CPO Science Foundations of Physics. Unit 8, Chapter 27

Size: px
Start display at page:

Download "CPO Science Foundations of Physics. Unit 8, Chapter 27"

Transcription

1 CPO Science Foundations of Physics Unit 8, Chapter 27

2 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties of Gases

3 Chapter 27 Objectives 1. Perform calculations involving the density of solids, gases, and liquids. 2. Apply the concepts of force, stress, strain, and tensile strength to simple structures. 3. Describe the cause and some consequences of thermal expansion in solids, liquids, and gases. 4. Explain the concept of pressure and calculate pressure caused by the weight of fluids. 5. Explain how pressure is created on a molecular level. 6. Understand and apply Bernoulli s equation to flow along a streamline. 7. Apply the gas laws to simple problems involving pressure, temperature, mass, and volume.

4 Chapter 27 Vocabulary Terms stress density strain tensile strength cross section area pressure volume tension compression elastic, elasticity fluid brittle ductile safety factor modulus of elasticity alloy airfoil buoyancy fluid mechanics ideal gas law Boyle s law streamline laminar flow turbulent flow Bernoulli s equation pascal (Pa) Charles law gas constant (R) composite material thermal expansion

5 27.1 Properties of Solids Key Question: How do you measure the strength of a solid material? *Students read Section 27.1 AFTER Investigation 27.1

6 27.1 Properties of Solids The density of a material is the ratio of mass to volume. Density is a physical property of the material and stays the same no matter how much material you have.

7 27.1 Density Most engineers and scientists use the greek letter rho (ρ) to represent density. Density (kg/m 3 ) r = m V Mass (kg) Volume (m 3 or L)

8 27.1 Densities of Common Materials Which materials are less dense than water?

9 27.1 Properties of Solids The concept of physical strength means the ability of an object to hold its form even when force is applied. To evaluate the properties of materials, it is sometimes necessary to separate out the effects of design, such as shape and size.

10 27.1 Stress The stress in a material is the ratio of the force acting through the material divided by the cross section area through which the force is carried. The metric unit of stress is the pascal (Pa). One pascal is equal to one newton of force per square meter of area (1 N/m 2 ). Stress (N/m 2 ) s = F A Force (N) Area (m 2 )

11 27.1 Properties of Solids

12 26.1 Properties of Solids A thicker wire can support more force at the same stress as a thinner wire because the cross section area is increased.

13 26.1 Tensile strength The tensile strength is the stress at which a material breaks under a tension force. The tensile strength also describes how materials break in bending.

14 27.1 Tensile strength

15 27.1 Properties of solids The safety factor is the ratio of how strong something is compared with how strong it has to be. The safety factor allows for things that might weaken the wire (like rust) or things you did not consider in the design (like heavier loads). A safety factor of 10 means you choose the wire to have a breaking strength of 10,000 newtons, 10 times stronger than it has to be.

16 27.1 Evaluate 3 Designs Three designs have been proposed for supporting a section of road. Each design uses three supports spaced at intervals along the road. A total of 4.5 million N of force is required to hold up the road. Evaluate the strength of each design. The factor of safety must be 5 or higher even when the road is bumper-to-bumper on all 4 lanes with the heaviest possible trucks.

17 27.1 Evaluate Design #1 High strength steel tubes Cross section = m 2 Tensile strength = 600 Mpa

18 27.1 Evaluate Design #2 Aluminum alloy tubes Cross section = m 2 Tensile strength = 290 Mpa

19 27.1 Evaluate Design #3 Steel cables Cross section = 0.03 m 2 Tensile strength = 400 Mpa

20 27.1 Properties of solids Elasticity measures the ability of a material to stretch. The strain is the amount a material has been deformed, divided by its original size.

21 27.1 Strain The Greek letter epsilon (ε) is usually used to represent strain. Strain e = Dl l Change in length (m) Original length (m)

22 27.1 Properties of solids The modulus of elasticity plays the role of the spring constant for solids. A material is elastic when it can take a large amount of strain before breaking. A brittle material breaks at a very low value of strain.

23 27.1 Modulus of Elasticity

24 27.1 Stress for solids Calculating stress for solids is similar to using Hooke's law for springs. Stress and strain take the place of force and distance in the formula: Stress (Mpa) s = -E e Modulus of elasticity (pa) Strain

25 27.1 Properties of solids The coefficient of thermal expansion describes how much a material expands for each change in temperature. Concrete bridges always have expansion joints. The amount of contraction or expansion is equal to the temperature change times the coefficient of thermal expansion.

