Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation

Size: px
Start display at page:

Download "Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation"

Transcription

1 Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation Bo Li Math Dept & CTBP, UCSD Li-Tien Cheng (Math, UCSD) Zhongming Wang (Math & Biochem, UCSD) Yang Xie (MAE, UCSD) Joachim Dzubiella (Phys., Tech. Univ. Munich) Jianwei Che (Genomics Inst. of Novartis Res. Found.) J. Andrew McCammon (Biochem & CTBP, UCSD) Supported by NSF, DOE, DFG, Sloan, NIH, HHMI, CTBP 1

2 References 1. J. Dzubiella, J.M.J. Swanson, & J.A. McCammon, Phys. Rev. Lett., 96, , J. Dzubiella, J.M.J. Swanson, & J.A. McCammon, J. Chem. Phys., 124, , L.-T. Cheng, J. Dzubiella, J.A. McCammon, & B. Li, J. Chem. Phys., 127, , J. Che, J.Dzubiella, B. Li, & J.A. McCammon, J. Phys. Chem. B, 112, 3058, B. Li, SIAM J. Math. Anal., 2008 (revision submitted). 6. L.-T. Cheng, Y. Xie, J. Dzubiella, J.A. McCammon, J. Che, & B. Li, J. Chem. Theory Comput., 2008 (submitted). 2

3 OUTLINE 1. Introduction 2. Varitaional implicit solvent models 3. The level-set method 4. Results of level-set calculations 5. Conclusions and outlook 3

4 1. Introduction 4

5 Molecules Bond, angle, torsion Polarity, electrostatics Complex structure Bohr s model Ball and stick model ( Like-charge attraction of (-) actin protein rods mediated by (+) barium ions. Wong et al., UIUC. 5

6 Biomolecules (proteins, nucleic acids, lipids,...) U. Conn Kyushu Inst. of Tech., Japan UCSB UCSB 6

7 solvent Solvation solute Attraction and association of molecules of a solvent (e.g., water) with molecules or ions of a solute Molecular surface: geometry Solvent and solute: polar and nonpolar determined by dielectrics (water 80, ethanol 24, hexane 2) Stable solvent-solute interaction: small and large scales, hydrophobicity, etc. Energy landscape structure, function, dynamics, etc. 7

8 Implicit vs. explicit Explicit solvent: treat solvent atoms individually (e.g. MD) First principle Accurate Small systems Statistics solvent solute Implicit solvent: coarse-grained solvent Approximation Efficient Large systems Thermodynamics solute solvent 8

9 This work Solvation free energy and potential of mean forces Molecular structures and interactions Implicit solvent and molecular mechanics Numerical methods the level-set method D. Cooper, U. Virginia Water inside a protein. Imai et al., J. Am. Chem. Soc. 9

10 2. Variational Implicit Solvent Models 10

11 Molecular surface approach molecular surface: SAS, SES SAS = level-set of distance function surface area + Poisson-Boltzmann free energy 11

12 Hydrophobic effect 12

13 A variational implicit solvent model (Dzubiella, Swanson, & McCammon, 2006) solvent solute Experimentally observed solute-solvent interfaces are those surfaces that minimize a solvation free energy functional. The free energy functional should couple together all kinds of different interactions (polar, nonpolar, dispersive, etc.). 13

14 Γ x q i i solute Ω solvent Ω Γ x i q i ρ q j j ρ w solute region solute-solvent interface (dielectric boundary) center of the i-th solute atom fixed point charge at the i-th solute particle bulk density of the j-th ion species bulk charge of the j-th ion species solvent density 14

15 A free energy functional G[ Γ] = G [ Γ] + G [ Γ] + G [ Γ] geom vdw elec Γ x q i i solute Ω solvent G geom [ Γ] Pvol(Ω): P= = γds : Γ γ = Pvol( Ω) + γds Γ Creation of a cavity in the solvent pressure difference Molecule rearrangement near the interface surface energy density ( 1+ τh ) γ ( τh ) γ = γ 1 / 0 0 (Tolman 1949) a fitting prarameter H = mean curvature 15

16 Geometrical part of the free energy (K: Gaussian curvature) Pvol ( 0 Ω ) + γ area( Γ) + c Hadwiger s Theorem H Γ HdS ( ) + c KdS Let C = the set of all convex bodies, M = the set of finite union of convex bodies. If F : M R is rotational and translational invariant, additive: F( U V ) = F( U ) + F( V ) F( U V ) U, V M, then conditionally continuous: U, U C, U U F( U ) F( U ), j j F( U) avolu ( ) + barea( U) + c HdS+ d KdS U M. = j U K Γ U 16

