Mathematics and Science in Schools in Sub-Saharan Africa

Size: px
Start display at page:

Download "Mathematics and Science in Schools in Sub-Saharan Africa"

Transcription

1 Mathematics and Science in Schools in Sub-Saharan Africa

2 MATERIAL SCIENCE Introduction to Material Properties

3 What Material Scientists Do

4 Physical Properties Melting & Boiling Points Magnetism Color

5 Physical Properties Density

6 Lab: Density Determination

7 Lab: Density Determination Data Chart Material Density Material Density Sample (g/ml) Sample (g/ml) A H B I C J D K E L F M G N

8 Lab: Density Determination Material Density Chart Material Sample Density (g/ml) Material Sample Density (g/ml) Walnut 0.64 Phenolic 1.32 Oak 0.75 PVC 1.37 Maple 0.77 Acetyl 1.42 Polypropylene 0.90 PTFE 2.20 Polyethylene 0.92 Aluminum 2.71 Nylon 1.15 Brass 8.56 Acrylic 1.17 Copper 8.91

9 Lab: Density Determination Analysis Chart Material Material Material Material Sample Identity Sample Identity A H B I C J D K E L F M G N

10 Density Density = Mass/Volume

11 Physical Properties Viscosity Viscosity is an internal property of a fluid that offers resistance to flow.

12 Thickness

13 Viscosity Determination Calculations Viscosity = п = 2(Δp)ga^2/9v Δp = difference in density between glass marble and test liquid g = rate of free fall = 9.81 m/s^2 a = radius of sphere v = velocity

14 Viscosity Testing

15 Viscosity Testing

16 Viscosity Units International Standards Organization Viscosity Grade Numbers ISO Society of Automotive Engineers Viscosity Grade Numbers SAE

17

18 Lab: Viscosity Determination

19 Viscosity Testing

20 Lab: Viscosity Determination Data Chart Tube Time (s) Red Blue Green Grey Black

21 Lab: Viscosity Determination Calculations Tube ISO Red 10 Blue 32 Green 46 Grey Black

22 Lab: Viscosity Explorer

23 Lab: Viscosity Explorer Data Chart Olive Oil Temperature 0 C 10 C 20 C 30 C 40 C 50 C 60 C 70 C 80 C 90 C Drop Time

24

25 10W-40 10W = Oil s Viscosity at 0 F 40 = Oil s Viscosity at 212 F

26

27 Lab: Dilatant Material

28 Dilatant Material

29 Dilatant Material

30 Silly Putty

31 Automotive

32 Thixotropic

33 Thixotropic

34 Construction

35

36 Advanced Thixotropic Metallurgy

37 Military

38

39 Medicine

40

41

42 Lab: Japan Sand

43 Chemical Properties Corrosion Burning Reaction to Acids & Water

44 Thermal Properties Conductivity

45 Lab: Macho Conduction

46 Lab: Macho Conduction

47 Lab: Macho Conduction Data Chart Metal Aluminum Brass Copper Steel X Time (s)

48 Thermal Properties Conductivity Thermal Expansion

49 Thermal Expansion

50 Lab: Linear Expansion of a Metal

51 Lab: Linear Expansion of a Metal Data Chart Metal Sample Expansion after 10 minutes Aluminum Brass Steel

52 Thermal Properties Conductivity Thermal Expansion Specific Heat

53 Specific Heat 4.187J/Kg C 3,470 J/Kg C J/Kg C

54 Lab: Heat Capacity of Metals

55 Lab: Heat Capacity of Metals Data Chart Metal Sample Mass (g) Δtemp ( C) Water Mass (g) Silver Gold Copper Iron X Y Δtemp ( C)

56 Lab: Heat Capacity of Metals Calculation Table Metal Sample Heat Gained (joules) Heat Lost (joules) Specific Heat (J/g x K) Silver Gold Copper Iron X Y

57 Lab: Heat Capacity of Metals Calculations Heat Gained by Water = Mass X Δtemp X 4.18 Heat Energy Gained by Water = Heat Energy Lost by Metal Specific Heat of Metal = Heat Energy Gained Mass X Δtemp