26 27.1 Thermal Expansion Change in length (m) Dl = a (T 2 -T 1 ) l Coefficient of thermal expansion Change in temperature ( o C) Original length (m)

27 27.1 Thermal Expansion Which substances will expand or contract the most with temperature changes?

28 27.1 Plastic Plastics are solids formed from long chain molecules. Different plastics can have a wide range of physical properties including strength, elasticity, thermal expansion, and density.

29 27.1 Metal Metals that bend and stretch easily without cracking are ductile. The properties of metals can be changed by mixing elements. An alloy is a metal that is a mixture of more than one element. Steel is an alloy.

30 27.1 Wood Many materials have different properties in different directions. Wood has a grain that is created by the way trees grow. Wood is very difficult to break against the grain, but easy to break along the grain. A karate chop easily breaks wood along its grain.

31 27.1 Composite materials Composite materials are made from strong fibers supported by much weaker plastic. Like wood, composite materials tend to be strongest in a preferred direction. Fiberglass and carbon fiber are two examples of useful composite materials.

32 Classwork: Stress and Strain Find the modulus of elasticity for a 2-meter long cylindrical column made of a mystery material, assuming: The radius of the column is 10 cm. The maximum stress force it can withstand is 300 kpa When stretched to its limit, the column reaches a maximum length of 2.09 m before breaking

33 27.2 Properties of Liquids and Fluids Key Question: What are some implications of Bernoulli s equation? *Students read Section 27.2 AFTER Investigation 27.2

34 27.2 Properties of Liquids and Fluids Fluids can change shape and flow when forces are applied to them. Gas is also a fluid because gases can change shape and flow. Density, buoyancy and pressure are three properties exhibited by liquids and gases.

35 27.2 Density vs. Buoyancy The density of a liquid is the ratio of mass to volume, just like the density of a solid. An object submerged in liquid feels an upward force called buoyancy. The buoyancy force is exactly equal to the weight of liquid displaced by the object. Objects sink if the buoyancy force is less than their own weight.

36

37 Forces applied to fluids create pressure instead of stress. Pressure is force per unit area, like stress. A pressure of 1 N/m 2 means a force of one newton acts on each square meter Pressure

38 27.2 Pressure Like stress, pressure is a ratio of force per unit area. Unlike stress however, pressure acts in all directions, not just the direction of the applied force.

39 27.2 Pressure The concept of pressure is central to understanding how fluids behave within themselves and also how fluids interact with surfaces, such as containers. If you put a box with holes underwater, pressure makes water flow in from all sides. Pressure exerts equal force in all directions in liquids that are not moving.

40 27.2 Properties of liquids and gases Gravity is one cause of pressure because fluids have weight. Air is a fluid and the atmosphere of the Earth has a pressure. The pressure of the atmosphere decreases with altitude.

41 27.2 Properties of liquids and gases The pressure at any point in a liquid is created by the weight of liquid above that point.

42 27.2 Pressure in liquids The pressure at the same depth is the same everywhere in any liquid that is not moving. Pressure (pa or N/m 2 ) P = r g d Density (kg/m 3 ) Depth (m) Strength of gravity (9.8 N/kg)

43 27.2 Calculate pressure Calculate the pressure 1,000 meters below the surface of the ocean. The density of water is 1,000 kg/m 3. The pressure of the atmosphere is 101,000 Pa. Compare the pressure 1,000 meters deep with the pressure of the atmosphere.

44 27.2 Properties of liquids and gases Pressure comes from collisions between atoms or molecules. The molecules in fluids (gases and liquids) are not bonded tightly to each other as they are in solids. Molecules move around and collide with each other and with the solid walls of a container.

45 27.2 Pressure and forces Pressure creates force on surfaces. The force is equal to the pressure times the area that contacts the molecules. Pressure (N/m 2 ) Force (N) F = P A Area (m 2 )

46 27.2 Calculate pressure A car tire is at a pressure of 35 psi. Four tires support a car that weighs 4,000 pounds. Each tire supports 1,000 pounds. How much surface area of the tire is holding up the car?

47 27.2 Motion of fluids The study of motion of fluids is called fluid mechanics. Fluids flow because of differences in pressure. Moving fluids usually do not have a single speed.