17 Ω G vdw[ Γ] = ρw U( x x c i ) dv i Non-electrostatic, van der Waals type, solute-solvent interaction governed by a pair-wise interaction potential ρ w = U = U ( r) = 4ε [( σ) ( σ ) 6 ] LJ 0 U LJ solvent density r 12 r U Lennard-Jones potential O σ r ε 0 17

18 G elec [ Γ] = Electrostatic free energy ψ = ψ = The Poisson-Boltzmann equation ( ε ψ ) + 4πχ c ρ q exp( q ψ / k T ) = 4π q δ ( x x ) χ ref Ω c ε = 1 2 electrostatic potential = i + k B reference electrostatic potential Ω j j characteristic function of dielectrics = j ( ε ψ ) = 4π q δ( x x ) solute q T i ( ψ ψ j ρ ref j Ω ref c )( x ( q jψ / kbt e 1)dx { i ) ε ε i Ω i solute solvent ε ( x) 8π j ψ i B 2 Ω c dx in solute region in solvent region i i Ω i c Ω 18

19 Remarks { Pvol( Ω) + γ area( )} min 0 Γ The Laplace-Young relation: P( = P P ) = 2γ H l s 0 G elec min U LJ ( x x1 ) dv Γ Ω c Ω = B( x 1, σ ) Extremize ε( x) q x dx k T ( q j kbt [ Γ] = 1 2 / 2 i( ψ ψ ref )( i) ψ + B ρj e ψ 1)dx c Ω 8π Ω i U LJ ε 0 The Poisson-Boltzmann equation ( ε ψ ) + 4πχ c ρ q exp( q ψ / k T ) = 4π q δ ( x x ) Ω j j j j O B σ j i i i r 19

20 From variational implicit solvent models to SAS/SES types of implicit solvent models { } area ( Γ) + U ( x x ) dv Ω c min γ 0 1 Molecular surface (van der Waals, SAS, SES, etc.) Potentials: hard sphere, square well, etc. Accuracy vs. efficiency 20

21 21 Mechanical energy of solute atoms ), ( ), ( ],..., [,, 1 j i j i bond j i j i LJ N x x W x x W x x V r r r r r r = + ),,, ( ),, (,,,,, l k j l k j i i torsion k j i k j i bend x x x x W x x x W r r r r r r + + An effective total Hamiltonian ],,..., ; [ ],..., [ ],..., ; [ N N N x x G x x V x x H r r r r r r Γ + = Γ ],..., ; [ min 1 N x x H r r Γ Equilibrium conformations

22 3. The Level-Set Method 22

23 The level-set method Interface motion V = n Vn ( x, t) for x Γ(t) Level-set representation Γ( t) = { x Ω : ϕ( x, t) = The level-set equation n x Γ(t) z = ϕ( x, t) 0} z = 0 Γ (t) ϕt + Vn ϕ = 0 [ ϕ( x( t), t) = 0 ϕt + ϕ x& = 0 ] ϕ ϕ x & = x& ϕ = ( n x& ) ϕ = ( ) ϕ V n ϕ 23

24 Examples of normal velocity Geometrically based motion Motion by mean curvature V n = H Motion by the surface Laplacian of mean curvature u t Δu =0 in Ω Ω+ u = H on Γ u n V n V = Δ H s External field = 0 = n [ u ] n on on Γ Ω Γ n n Ω Ω + Ω 24

25 Level-set formulas of geometrical quantities Normal n = ϕ ϕ Mean curvature 1 H = n 2 Gaussian curvature K = n adj ( He( ϕ )) n 25

26 Topological changes Merging Break-up Disappearing Nucleation? Accuracy issues Interface approximation Conservation of mass Rigorous analysis 26

27 Application to solvation of nonpolar molecules First variation δg[ Γ] = P + 2γ 0[ H ( x) τk ( x)] ρw U ( x xi i δ dv =1 Ω ds = 2H δ Γ ) δ HdS = K Γ Normal velocity of the solute-solvent interface V n = δg[γ ] Relaxation r of solute atoms dxi r r = r x H[ Γ; x1, K, xn ], i = 1,..., N, i dt 27