58 Mechanical Properties Hardness Workability

59 Mechanical Properties Strength Elasticity

60 Elasticity is not Flexibility

61 Elasticity is not Stretch-ability

62 Elasticity A material s ability to return to its original shape after being deformed.

63 Vocabulary

64

65 Deformation Change in shape of an object.

66 Strain

67 Stress Applied Force / Original Area

68 Tension & Compression

69 Shear When 2 forces, acting like a pair of shears, cut a body between them.

70 Shear Testing

71 Hydrostatic Stress unilaterally applied to an object.

72 Material Testing Device Extensometer

73 Extensometer An extensometer measures the elongation of a material while applying tension.

74 Instrom

75 Instrom

76

77 Stress Strain Curve

78 Elastic Limit

79

80 Young s Modulus

81 Composite Material Testing Fiberglass, Kevlar & Carbon Fiber

82

83 Kevlar

84 Fiberglass

85 Carbon Fiber

86 Lab: Youngs Modulus of a Spring

87 Lab: Youngs Modulus of a Spring Data Chart Stress Strain

88 Stress Strain Curve

89 Ultimate Stress

90 Lab: Ultimate Stress

91 Lab: Ultimate Stress Data Chart Stress Strain

92 Tensile Strength Tensile strength is defined as the highest stress a material can withstand before failure occurs.

93

94 Stress Strain Curve Interpretation Ceramics Metals Stress Polymers Strain Demo

95 Ductility Ductility is measured by the amount of elongation that can be applied to a material before failure occurs.

96

97 Toughness Toughness is defined as the total area under the stress strain curve. It indicates the amount of energy absorbed before failure.

98

99 Which Material Is Stronger? Which Material Is Tougher? Which Material Is More Ductile?

100 Stress Strain Curve Interpretation Construction Materials Stainless Steel

101 Stress Strain Curve Interpretation Anisotropic Behavior of Bone

102 Creep The deformation that occurs at elevated temperature under constant load. Demo

103 Testing Energy Absorption

104 Coefficient of Restitution

105 Coefficient of Restitution cm 20cm 30cm 40cm 50cm bounce

106 Lab: Core of Restitution

107 Lab: Core of Restitution Ball Drop Height Rebound Height COR Soccer Golf Tennis Basketball Racket Field Hockey Ping Pong Wiffle Softball Baseball Happy Ball Sad Ball Data Chart

108 Friction Force that opposes motion.

109 Resistance caused by 2 objects in contact with each other.

110 Static Friction Friction between 2 nonmoving objects.

111 Coefficient of Static Friction

112 Coefficient Determination µ static = tan (angle of tilt)

113 Lab: Static Friction

114 Lab: Static Friction Data Chart Type of Footwear Angle of Elevation Coefficient of Static Friction

115 Sliding Friction Kinetic Friction

116 Sliding Friction Friction between moving object(s).

117 Coefficient of Kinetic Friction

118

119 Lab: Sliding Friction

120 Lab: Sliding Friction Data Chart Surface F(gravity) F(friction) Coefficient of Table Top (N) (N) Sliding Friction Wood Sandpaper Cardboard Plastic

121 Friction Tester

122 Chemical Properties Physical Properties Burning Reaction to Acids/Water Corrosion/Oxidati onreduction Color, Density, Size, Magnetism, Melting and Boiling points, Crystal Structure, Luster, Viscosity Properties of Materials Conductivity, Specific Heat, Thermal Expansion Workability, Brittleness, Hardness, Elasticity, Plasticity, Toughness, Strength Thermal Properties Mechanical Properties

123 Material Science Bowling

124 Object of the Game In this activity, you will be bowling with words.

125 Each of the ten pins shown is a letter. I F I C A R T A L I

126 I F I C A R T A L I If You Make a 10 Letter Word A R T I F I C I A L

127 You have a STRIKE!

128 I F I C A R T A L I If You Make 2 Words Using All 10 Letters..

129 You may use SCIENCE & NONSCIENCE words!

130 Frame 1 S E I T R E P O R P

131 Frame 1 P R O P E R T I E S

132 Frame 2 N O I T N O C D U N

133 Frame 2 C O N D U C T I O N

134 Frame 3 C Y I T S A L T I E

135 Frame 3 E L A S T I C I T Y

136 Frame 4 B O I N U M C S O T

137 Frame 4 C O M B U S T I O N

138 Frame 5 S O I T R A N O B P

139 Frame 5 A B S O R P T I O N

140 Frame 6 M I E A T V U O T O

141 Frame 6 A U T O M O T I V E

142 Frame 7 S A K T B E A L L B

143 Frame 7 B A S K E T B A L L

144 Frame 8 C Y I T N L N D A A

145 Frame 8 D I L A N T A N C Y

146 Frame 9 R C I T L E E A L C

147 Frame 9 E L E C T R I C A L

148 Frame 10 H E C M I N A A C L

149 Frame 10 M E C H A N I C A L

150 Frame 10 O R I T S U L A N S

151 Frame 10 I N S U L A T O R S

152 Frame 10 M E A T R Y G L L U

153 Frame 10 M E T A L L U R G Y

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

More information

Objectives: After completion of this module, you should be able to:

Objectives: After completion of this module, you should be able to: Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

How materials work. Compression Tension Bending Torsion

How materials work. Compression Tension Bending Torsion Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons (-) B. Neutral charge, i.e., # electrons = #

More information

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

CPO Science Foundations of Physics. Unit 8, Chapter 27

CPO Science Foundations of Physics. Unit 8, Chapter 27 CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition

More information

Johns Hopkins University What is Engineering? M. Karweit MATERIALS

Johns Hopkins University What is Engineering? M. Karweit MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: MATERIALS A. Composition

More information

Exploration Phase. What can we use to store mechanical energy? Lab Activity

Exploration Phase. What can we use to store mechanical energy? Lab Activity Solids and Elastic potential Energy Exploration Phase What can we use to store mechanical energy? Lab Activity Is there a limit to how much deformation force a solid object can take? Bend a Popsicle stick

More information

Further Applications of Newton s Laws - Friction Static and Kinetic Friction

Further Applications of Newton s Laws - Friction Static and Kinetic Friction urther pplications of Newton s Laws - riction Static and Kinetic riction The normal force is related to friction. When two surfaces slid over one another, they experience a force do to microscopic contact

More information

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M.

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Elasticity A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Lepore Elasticity Photo Vol. 10 PhotoDisk/Getty BUNGEE jumping utilizes

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

UNIT I SIMPLE STRESSES AND STRAINS

UNIT I SIMPLE STRESSES AND STRAINS Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

More information

Theory at a Glance (for IES, GATE, PSU)

Theory at a Glance (for IES, GATE, PSU) 1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

More information

Sean Carey Tafe No Lab Report: Hounsfield Tension Test

Sean Carey Tafe No Lab Report: Hounsfield Tension Test Sean Carey Tafe No. 366851615 Lab Report: Hounsfield Tension Test August 2012 The Hounsfield Tester The Hounsfield Tester can do a variety of tests on a small test-piece. It is mostly used for tensile

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. Energy is neither created

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

Physical Properties of Matter

Physical Properties of Matter Physical Properties of Matter SC.8.P.8.4 Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured; for example, density, thermal or electrical

More information

Chapter 26 Elastic Properties of Materials

Chapter 26 Elastic Properties of Materials Chapter 26 Elastic Properties of Materials 26.1 Introduction... 1 26.2 Stress and Strain in Tension and Compression... 2 26.3 Shear Stress and Strain... 4 Example 26.1: Stretched wire... 5 26.4 Elastic

More information

PHYSICS 102N Spring Week 2 Solids and Liquids

PHYSICS 102N Spring Week 2 Solids and Liquids PHYSICS 102N Spring 2009 Week 2 Solids and Liquids Condensed Matter Common feature: Atoms/molecules are tightly packed together (equilibrium distance) Any closer: Repulsion due to electromagnetic interaction

More information

Quiz 1. Introduction to Polymers

Quiz 1. Introduction to Polymers 100406 Quiz 1. Introduction to Polymers 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric polystyrene is similar to naphthalene (moth

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

Mechanical Design in Optical Engineering. For a prismatic bar of length L in tension by axial forces P we have determined:

Mechanical Design in Optical Engineering. For a prismatic bar of length L in tension by axial forces P we have determined: Deformation of Axial Members For a prismatic bar of length L in tension by axial forces P we have determined: σ = P A δ ε = L It is important to recall that the load P must act on the centroid of the cross

More information

, to obtain a way to calculate stress from the energy function U(r).

, to obtain a way to calculate stress from the energy function U(r). BIOEN 36 014 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,

More information

Mechanical Properties

Mechanical Properties Mechanical Properties Elastic deformation Plastic deformation Fracture I. Elastic Deformation S s u s y e u e T I II III e For a typical ductile metal: I. Elastic deformation II. Stable plastic deformation

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. 2. State the first law

More information

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Pharmaceutical Compounding Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

More information

Ch 100: Fundamentals for Chemistry

Ch 100: Fundamentals for Chemistry Ch 100: Fundamentals for Chemistry Chapter 4: Properties of Matter Lecture Notes Physical & Chemical Properties Physical Properties are the characteristics of matter that can be changed without changing

