations of Physics. Unit 8, Chapter 27

CPO Science Foundations of Physics. Unit 8, Chapter 27 CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties

More information

STRESS ANALYSIS OF BONDED JOINTS IN PULTRUDED GRP COMPONENTS

STRESS ANALYSIS OF BONDED JOINTS IN PULTRUDED GRP COMPONENTS 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS STRESS ANALYSIS OF BONDED JOINTS IN PULTRUDED GRP COMPONENTS S.W. Boyd*, J. M. Dulieu-Barton*, O. T. Thomsen**, A.Gherardi* [J.M. Dulieu-Barton]: janice@soton.ac.uk

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

EVALUATION OF MODULUS OF RIGIDITY BY DYNAMIC PLATE SHEAR TESTING Tetsuya Nakao. and Takeshi Okano

EVALUATION OF MODULUS OF RIGIDITY BY DYNAMIC PLATE SHEAR TESTING Tetsuya Nakao. and Takeshi Okano EVALUATION OF MODULUS OF RIGIDITY BY DYNAMIC PLATE SHEAR TESTING Tetsuya Nakao Graduate Student Present address: Department of Forestry Faculty of Agriculture Shimane University Matsue 690, Japan and Takeshi

More information

The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints

The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints , June 30 - July 2, 2010, London, U.K. The Accuracy of Characteristic Length Method on Failure Load Prediction of Composite Pinned Joints O. Aluko, and Q. Mazumder Abstract An analytical model was developed

More information

GS-IR 8816 Series Infrared Thermometer

GS-IR 8816 Series Infrared Thermometer GS-IR 8816 Series Infrared Thermometer Objects having temperatures above absolute zero radiate infrared energy all the time. This infrared energy has a certain functional relations with the surface temperature

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Mathematics and Science in Schools in Sub-Saharan Africa

Mathematics and Science in Schools in Sub-Saharan Africa Mathematics and Science in Schools in Sub-Saharan Africa MATERIAL SCIENCE Introduction to Material Properties What Material Scientists Do Physical Properties Melting & Boiling Points Magnetism Color Physical

More information

Experimental analyses for estimating strength and stiffness of shear walls in wood-framed construction

Experimental analyses for estimating strength and stiffness of shear walls in wood-framed construction Experimental analyses for estimating strength and stiffness of shear walls in wood-framed construction Minoru OKABE, Naohito KAWAI 2, Seiji TAKADA ABSTRACT One of the prominently important performance

More information

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Dr. A. Johnson DLR Dr. A. K. Pickett ESI GmbH EURO-PAM 99 Impact and Crash Modelling of Composite Structures: A Challenge

More information

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces

Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces Mechanical Behavior of Circular Composite Springs with Extended Flat Contact Surfaces Ping-Cheung Tse epartment of Mechanical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong

More information

Composite Sandwich Structures with Honeycomb Core subjected to Impact

Composite Sandwich Structures with Honeycomb Core subjected to Impact Clemson University TigerPrints All Theses Theses 12-212 Composite Sandwich Structures with Honeycomb Core subjected to Impact Lei He Clemson University, he6@clemson.edu Follow this and additional works

More information

Density and Differentiation. Science Starter and Vocabulary

Density and Differentiation. Science Starter and Vocabulary Density and Differentiation Science Starter and Vocabulary Science Starter Answer the following and turn in. You have 5 minutes to complete. Use complete sentences to answer the following question. Be

More information

Chapter 1 General Introduction Instructor: Dr. Mürüde Çelikağ Office : CE Building Room CE230 and GE241

Chapter 1 General Introduction Instructor: Dr. Mürüde Çelikağ Office : CE Building Room CE230 and GE241 CIVL222 STRENGTH OF MATERIALS Chapter 1 General Introduction Instructor: Dr. Mürüde Çelikağ Office : CE Building Room CE230 and GE241 E-mail : murude.celikag@emu.edu.tr 1. INTRODUCTION There are three

More information

Modeling the elastic properties of paper honeycomb panels using the finite element method

Modeling the elastic properties of paper honeycomb panels using the finite element method Proceedings of the XXVI th International Conference Research for Furniture Industry Modeling the elastic properties of paper honeycomb panels using the finite element method Viktor UTASSY, Levente DÉNES

More information

Communication. Provides the interface between ground and the spacecraft Functions:

Communication. Provides the interface between ground and the spacecraft Functions: Telecomm Communication Provides the interface between ground and the spacecraft Functions: Lock onto the ground station signal (carrier tracking) Receive uplink and process it (command reception and detection)

More information

2.7 - Materials selection and shape. Outline. The shape factor, and shape limits. Material indices that include shape

2.7 - Materials selection and shape. Outline. The shape factor, and shape limits. Material indices that include shape - shy Method.7 - Materials selection and shape Outline Shape efficiency The shape factor, and shape limits Material indices that include shape Graphical ways of dealing with shape Resources: M.. shy, Materials

More information

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Fracture mechanics fundamentals Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Failure modes Failure can occur in a number of modes: - plastic deformation

More information

There are three main types of structure - mass, framed and shells.