28 Algorithm Step 1. Input parameters and initialize level-set function Step 2. Calculate the normal and curvatures Step 3. Calculate and extend the normal velocity Step 4. Solve the level-set equation Step 5. Reinitialize the level-set function Step 6. Solve ODEs for the motion of solute particles t := t + Δt Step 7. Set and go to Step 2 28

29 New level-set techniques Regularization of degenerated geometrically based motion of interface. Calculation of the Lennard-Jones potential using the largest ball in the solute region centered at a fixed solute particle. A two grid method for calculating the interaction energy with a Lennard-Jones potential. 29

30 4. Results of Level-Set Calculations 30

31 Numerical calculations with fixed solute atoms Units: Energy = k B T, Length = Example 1. Two xenon atoms P = 0, γ 0 = 0.174, δ = 1 ρ = 0.033, σ = 3.57, ε 0 = w Example 2. Two paraffin plates P = 0, γ 0 = 0.174, δ = 0. 9 ρ = 0.033, σ = 3.538, ε 0 = w Example 3. Two alkane helical chains P = 0, γ 0 = 0.176, δ = 1. 3 ρ = 0.033, σ = 3.538, ε 0 = w Example 4. A C60 molecule buckyball Example 5. A large molecule of about 1,000 atoms. A o 31

32 Example 1. Two xenon atoms 32

33 2 1 w(d)/k B T W(d)/k B T d/ Å Comparison of PMF by the level-set (circles) and by molecular dynamics (solid line) calculations. 33

34 34

35 Example 2. Two paraffin plates 35

36 Comparison of the level-set and molecular dynamics calculations (Koishi et al., 2004 and 2005) for the two paraffin plates. 36

37 Example 3. Two helical alkane chains 37

38 A Richards-Lee type surface Level-set calculation 38

39 Mean curvature field 39

40 Example 4. A C60 molecule the buckyball C60.mpg 40

41 Mean curvature field 41

42 Example 5. A biomolecule of 800 atoms 42

43 Numerical calculations with moving solute atoms (see also movies) 43

44 A benzene molecule 44

45 Free Energy Computational Step 45

46 An ethane molecule 46

47 Free Energy Computational Step 47

48 Tolman length 48 Free energy (surface energy + solute water interaction)

49 Hydrophobic pocket 49

50 12 10 water density profile LS τ=0.8: x=r, y=0, φ=0 LS τ=1.0: x=r, y=0, φ=0 LS τ=1.2: x=r, y=0, φ=0 LS τ=1.4: x=r, y=0, φ=0 MD ρ=0.25 MD ρ=0.5 MD ρ= r z 50

51 5. Conclusions and Outlook 51

52 Accomplishments Examined and improved a class of variational implicit solvent models, coupled with molecular mechanics Developed a level-set method for solvation of nonpolar molecules. Level-set calculations captured dewetting, local minima, etc., and agree well with MD simulations. Derived the variation of electrostatic free energy with respect to the location change of the solutesolvent interface. 52

53 Current and future work Revisit the surface tension and Tolman correction Coupling the Poisson-Boltzmann calculations with the level-set relaxation Improvement of generalized Born models Dynamics Multiscale modeling and simulation 53

Level-Set Variational Solvation Coupling Solute Molecular Mechanics with Continuum Solvent

Level-Set Variational Solvation Coupling Solute Molecular Mechanics with Continuum Solvent Level-Set Variational Solvation Coupling Solute Molecular Mechanics with Continuum Solvent Bo Li Department of Mathematics and Center for Theoretical Biological Physics (CTBP) University of California,

More information

Variational Implicit Solvation of Biomolecules: From Theory to Numerical Computations

Variational Implicit Solvation of Biomolecules: From Theory to Numerical Computations Variational Implicit Solvation of Biomolecules: From Theory to Numerical Computations Bo Li Department of Mathematics and Center for Theoretical Biological Physics UC San Diego CECAM Workshop: New Perspectives

More information

Level-Set Variational Implicit-Solvent Modeling of Biomolecular Solvation

Level-Set Variational Implicit-Solvent Modeling of Biomolecular Solvation Level-Set Variational Implicit-Solvent Modeling of Biomolecular Solvation Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego The 7 th International Congress of Chinese

More information

Variational Implicit Solvation: Empowering Mathematics and Computation to Understand Biological Building Blocks