48 27.2 Properties of liquids and gases A flow of syrup down a plate shows that friction slows the syrup touching the plate. The top of the syrup moves fastest because the drag from friction decreases away from the plate surface.

49 27.2 Properties of liquids and gases Pressure and energy are related. Differences in pressure create potential energy in fluids just like differences in height create potential energy from gravity

50 27.2 Properties of liquids and gases Pressure does work as fluids expand. A pressure of one pascal does one joule of work pushing one square meter a distance of one meter.

51 27.2 Energy in fluids The potential energy is equal to volume times pressure. Pressure (N/m 2 ) Potential energy (J) E = P V Volume (m 3 )

52 27.2 Energy in fluids The total energy of a small mass of fluid is equal to its potential energy from gravity (height) plus its potential energy from pressure plus its kinetic energy.

53 27.2 Energy in fluids The law of conservation of energy is called Bernoulli s equation when applied to a fluid. Bernoulli s equation says the three variables of height, pressure, and speed are related by energy conservation.

54 27.2 Bernoulli's Equation If one variable increases, at least one of the other two must decrease. If the fluid is not moving (v = 0), then Bernoulli s equation gives us the relationship between pressure and depth (negative height).

55 27.2 Properties of liquids and gases Streamlines are imaginary lines drawn to show the flow of fluid. We draw streamlines so that they are always parallel to the direction of flow. Fluid does not flow across streamlines.

56 27.2 Applying Bernoulli's equation The wings of airplanes are made in the shape of an airfoil. Air flowing along the top of the airfoil (B) moves faster than air flowing along the bottom of the airfoil (C).

57 27.2 Calculating speed of fluids Water towers create pressure to make water flow. At what speed will water come out if the water level in the tower is 50 meters higher than the faucet?

58 27.2 Fluids and friction Viscosity is caused by forces that act between atoms and molecules in a liquid. Friction in fluids also depends on the type of flow. Water running from a faucet can be either laminar or turbulent depending on the rate of flow.

59 27.3 Properties of Gases Key Question: How much matter is in a gas? *Students read Section 27.3 AFTER Investigation 27.3

60 27.3 Properties of Gases Air is the most important gas to living things on the Earth. The atmosphere of the Earth is a mixture of nitrogen, oxygen, water vapor, argon, and a few trace gases.

61 27.3 Properties of Gases An object submerged in gas feels an upward buoyant force. You do not notice buoyant forces from air because the density of ordinary objects is so much greater than the density of air. The density of a gas depends on pressure and temperature.

62 27.3 Boyle's Law If the mass and temperature are kept constant, the product of pressure times volume stays the same. Original pressure (N/m 2 ) Final pressure (N/m 2 ) P 1 V 1 = P 2 V 2 Original volume (m 3 ) Final volume (m 3 )

63 27.3 Calculate using Boyle's law A bicycle pump creates high pressure by squeezing air into a smaller volume. If air at atmospheric pressure (14.7 psi) is compressed from an initial volume of 30 cubic inches to a final volume of three cubic inches, what is the final pressure?

64 27.3 Charles' Law If the mass and volume are kept constant, the pressure goes up when the temperature goes up. Original pressure (N/m 2 ) Final pressure (N/m 2 ) Original temperture (k) P 1 = P 2 T 1 T 2 Final temperature (K)

65 27.3 Calculate using Charles' law A can of hair spray has a pressure of 300 psi at room temperature (21 C or 294 K). The can is accidentally moved too close to a fire and its temperature increases to 800 C (1,073 K). What is the final pressure in the can?

66 27.3 Ideal gas law The ideal gas law combines the pressure, volume, and temperature relations for a gas into one equation which also includes the mass of the gas. In physics and engineering, mass (m) is used for the quantity of gas. In chemistry, the ideal gas law is usually written in terms of the number of moles of gas (n) instead of the mass (m).

67 The gas constants are different because the size and mass of gas molecules are different Gas Constants

68 27.3 Ideal gas law If the mass and temperature are kept constant, the product of pressure times volume stays the same. Pressure (N/m 2 ) P V = m R T gas constant (J/kgK) Volume (m 3 ) Mass (kg) Temperature (K)

69 27.3 Calculate using Ideal gas law Two soda bottles contain the same volume of air at different pressures. Each bottle has a volume of m 3 (two liters). The temperature is 21 C (294 K). One bottle is at a gauge pressure of 500,000 pascals (73 psi). The other bottle is at a gauge pressure of zero. Calculate the mass difference between the two bottles.