More information

MECHANICAL AND RHEOLOGICAL PROPERTIES

MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL PROPERTIES OF SOLIDS Extension Shear δ τ xy l 0 l l 0 θ σ Hooke's law σ = Eε Hooke's law τ = G γ xy xy MECHANICAL AND RHEOLOGICAL PROPERTIES RHEOLOGICAL

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

More information

Lecture 8 Equilibrium and Elasticity

Lecture 8 Equilibrium and Elasticity Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium

More information

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions Downloaded from Class XI Physics Ch. 9: Mechanical Properties of solids NCERT Solutions Page 242 Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount

More information

Physical Properties of Matter

Physical Properties of Matter Physical Properties of Matter SC.8.P.8.4 Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured; for example, density, thermal or electrical

More information

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium:

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium: About Midterm Exam 3 When and where Thurs April 21 th, 5:45-7:00 pm Rooms: Same as Exam I and II, See course webpage. Your TA will give a brief review during the discussion session. Coverage: Chapts 9

More information

Static Equilibrium; Elasticity & Fracture

Static Equilibrium; Elasticity & Fracture Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with

More information

Chapter 13 ELASTIC PROPERTIES OF MATERIALS

Chapter 13 ELASTIC PROPERTIES OF MATERIALS Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Quiz 1 Introduction to Polymers

Quiz 1 Introduction to Polymers 090109 Quiz 1 Introduction to Polymers In class we discussed the definition of a polymer first by comparing polymers with metals and ceramics and then by noting certain properties of polymers that distinguish

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes

More information

Lecture 8 Viscoelasticity and Deformation

Lecture 8 Viscoelasticity and Deformation HW#5 Due 2/13 (Friday) Lab #1 Due 2/18 (Next Wednesday) For Friday Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, μ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force

More information

Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

More information

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Student Name Student ID Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Approximate your answer to those given for each question. Use this table to fill in your answer

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2]

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2] 1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress strain Fig. 7.1 [2] (b) Circle from the list below a material that is ductile. jelly c amic gl

More information

Question 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of cross-section of the steel wire, A 1 = m 2

Question 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of cross-section of the steel wire, A 1 = m 2 Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

More information

OCR Physics Specification A - H156/H556

OCR Physics Specification A - H156/H556 OCR Physics Specification A - H156/H556 Module 3: Forces and Motion You should be able to demonstrate and show your understanding of: 3.1 Motion Displacement, instantaneous speed, average speed, velocity

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

PHYS 101 Lecture 34 - Physical properties of matter 34-1

PHYS 101 Lecture 34 - Physical properties of matter 34-1 PHYS 101 Lecture 34 - Physical properties of matter 34-1 Lecture 34 - Physical properties of matter What s important: thermal expansion elastic moduli Demonstrations: heated wire; ball and ring; rulers

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

Revision Guide for Chapter 4

Revision Guide for Chapter 4 Revision Guide for Chapter 4 Contents Student s Checklist Revision Notes Materials: properties and uses... 5 Materials selection charts... 5 Refraction... 8 Total internal reflection... 9 Conductors and

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

More information

The ability of a substance to be rolled. into wire The physical form of matter (solid, liquid, or gas)

The ability of a substance to be rolled. into wire The physical form of matter (solid, liquid, or gas) CHAPTER 2 2 Physical Properties SECTION The Properties of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What are physical properties of matter? What

More information

Fluids: How thick are liquids?

Fluids: How thick are liquids? Fluids: How thick are liquids? Student Advanced Version Introduction: Fluids are substances that can flow under an applied force. What are some examples of fluids? We often think of fluids as substances

More information

Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

More information

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

More information

Solid Mechanics Homework Answers

Solid Mechanics Homework Answers Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

More information

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Objective: The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Introduction: Mechanical testing plays an important role

More information

Statics Principles. The laws of motion describe the interaction of forces acting on a body. Newton s First Law of Motion (law of inertia):

Statics Principles. The laws of motion describe the interaction of forces acting on a body. Newton s First Law of Motion (law of inertia): Unit 2 Review Statics Statics Principles The laws of motion describe the interaction of forces acting on a body Newton s First Law of Motion (law of inertia): An object in a state of rest or uniform motion

More information

Physics 202 Exam 1. May 1, 2013

Physics 202 Exam 1. May 1, 2013 Name: Physics 202 Exam 1 May 1, 2013 Word Problems Show all your work and circle your final answer. (Ten points each.) 1. If 2.4 m 3 of a gas initially at STP is compressed to 1.6 m 3 and its temperature