Variational Implicit Solvation: Empowering Mathematics and Computation to Understand Biological Building Blocks Variational Implicit Solvation: Empowering Mathematics and Computation to Understand Biological Building Blocks Bo Li Department of Mathematics and NSF Center for Theoretical Biological Physics UC San

More information

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Bo Li Dept. of Math & NSF Center for Theoretical Biological Physics UC San Diego, USA Collaborators: Li-Tien Cheng

More information

Dielectric Boundary in Biomolecular Solvation Bo Li Department of Mathematics and Center for Theoretical Biological Physics UC San Diego

Dielectric Boundary in Biomolecular Solvation Bo Li Department of Mathematics and Center for Theoretical Biological Physics UC San Diego Dielectric Boundary in Biomolecular Solvation Bo Li Department of Mathematics and Center for Theoretical Biological Physics UC San Diego International Conference on Free Boundary Problems Newton Institute,

More information

Coupling the Level-Set Method with Molecular Mechanics for Variational Implicit Solvation of Nonpolar Molecules

Coupling the Level-Set Method with Molecular Mechanics for Variational Implicit Solvation of Nonpolar Molecules Coupling the Level-Set Method with Molecular Mechanics for Variational Implicit Solvation of Nonpolar Molecules Li-Tien Cheng, 1, Yang Xie, 2, Joachim Dzubiella, 3, J Andrew McCammon, 4, Jianwei Che, 5,

More information

Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation

Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation Zhongming Wang,, Jianwei Che, 2, Li-Tien Cheng, 3, Joachim Dzubiella, 4, Bo Li, 5, 6, and J. Andrew

More information

Research Statement. Shenggao Zhou. November 3, 2014

Research Statement. Shenggao Zhou. November 3, 2014 Shenggao Zhou November 3, My research focuses on: () Scientific computing and numerical analysis (numerical PDEs, numerical optimization, computational fluid dynamics, and level-set method for interface

More information

Application of the level-set method to the implicit solvation of nonpolar molecules

Application of the level-set method to the implicit solvation of nonpolar molecules Application of the level-set method to the implicit solvation of nonpolar molecules Li-Tien Cheng, 1, Joachim Dzubiella, 2, 3, 4, J. Andrew McCammon, 3, 5, and Bo Li 1, 1 Department of Mathematics, University

More information

Continuum Electrostatics for Ionic Solutions with Nonuniform Ionic Sizes

Continuum Electrostatics for Ionic Solutions with Nonuniform Ionic Sizes Continuum Electrostatics for Ionic Solutions with Nonuniform Ionic Sizes Bo Li Department of Mathematics and Center for Theoretical Biological Physics (CTBP) University of California, San Diego, USA Supported

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Li-Tien Cheng Bo Li Zhongming Wang August 6, Abstract A level-set method is developed for the numerical minimization

More information

Numerical Methods for Solvent Stokes Flow and Solute-Solvent Interfacial Dynamics of Charged Molecules

Numerical Methods for Solvent Stokes Flow and Solute-Solvent Interfacial Dynamics of Charged Molecules Numerical Methods for Solvent Stokes Flow and Solute-Solvent Interfacial Dynamics of Charged Molecules Hui Sun Shenggao Zhou Li-Tien Cheng Bo Li July 30, 2018 Abstract We develop a computational model

More information

Motion of a Cylindrical Dielectric Boundary

Motion of a Cylindrical Dielectric Boundary Motion of a Cylindrical Dielectric Boundary Bo Li Department of Mathematics and NSF Center for Theoretical Biological Physics UC San Diego Collaborators Li-Tien Cheng, Michael White, and Shenggao Zhou

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

Lecture 11: Potential Energy Functions

Lecture 11: Potential Energy Functions Lecture 11: Potential Energy Functions Dr. Ronald M. Levy ronlevy@temple.edu Originally contributed by Lauren Wickstrom (2011) Microscopic/Macroscopic Connection The connection between microscopic interactions

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract In this work, a simplified Lennard-Jones (LJ) sphere model is used to simulate the aggregation,

More information

Sunyia Hussain 06/15/2012 ChE210D final project. Hydration Dynamics at a Hydrophobic Surface. Abstract:

Sunyia Hussain 06/15/2012 ChE210D final project. Hydration Dynamics at a Hydrophobic Surface. Abstract: Hydration Dynamics at a Hydrophobic Surface Sunyia Hussain 6/15/212 ChE21D final project Abstract: Water is the universal solvent of life, crucial to the function of all biomolecules. Proteins, membranes,