70 Application: The Deep Water Submarine Alvin

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =! Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter 1 2 Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9. Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

If we change the quantity causing the deformation from force to force per unit area, we get a relation that does not depend on area.

If we change the quantity causing the deformation from force to force per unit area, we get a relation that does not depend on area. 2/24 Chapter 12 Solids Recall the rigid body model that we used when discussing rotation. A rigid body is composed of a particles constrained to maintain the same distances from and orientations relative

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

Unit 4: The Nature of Matter

Unit 4: The Nature of Matter 16 16 Table of Contents Unit 4: The Nature of Matter Chapter 16: Solids, Liquids, and Gases 16.1: Kinetic Theory 16.2: Properties and Fluids 16.3: Behavior of Gases 16.1 Kinetic Theory Kinetic Theory kinetic

More information

Matter and Thermal Energy

Matter and Thermal Energy Section States of Matter Can you identify the states of matter present in the photo shown? Kinetic Theory The kinetic theory is an explanation of how particles in matter behave. Kinetic Theory The three

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Chapter 2. States of Matter

Chapter 2. States of Matter Chapter 2 States of Matter 2-1 Matter Matter Matter Anything that takes up space and has mass. Is air matter? Yes. It takes up space and has mass. It has atoms. All matter is made up of atoms. ( Dalton

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. Energy is neither created

More information

Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

More information

Physical Science. Thermal Energy & Heat

Physical Science. Thermal Energy & Heat Physical Science Thermal Energy & Heat Sometimes called internal energy Depends on the object's mass, temperature, and phase (solid, liquid, gas) TOTAL potential and kinetic energy of all the particles

More information

There are three phases of matter: Solid, liquid and gas

There are three phases of matter: Solid, liquid and gas FLUIDS: Gases and Liquids Chapter 4 of text There are three phases of matter: Solid, liquid and gas Solids: Have form, constituents ( atoms and molecules) are in fixed positions (though they can vibrate

More information

A B C November 29 Exam 3 Physics 105. σ = W m 2 K 4 L v = J/kg R = J/(K mol) c w = 4186 J/(kg K) N A = 6.

A B C November 29 Exam 3 Physics 105. σ = W m 2 K 4 L v = J/kg R = J/(K mol) c w = 4186 J/(kg K) N A = 6. L 2012 November 29 Exam 3 Physics 105 Physical Constants Properties of H 2 O σ = 5.6704 10 8 W m 2 K 4 L v = 2.26 10 6 J/kg R = 8.3145 J/(K mol) c w = 4186 J/(kg K) N A = 6.0221 10 23 L f = 3.33 10 5 J/kg

More information

Fluid Mechanics. The atmosphere is a fluid!

Fluid Mechanics. The atmosphere is a fluid! Fluid Mechanics The atmosphere is a fluid! Some definitions A fluid is any substance which can flow Liquids, gases, and plasmas Fluid statics studies fluids in equilibrium Density, pressure, buoyancy Fluid

More information

Physics General Physics. Lecture 17 Gases. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 17 Gases. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 17 Gases Fall 2016 Semester Prof. Matthew Jones 1 2 Structure of Matter Not everything around us is a rigid body Do we need new laws of physics to describe things

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Physics 207 Lecture 18

Physics 207 Lecture 18 Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 80-00 A 6-79 B or A/B 34-6 C or B/C 9-33 marginal 9-8 D Physics 07: Lecture 8,

More information

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 12 Fluid Mechanics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 12 To study the concept of density

More information

Chapter 3 Phases of Matter Physical Science

Chapter 3 Phases of Matter Physical Science Chapter 3 Phases of Matter Physical Science CH 3- States of Matter 1 What makes up matter? What is the difference between a solid, a liquid, and a gas? What kind of energy do all particles of matter have?

More information

Further Applications of Newton s Laws - Friction Static and Kinetic Friction

Further Applications of Newton s Laws - Friction Static and Kinetic Friction urther pplications of Newton s Laws - riction Static and Kinetic riction The normal force is related to friction. When two surfaces slid over one another, they experience a force do to microscopic contact

More information

Name : Applied Physics II Exam One Winter Multiple Choice ( 7 Points ):

Name :   Applied Physics II Exam One Winter Multiple Choice ( 7 Points ): Name : e-mail: Applied Physics II Exam One Winter 2006-2007 Multiple Choice ( 7 Points ): 1. Pure nitrogen gas is contained in a sealed tank containing a movable piston. The initial volume, pressure and

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Physics - Fluids. Read Page 174 (Density) TQ1. A fluid is what type of matter? TQ2. What is fluid mechanics? TQ3. What is the equation for density?