There are three main types of structure - mass, framed and shells. STRUCTURES There are three main types of structure - mass, framed and shells. Mass structures perform due to their own weight. An example would be a dam. Frame structures resist loads due to the arrangement

More information

A Numerical Study on Prediction of BFS in Composite Structures under Ballistic Impact

A Numerical Study on Prediction of BFS in Composite Structures under Ballistic Impact VOL. 1, 2015 ISSN 2394 3750 EISSN 2394 3769 SCIENCE & TECHNOLOGY A Numerical Study on Prediction of BFS in Composite Structures under Ballistic Impact Bandaru Aswani Kumar 1, Suhail Ahmad 2 1. Research

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

NUMERICAL SIMULATION OF BLAST RESISTANT STEEL PLATE STRENGTHENED WITH COMPOSITE

NUMERICAL SIMULATION OF BLAST RESISTANT STEEL PLATE STRENGTHENED WITH COMPOSITE Journal of KONES Powertrain and Transport, Vol. 18, No. 3 2011 NUMERICAL SIMULATION OF BLAST RESISTANT STEEL PLATE STRENGTHENED WITH COMPOSITE Krzysztof Kosiuczenko, Tadeusz Niezgoda, Wies aw Barnat, Robert

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Cross-section shape Material Shaft design Non-circular

More information

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes

More information

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS EEMENTS OF RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SRING 2016 Mechanics o Materials MECHNICS MTERIS lecture our mechanics o materials www.carttalk.com Mechanics o Materials 1 S2009abn

More information

Development of a code to generate randomly distributed short fiber composites to estimate mechanical properties using FEM

Development of a code to generate randomly distributed short fiber composites to estimate mechanical properties using FEM International Journal of Theoretical and Applied Mechanics. ISSN 0973-6085 Volume 12, Number 4 (2017) pp. 863-872 Research India Publications http://www.ripublication.com Development of a code to generate

More information

Simulation of Mechanical and Thermal Properties for Sandwich Panels with Cellular Wood Cores

Simulation of Mechanical and Thermal Properties for Sandwich Panels with Cellular Wood Cores Paper 4 Simulation of Mechanical and Thermal Properties for Sandwich Panels with Cellular Wood Cores E. Labans, K. Kalnins and A. Bikovs Institute of Materials and Structures Riga Technical University,

More information

(1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc.

(1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc. PhysicsAndMathsTutor.com 1 Q1. (a) Define the density of a material....... (1) (b) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc. density of copper =

More information

Lecture 7, Foams, 3.054

Lecture 7, Foams, 3.054 Lecture 7, Foams, 3.054 Open-cell foams Stress-Strain curve: deformation and failure mechanisms Compression - 3 regimes - linear elastic - bending - stress plateau - cell collapse by buckling yielding

More information

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber Kibong Han Mechatronics Department, Jungwon University, 85 Munmu-ro, Goesan-gun, South Korea.

More information

TESTING AND ANALYSIS OF COMPOSITE SANDWICH BEAMS

TESTING AND ANALYSIS OF COMPOSITE SANDWICH BEAMS TESTING AND ANALYSIS OF COMPOSITE SANDWICH BEAMS I. M. Daniel, J. L. Abot, and K. A. Wang Walter P. Murphy Professor, Departments of Civil and Mechanical Engineering, Robert R. McCormick School of Engineering

More information

Lecture 4 Honeycombs Notes, 3.054

Lecture 4 Honeycombs Notes, 3.054 Honeycombs-In-plane behavior Lecture 4 Honeycombs Notes, 3.054 Prismatic cells Polymer, metal, ceramic honeycombs widely available Used for sandwich structure cores, energy absorption, carriers for catalysts

More information

ENHANCED BLAST PROTECTION WITH POLYMER COMPOSITES CONTAINING XGNP GRAPHENE NANOPLATELETS

ENHANCED BLAST PROTECTION WITH POLYMER COMPOSITES CONTAINING XGNP GRAPHENE NANOPLATELETS 2017 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) TECHNICAL SESSION AUGUST 8-10, 2017 - NOVI, MICHIGAN ENHANCED BLAST PROTECTION

More information