More information

arxiv: v1 [math.na] 5 Dec 2017

arxiv: v1 [math.na] 5 Dec 2017 A New Phase-Field Approach to Variational Implicit Solvation of Charged Molecules with the Coulomb-Field Approximation Yanxiang Zhao Department of Mathematics, the George Washington University, 81 22nd

More information

6 Hydrophobic interactions

6 Hydrophobic interactions The Physics and Chemistry of Water 6 Hydrophobic interactions A non-polar molecule in water disrupts the H- bond structure by forcing some water molecules to give up their hydrogen bonds. As a result,

More information

BIOC : Homework 1 Due 10/10

BIOC : Homework 1 Due 10/10 Contact information: Name: Student # BIOC530 2012: Homework 1 Due 10/10 Department Email address The following problems are based on David Baker s lectures of forces and protein folding. When numerical

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

Free energy, electrostatics, and the hydrophobic effect

Free energy, electrostatics, and the hydrophobic effect Protein Physics 2016 Lecture 3, January 26 Free energy, electrostatics, and the hydrophobic effect Magnus Andersson magnus.andersson@scilifelab.se Theoretical & Computational Biophysics Recap Protein structure

More information

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions Van der Waals Interactions

More information

Dewetting-controlled binding of ligands to hydrophobic pockets. Abstract

Dewetting-controlled binding of ligands to hydrophobic pockets. Abstract Dewetting-controlled binding of ligands to hydrophobic pockets P. Setny, 1, 2 Z. Wang, 1, 3 L.-T. Cheng, 3 B. Li, 3, 4 J. A. McCammon, 1, 4, 5 and J. Dzubiella 6 1 Department of Chemistry and Biochemistry,

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions: Van der Waals Interactions

More information

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea The Scaled Effective Solvent Method for Predicting the Equilibrium Ensemble of Structures with Analysis of Thermodynamic Properties of Amorphous Polyethylene Glycol-Water Mixtures Hyeyoung Shin a, Tod

More information

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. 25, 2002 Molecular Dynamics: Introduction At physiological conditions, the

More information

3. Solutions W = N!/(N A!N B!) (3.1) Using Stirling s approximation ln(n!) = NlnN N: ΔS mix = k (N A lnn + N B lnn N A lnn A N B lnn B ) (3.

3. Solutions W = N!/(N A!N B!) (3.1) Using Stirling s approximation ln(n!) = NlnN N: ΔS mix = k (N A lnn + N B lnn N A lnn A N B lnn B ) (3. 3. Solutions Many biological processes occur between molecules in aqueous solution. In addition, many protein and nucleic acid molecules adopt three-dimensional structure ( fold ) in aqueous solution.

More information

Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects

Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects Statistical Thermodynamics Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects Dr. Ronald M. Levy ronlevy@temple.edu Bare Molecular Mechanics Atomistic Force Fields: torsion

More information

Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach

Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach Li-Tien Cheng, 1, Zhongming Wang, 2, 1, 2, 3, Piotr Setny, Joachim Dzubiella, 4, Bo

More information

Water models in classical simulations

Water models in classical simulations Water models in classical simulations Maria Fyta Institut für Computerphysik, Universität Stuttgart Stuttgart, Germany Water transparent, odorless, tasteless and ubiquitous really simple: two H atoms attached

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction Biophysics II Key points to be covered By A/Prof. Xiang Yang Liu Biophysics & Micro/nanostructures Lab Department of Physics, NUS 1. van der Waals Interaction 2. Hydrogen bond 3. Hydrophilic vs hydrophobic

More information

Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach

Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach Li-Tien Cheng, 1, Zhongming Wang, 2, 1, 2, 3, Piotr Setny, Joachim Dzubiella, 4, Bo

More information

The Poisson Boltzmann Theory and Variational Implicit Solvation of Biomolecules

The Poisson Boltzmann Theory and Variational Implicit Solvation of Biomolecules The Poisson Boltzmann Theory and Variational Implicit Solvation of Biomolecules Bo Li Department of Mathematics and NSF Center for Theoretical Biological Physics (CTBP) UC San Diego FUNDING: NIH, NSF,

More information

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Jakob P. Ulmschneider and William L. Jorgensen J.A.C.S. 2004, 126, 1849-1857 Presented by Laura L. Thomas and