Physics - Fluids. Read Page 174 (Density) TQ1. A fluid is what type of matter? TQ2. What is fluid mechanics? TQ3. What is the equation for density? Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

Chapter 10. Solids & Liquids

Chapter 10. Solids & Liquids Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density

More information

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!

More information

Solids, Liquids & Gases

Solids, Liquids & Gases Solids, Liquids & Gases Density & Pressure...1 Density...1 Formula...1 Common densities...2 Pressure...3 Pressure in Liquids...3 Nice to know: External Pressure exerted on a closed container...4 Change

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:

More information

MOTION AND DESIGN VOCAB

MOTION AND DESIGN VOCAB MOTION AND DESIGN VOCAB Vocabulary Term acceleration Action/Reaction balanced Chemical Change Meaning/Definition rate of increase of speed or velocity (example: accelerator pedal on a car) Newton s 3rd

More information

Kinetic Theory. States of Matter. Thermal Energy. Four States of Matter. Kinetic Energy. Solid. Liquid. Definition: How particles in matter behave

Kinetic Theory. States of Matter. Thermal Energy. Four States of Matter. Kinetic Energy. Solid. Liquid. Definition: How particles in matter behave Kinetic Theory Definition: How particles in matter behave States of Matter All Matter is composed of small particles. Particles are in constant random motion. Particles collide with each other and walls

More information

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015 skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. 2. State the first law

More information

Lecture 8 Equilibrium and Elasticity

Lecture 8 Equilibrium and Elasticity Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium

More information

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY UNIVERSITY PHYSICS I Professor Meade Brooks, Collin College Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY Two stilt walkers in standing position. All forces acting on each stilt walker balance out; neither

More information

Chapter 9. Solids and Fluids

Chapter 9. Solids and Fluids Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about

More information

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

More information

Chapter: States of Matter

Chapter: States of Matter Table of Contents Chapter: States of Matter Section 1: Matter Section 2: Changes of State Section 3: Behavior of Fluids 1 What is matter? Matter is anything that takes up space and has mass. Matter Matter

More information

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012 Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Physics 207 Lecture 20. Chapter 15, Fluids

Physics 207 Lecture 20. Chapter 15, Fluids Chapter 15, Fluids This is an actual photo of an iceberg, taken by a rig manager for Global Marine Drilling in St. Johns, Newfoundland. The water was calm and the sun was almost directly overhead so that

More information

Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle Bernoulli s equation

Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle Bernoulli s equation 1 Physics 213 Waves, Fluids and Thermal Physics Summer 2007 Lecturer: Mike Kagan (mak411@psu.edu, 322 Whitmore) Today s Discussion: Fluids Pressure and Pascal s principle Bouyancy, Archimedes principle

More information

Section 1 Matter and Energy

Section 1 Matter and Energy CHAPTER OUTLINE Section 1 Matter and Energy Key Idea questions > What makes up matter? > What is the difference between a solid, a liquid, and a gas? > What kind of energy do all particles of matter have?

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

More information

Each of the following questions (1-15) is worth 6 points

Each of the following questions (1-15) is worth 6 points Name: ----------------------------------------------- S. I. D.: ------------------------------------ Physics 0 Final Exam (Version A) Summer 06 HIS EXAM CONAINS 36 QUESIONS. ANSWERS ARE ROUNDED. PICK HE

More information

2. For a S.H.O. determine, (a) the total energy (E), the kinetic and potential energies. of half amplitude:

2. For a S.H.O. determine, (a) the total energy (E), the kinetic and potential energies. of half amplitude: The amplitude of vibration and hence, the energy transferred into the vibrating system is found to depend on the difference between f and, its maximum when the frequency of the external force is equal

More information

Chapter 14. Fluid Mechanics

Chapter 14. Fluid Mechanics Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

SY 2018/ st Final Term Revision. Student s Name: Grade: 10A/B. Subject: Physics. Teachers Signature

SY 2018/ st Final Term Revision. Student s Name: Grade: 10A/B. Subject: Physics. Teachers Signature SY 2018/2019 1 st Final Term Revision Student s Name: Grade: 10A/B Subject: Physics Teachers Signature Question 1 : Choose the correct answer : 1 ) What is the density of Mercury. a ) 13.6x10 3 b) 14.6x10

More information

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised 10/13/01 Densities MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

More information

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

More information

Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

More information

Aluminum is OXIDIZED during this process. We say that metallic aluminum is a REDUCING AGENT!