More information

CHAPTER 1 ENGINEERING MECHANICS I

CHAPTER 1 ENGINEERING MECHANICS I CHAPTER 1 ENGINEERING MECHANICS I 1.1 Verification of Lame s Theorem: If three concurrent forces are in equilibrium, Lame s theorem states that their magnitudes are proportional to the sine of the angle

More information

Thermal properties of Engineering Materials

Thermal properties of Engineering Materials Thermal properties of Engineering Materials Engineering materials are important in everyday life because of their versatile structural properties. Other than these properties, they do play an important

More information

20. Rheology & Linear Elasticity

20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava

More information

Quiz 1 Introduction to Polymers (Please answer each question even if you guess)

Quiz 1 Introduction to Polymers (Please answer each question even if you guess) 080407 Quiz 1 Introduction to Polymers (Please answer each question even if you guess) This week we explored the definition of a polymer in terms of properties. 1) The flow of polymer melts and concentrated

More information

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural

More information

Physical Property. Critical Thinking

Physical Property. Critical Thinking CHAPTER 1 2 Physical Properties SECTION The Properties of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What are physical properties of matter? What

More information

Stress, Strain, and Viscosity. San Andreas Fault Palmdale

Stress, Strain, and Viscosity. San Andreas Fault Palmdale Stress, Strain, and Viscosity San Andreas Fault Palmdale Solids and Liquids Solid Behavior: Liquid Behavior: - elastic - fluid - rebound - no rebound - retain original shape - shape changes - small deformations

More information

Name Date Class CHAPTER ASSESSMENT. a. Refers to how close a series of measurements are to one another

Name Date Class CHAPTER ASSESSMENT. a. Refers to how close a series of measurements are to one another Data Analysis Reviewing Vocabulary Match each term in Column A with its definition in Column B. d f j h e b i g c a Column A 1. base unit 2. derived unit 3. graph 4. scientific notation 5. accuracy 6.

More information

Coefficients of Restitution

Coefficients of Restitution Coefficients of Restitution Introduction Rubber balls The coefficient of restitution for a two-body collision is defined as the ratio of relative velocities after impact to relative velocities on approach.

More information

, causing the length to increase to l 1 R U M. L Q P l 2 l 1

, causing the length to increase to l 1 R U M. L Q P l 2 l 1 1 1 Which of the following correctly defines the terms stress, strain and oung modulus? stress strain oung modulus (force) x (area) (extension) x (original length) (stress) / (strain) (force) x (area)

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

More information

Title of Lesson: Can All Things Stretch? RET Project Connection: Failure Modes of Lightweight Sandwich Structures

Title of Lesson: Can All Things Stretch? RET Project Connection: Failure Modes of Lightweight Sandwich Structures Title of Lesson: Can All Things Stretch? RET Project Connection: Failure Modes of Lightweight Sandwich Structures RET Teacher: Michael Wall School: Andover High School Town/District: Andover Public Schools

More information

13 Solid materials Exam practice questions

13 Solid materials Exam practice questions Pages 206-209 Exam practice questions 1 a) The toughest material has the largest area beneath the curve the answer is C. b) The strongest material has the greatest breaking stress the answer is B. c) A

More information

Name /100. 1) Matter is defined as anything that is visible to the human eye. 1) 2) An amorphous solid has long range, repeating order.

Name /100. 1) Matter is defined as anything that is visible to the human eye. 1) 2) An amorphous solid has long range, repeating order. Ch 3 Matter and Energy Study Sheet Accelerated Chemistry Name /100 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Matter is defined as anything that is visible to

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed

Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed Thermal Methods of Analysis Theory, General Techniques and Applications Prof. Tarek A. Fayed 1- General introduction and theory: Thermal analysis (TA) is a group of physical techniques in which the chemical

More information

Efficiency = power out x 100% power in

Efficiency = power out x 100% power in Work, Energy and Power Review Package 1) Work: change in energy. Measured in Joules, J. W = Fd W = ΔE Work is scalar, but can be negative. To remember this, ask yourself either: Is the object is losing

More information

Which expression gives the elastic energy stored in the stretched wire?

Which expression gives the elastic energy stored in the stretched wire? 1 wire of length L and cross-sectional area is stretched a distance e by a tensile force. The Young modulus of the material of the wire is E. Which expression gives the elastic energy stored in the stretched

More information

IMPACT (Section 15.4)

IMPACT (Section 15.4) IMPACT (Section 15.4) Today s Objectives: Students will be able to: a) Understand and analyze the mechanics of impact. b) Analyze the motion of bodies undergoing a collision, in both central and oblique

More information