More information

Molecular Modeling -- Lecture 15 Surfaces and electrostatics

Molecular Modeling -- Lecture 15 Surfaces and electrostatics Molecular Modeling -- Lecture 15 Surfaces and electrostatics Molecular surfaces The Hydrophobic Effect Electrostatics Poisson-Boltzmann Equation Electrostatic maps Electrostatic surfaces in MOE 15.1 The

More information

Scuola di Chimica Computazionale

Scuola di Chimica Computazionale Societa Chimica Italiana Gruppo Interdivisionale di Chimica Computazionale Scuola di Chimica Computazionale Introduzione, per Esercizi, all Uso del Calcolatore in Chimica Organica e Biologica Modellistica

More information

Title Theory of solutions in the energy r of the molecular flexibility Author(s) Matubayasi, N; Nakahara, M Citation JOURNAL OF CHEMICAL PHYSICS (2003), 9702 Issue Date 2003-11-08 URL http://hdl.handle.net/2433/50354

More information

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC The precise definition of a dihedral or torsion angle can be found in spatial geometry Angle between to planes Dihedral

More information

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: DISCRETE TUTORIAL Agustí Emperador Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: STRUCTURAL REFINEMENT OF DOCKING CONFORMATIONS Emperador

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Molecular Mechanics. Yohann Moreau. November 26, 2015

Molecular Mechanics. Yohann Moreau. November 26, 2015 Molecular Mechanics Yohann Moreau yohann.moreau@ujf-grenoble.fr November 26, 2015 Yohann Moreau (UJF) Molecular Mechanics, Label RFCT 2015 November 26, 2015 1 / 29 Introduction A so-called Force-Field

More information

Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations

Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations Alexandre V. Morozov, Tanja Kortemme, Kiril Tsemekhman, David Baker

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

Potential Energy (hyper)surface

Potential Energy (hyper)surface The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = " d dx U(x) Conformation

More information

The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii

The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii Fundamental Points About Which to Be Thinking It s clear the PES is useful, so how can I construct it for an arbitrary

More information

Mean-Field Description of Ionic Size Effects

Mean-Field Description of Ionic Size Effects Mean-Field Description of Ionic Size Effects Bo Li Department of Mathematics and NSF Center for Theoretical Biological Physics University of California, San Diego Work Supported by NSF, NIH, CSC, CTBP

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Outline Energy functions for proteins (or biomolecular systems more generally)

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

arxiv: v1 [cond-mat.soft] 22 Oct 2007

arxiv: v1 [cond-mat.soft] 22 Oct 2007 Conformational Transitions of Heteropolymers arxiv:0710.4095v1 [cond-mat.soft] 22 Oct 2007 Michael Bachmann and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11,

More information

A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes

A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes THE JOURNAL OF CHEMICAL PHYSICS 122, 124706 2005 A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes Seiichiro Tanizaki

More information

Minimization of Electrostatic Free Energy and the Poisson-Boltzmann Equation for Molecular Solvation with Implicit Solvent

Minimization of Electrostatic Free Energy and the Poisson-Boltzmann Equation for Molecular Solvation with Implicit Solvent Minimization of Electrostatic Free Energy and the Poisson-Boltzmann Equation for Molecular Solvation with Implicit Solvent Bo Li April 15, 009 Abstract In an implicit-solvent description of the solvation

More information

Water and Aqueous Solutions. 2. Solvation and Hydrophobicity. Solvation

Water and Aqueous Solutions. 2. Solvation and Hydrophobicity. Solvation Water and Aqueous Solutions. Solvation and Hydrophobicity Solvation Solvation describes the intermolecular interactions of a molecule or ion in solution with the surrounding solvent, which for our purposes

More information

Modeling in Solution. Important Observations. Energy Concepts

Modeling in Solution. Important Observations. Energy Concepts Modeling in Solution 1 Important Observations Various electrostatic effects for a solvated molecule are often less important than for an isolated gaseous molecule when the molecule is dissolved in a solvent

More information

Solvation and Macromolecular Structure. The structure and dynamics of biological macromolecules are strongly influenced by water:

Solvation and Macromolecular Structure. The structure and dynamics of biological macromolecules are strongly influenced by water: Overview Solvation and Macromolecular Structure The structure and dynamics of biological macromolecules are strongly influenced by water: Electrostatic effects: charges are screened by water molecules

More information

Chapter 1. Topic: Overview of basic principles

Chapter 1. Topic: Overview of basic principles Chapter 1 Topic: Overview of basic principles Four major themes of biochemistry I. What are living organism made from? II. How do organism acquire and use energy? III. How does an organism maintain its