Aluminum is OXIDIZED during this process. We say that metallic aluminum is a REDUCING AGENT! 131 REDOX LANGUAGE - "Oxidation" is loss of electrons, but an OXIDIZING AGENT is something that causes ANOTHER substance to lose electrons. An oxidizing agent is itself reduced during a redox reaction.

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2]

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2] 1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress strain Fig. 7.1 [2] (b) Circle from the list below a material that is ductile. jelly c amic gl

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

More information

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are

More information

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Unit 10: Gases Unit Outline I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Real Gases I. Opening thoughts Have you ever: Seen a hot air balloon?

More information

NATIONAL 5 PHYSICS THERMODYNAMICS

NATIONAL 5 PHYSICS THERMODYNAMICS NATIONAL 5 PHYSICS THERMODYNAMICS HEAT AND TEMPERATURE Heat and temperature are not the same thing! Heat Heat is a type of energy. Like all types of energy it is measured in joules (J). The heat energy

More information

Measurement Matter and Density. Name: Period:

Measurement Matter and Density. Name: Period: Measurement Matter and Density Name: Period: Studying Physics and Chemistry Physics Tells us how fast objects move or how much it takes to get objects to, turn or stop. Chemistry Explains how different

More information

S.3 PHYSICS HOLIDAY WORK Where necessary assume the acceleration due to gravity, g 10ms. 1. 7. 13. 19. 25. 2. 8. 14. 20. 26. 3. 9. 15. 21. 27. 4. 10. 16. 22. 28. 5. 11. 17. 23. 29. 6. 12. 18. 24. 30. SECTION

More information

Physics 106 Lecture 13. Fluid Mechanics

Physics 106 Lecture 13. Fluid Mechanics Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle

More information

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Matter Q1. What is meant by Matter? Ans: MATTER: Anything which has mass and occupied space is called Matter. Example: Table, book,

More information

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.

More information

Physics 220: Classical Mechanics

Physics 220: Classical Mechanics Lecture /33 Phys 0 Physics 0: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 4) Michael Meier mdmeier@purdue.edu Office: Phys Room 38 Help Room: Phys Room schedule on course webpage Office Hours:

More information

Chapter 12: Gravity, Friction, & Pressure Physical Science, McDougal-Littell, 2008

Chapter 12: Gravity, Friction, & Pressure Physical Science, McDougal-Littell, 2008 SECTION 1 (PP. 381-388): GRAVITY IS A FORCE EXERTED BY MASSES. Georgia Standards: S8P3b Demonstrate the effect of balanced and unbalanced forces on an object in terms of gravity, inertia, and friction;

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

Electricity and Energy 1 Content Statements

Electricity and Energy 1 Content Statements Keep this in good condition, it will help you pass your final exams. The school will only issue one paper copy per pupil. An e-copy will be placed on the school s web-site. Electricity and Energy 1 Content

More information

Chapter 9. Solids and Fluids

Chapter 9. Solids and Fluids Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

More information

CHAPTER 4 - STATES OF MATTER. Mr. Polard Physical Science Ingomar Middle School

CHAPTER 4 - STATES OF MATTER. Mr. Polard Physical Science Ingomar Middle School CHAPTER 4 - STATES OF MATTER Mr. Polard Physical Science Ingomar Middle School SECTION 1 MATTER VOCABULARY SECTION 1 Matter : anything that takes up space and has mass (pg 72, 102) Solid : Matter with

More information

Centimeters of mercury

Centimeters of mercury CHAPTER 11 PROPERTIES OF GASES Gases have an indefinite shape: a gas takes the shape of its container and fills it uniformly. If the shape of the container changes, so does the shape of the gas. Gases

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages )

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages ) Name Date Class 13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains

More information

PHYSICS 102N Spring Week 2 Solids and Liquids

PHYSICS 102N Spring Week 2 Solids and Liquids PHYSICS 102N Spring 2009 Week 2 Solids and Liquids Condensed Matter Common feature: Atoms/molecules are tightly packed together (equilibrium distance) Any closer: Repulsion due to electromagnetic interaction

More information

1) Pressure in a fluid decreases with depth. False 1) 2) To determine gauge pressure, add the atmospheric pressure to the absolute pressure.