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants

Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants Fuquan Tu, Bum Jun Park and Daeyeon Lee*. Description of the term notionally swollen droplets When particles are adsorbed

More information

STOCHASTIC CHEMICAL KINETICS

STOCHASTIC CHEMICAL KINETICS STOCHASTIC CHEICAL KINETICS Dan Gillespie GillespieDT@mailaps.org Current Support: Caltech (NIGS) Caltech (NIH) University of California at Santa Barbara (NIH) Past Support: Caltech (DARPA/AFOSR, Beckman/BNC))

More information

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia University of Groningen Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia IMPORTANT NOTE: You are advised to consult the publisher's version

More information

= (-22) = +2kJ /mol

= (-22) = +2kJ /mol Lecture 8: Thermodynamics & Protein Stability Assigned reading in Campbell: Chapter 4.4-4.6 Key Terms: DG = -RT lnk eq = DH - TDS Transition Curve, Melting Curve, Tm DH calculation DS calculation van der

More information

Supplementary Information:

Supplementary Information: Supplementary Information: Self assembly of tetrahedral CdSe nanocrystals: effective patchiness via anisotropic steric interaction Michael A. Boles and Dmitri V. Talapin Department of Chemistry and James

More information

Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate

Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate A. Arslanargin, A. Powers, S. Rick, T. Pollard, T. Beck Univ Cincinnati Chemistry Support: NSF, OSC TSRC 2016 November 2, 2016 A. Arslanargin,

More information

Statistical Theory and Learning from Molecular Simulations

Statistical Theory and Learning from Molecular Simulations Statistical Theory and Learning from Molecular Simulations Lawrence R. Pratt 1 and Susan B. Rempe 2 1 Department of Chemical & Biomolecular Engineering 2 Center for Biological and Material Sciences, Sandia

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Energy-Conserving Numerical Simulations of Electron Holes in Two-Species Plasmas

Energy-Conserving Numerical Simulations of Electron Holes in Two-Species Plasmas Energy-Conserving Numerical Simulations of Electron Holes in Two-Species Plasmas Yingda Cheng Andrew J. Christlieb Xinghui Zhong March 18, 2014 Abstract In this paper, we apply our recently developed energy-conserving

More information

Step Bunching in Epitaxial Growth with Elasticity Effects

Step Bunching in Epitaxial Growth with Elasticity Effects Step Bunching in Epitaxial Growth with Elasticity Effects Tao Luo Department of Mathematics The Hong Kong University of Science and Technology joint work with Yang Xiang, Aaron Yip 05 Jan 2017 Tao Luo

More information

The Chemical Basis of Life

The Chemical Basis of Life The Chemical Basis of Life Chapter 2 Objectives Identify the four elements that make up 96% of living matter. Distinguish between the following pairs of terms: neutron and proton, atomic number and mass

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Yesterday s Nobel Prize: single-particle cryoelectron microscopy 2 Outline Energy

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Thermodynamic Phase Equilibria Certain thermodynamic states

More information

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid Force Fields for Classical Molecular Dynamics simulations of Biomolecules Emad Tajkhorshid Theoretical and Computational Biophysics Group, Beckman Institute Departments of Biochemistry and Pharmacology,

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2004 How do we go from an unfolded polypeptide chain to a compact folded protein? (Folding of thioredoxin, F. Richards) Structure - Function

More information

Molecular dynamics simulation of Aquaporin-1. 4 nm

Molecular dynamics simulation of Aquaporin-1. 4 nm Molecular dynamics simulation of Aquaporin-1 4 nm Molecular Dynamics Simulations Schrödinger equation i~@ t (r, R) =H (r, R) Born-Oppenheimer approximation H e e(r; R) =E e (R) e(r; R) Nucleic motion described

More information

Non-bonded interactions

Non-bonded interactions speeding up the number-crunching continued Marcus Elstner and Tomáš Kubař December 3, 2013 why care? number of individual pair-wise interactions bonded interactions proportional to N: O(N) non-bonded interactions

More information

Why Proteins Fold. How Proteins Fold? e - ΔG/kT. Protein Folding, Nonbonding Forces, and Free Energy

Why Proteins Fold. How Proteins Fold? e - ΔG/kT. Protein Folding, Nonbonding Forces, and Free Energy Why Proteins Fold Proteins are the action superheroes of the body. As enzymes, they make reactions go a million times faster. As versatile transport vehicles, they carry oxygen and antibodies to fight

More information

Thermodynamic study of liquid with solver ζ & suitable η max as a pole in basic two parameter Khasare s equation of state

Thermodynamic study of liquid with solver ζ & suitable η max as a pole in basic two parameter Khasare s equation of state Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, 3 (5):353-359 ISSN: 976-86 CODEN (USA): AASRFC Thermodynamic study of liquid with solver ζ & suitable η max as

More information

Non-specific DNA-protein interaction: How proteins can diffuse along DNA

Non-specific DNA-protein interaction: How proteins can diffuse along DNA XXIX International Colloquium on Group-Theoretical Methods in Physics, Nankai University, Tianjin, Chine. Non-specific DNA-protein interaction: How proteins can diffuse along DNA Fabien Paillusson, Maria

More information

Methods of Computer Simulation. Molecular Dynamics and Monte Carlo

Methods of Computer Simulation. Molecular Dynamics and Monte Carlo Molecular Dynamics Time is of the essence in biological processes therefore how do we understand time-dependent processes at the molecular level? How do we do this experimentally? How do we do this computationally?

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

The AGBNP2 Implicit Solvation Model

The AGBNP2 Implicit Solvation Model 2544 J. Chem. Theory Comput. 2009, 5, 2544 2564 The AGBNP2 Implicit Solvation Model Emilio Gallicchio,* Kristina Paris, and Ronald M. Levy Department of Chemistry and Chemical Biology and BioMaPS Institute

More information

Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms

Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms Dmitry Yershov 1 Stephen Bond 1 Robert Skeel 2 1 University of Illinois at Urbana-Champaign 2 Purdue University 2009 SIAM Annual Meeting

More information

Protein-Ligand Interactions* and Energy Evaluation Methods

Protein-Ligand Interactions* and Energy Evaluation Methods Protein-Ligand Interactions* and Energy Evaluation Methods *with a revealing look at roles of water Glen E. Kellogg Department of Medicinal Chemistry Institute for Structural Biology, Drug Discovery &

More information

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules Bioengineering 215 An Introduction to Molecular Dynamics for Biomolecules David Parker May 18, 2007 ntroduction A principal tool to study biological molecules is molecular dynamics simulations (MD). MD

More information

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole ONETEP PB/SA: Application to G-Quadruplex DNA Stability Danny Cole Introduction Historical overview of structure and free energy calculation of complex molecules using molecular mechanics and continuum

More information

Force fields in computer simulation of soft nanomaterials

Force fields in computer simulation of soft nanomaterials Lecture 2 Part B Force fields in computer simulation of soft nanomaterials Recommended reading: Leach Chapter 4 1 Force Field Methods Force field methods are simulation methods that use classical force

More information

Research Statement. 1. Electrostatics Computation and Biomolecular Simulation. Weihua Geng Department of Mathematics, University of Michigan

Research Statement. 1. Electrostatics Computation and Biomolecular Simulation. Weihua Geng Department of Mathematics, University of Michigan Research Statement Weihua Geng Department of Mathematics, University of Michigan I am interested in modeling problems in structural and systems biology using differential equations and integral equations,

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

Advanced in silico drug design

Advanced in silico drug design Advanced in silico drug design RNDr. Martin Lepšík, Ph.D. Lecture: Advanced scoring Palacky University, Olomouc 2016 1 Outline 1. Scoring Definition, Types 2. Physics-based Scoring: Master Equation Terms

More information

BIOC 530 Fall, 2011 BIOC 530

BIOC 530 Fall, 2011 BIOC 530 Fall, 2011 Course Information Course Description Graduate-level discussion of the structure, function, and chemistry of proteins and nucleic acids, control of enzymatic reactions. Please see the course

More information

Force Fields for MD simulations

Force Fields for MD simulations Force Fields for MD simulations Topology/parameter files Where do the numbers an MD code uses come from? ow to make topology files for ligands, cofactors, special amino acids, ow to obtain/develop missing

More information

Alek Marenich Cramer -Truhlar Group. University of Minnesota

Alek Marenich Cramer -Truhlar Group. University of Minnesota and Computational Electrochemistry Alek Marenich Cramer -Truhlar Group University of Minnesota Outline Solvation and charge models Energetics and dynamics in solution Computational electrochemistry Future

More information