1) Pressure in a fluid decreases with depth. False 1) 2) To determine gauge pressure, add the atmospheric pressure to the absolute pressure. Exam 4 review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Pressure in a fluid decreases with depth. False 1) 2) To determine gauge pressure, add the atmospheric

More information

Review of Fluid Mechanics

Review of Fluid Mechanics Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may

More information

13 Solid materials Exam practice questions

13 Solid materials Exam practice questions Pages 206-209 Exam practice questions 1 a) The toughest material has the largest area beneath the curve the answer is C. b) The strongest material has the greatest breaking stress the answer is B. c) A

More information

Chapter 10 Notes: Gases

Chapter 10 Notes: Gases Chapter 10 Notes: Gases Watch Bozeman Videos & other videos on my website for additional help: Big Idea 2: Gases 10.1 Characteristics of Gases Read p. 398-401. Answer the Study Guide questions 1. Earth

More information

University Physics 226N/231N Old Dominion University. Ch 12: Finish Fluid Mechanics Exam Review

University Physics 226N/231N Old Dominion University. Ch 12: Finish Fluid Mechanics Exam Review University Physics 226N/231N Old Dominion University Ch 12: Finish Fluid Mechanics Exam Review Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2016-odu Wednesday, November

More information

Unit 8 Kinetic Theory of Gases. Chapter 13-14

Unit 8 Kinetic Theory of Gases. Chapter 13-14 Unit 8 Kinetic Theory of Gases Chapter 13-14 This tutorial is designed to help students understand scientific measurements. Objectives for this unit appear on the next slide. Each objective is linked to

More information

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry UNIT 6 GASES OUTLINE States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry STATES OF MATTER Remember that all matter exists in three physical states: Solid Liquid

More information

Study Guide for Chapters 2, 3, and 10

Study Guide for Chapters 2, 3, and 10 Study Guide for Chapters 2, 3, and 10 1. What is matter? Where can it be found? Anything that has mass and takes up space. 2. What units are used to measure volume? Liters and meters cubed 3. How would

More information

Revision Sheet Final Exam Term

Revision Sheet Final Exam Term Revision Sheet Final Exam Term-1 2018-2019 Name: Subject: Chemistry Grade: 11 A, B, C Required Materials: Chapter: 10 Section: 1,2,3,4,5 (Textbook pg. 311-333) Chapter: 11 Section: 1,2, (Textbook pg. 341-355)

More information

density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L)

density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L) Unit 9: The Gas Laws 9.5 1. Write the formula for the density of any gas at STP. Name: KEY Text Questions from Corwin density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L) Ch.

More information

Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain

Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though

More information

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) Test Midterm 1 F2013 MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function

More information

Chapter Practice Test Grosser

Chapter Practice Test Grosser Class: Date: Chapter 10-11 Practice Test Grosser Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the kinetic-molecular theory, particles of

More information

Chapter 9 Fluids. Pressure

Chapter 9 Fluids. Pressure Chapter 9 Fluids States of Matter - Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume

More information

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws Lesson Topics Covered Handouts to Print 1 Note: The States of Matter solids, liquids and gases state and the polarity of molecules the

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

3-3: The Behavior of Gases. 8 th Grade Physical Sciences

3-3: The Behavior of Gases. 8 th Grade Physical Sciences 8 th Grade Physical Sciences How Gas Behaves To understand how a gas behaves, we must first remind ourselves about volume, temperature, and pressure Volume How much space it takes up m 3 - meters cubed

More information

Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow

Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =

More information

TOPIC LEARNING OUTCOMES REMARKS HOUR

TOPIC LEARNING OUTCOMES REMARKS HOUR .0 PHYSICAL QUANTITIES AND MEASUREMENTS At the end of this topic, students should be able to: 5. Physical Quantities and Units a) List out the basic quantities and their respective SI units: length (m),

More information

Conceptual Physics Matter Liquids Gases

Conceptual Physics Matter Liquids Gases Conceptual Physics Matter Liquids Gases Lana Sheridan De Anza College July 19, 2016 Last time the atom history of our understanding of the atom solids density Overview elasticity liquids pressure buoyancy

More information