Level-Set Variational Solvation Coupling Solute Molecular Mechanics with Continuum Solvent

Size: px
Start display at page:

Download "Level-Set Variational Solvation Coupling Solute Molecular Mechanics with Continuum Solvent"

Transcription

1 Level-Set Variational Solvation Coupling Solute Molecular Mechanics with Continuum Solvent Bo Li Department of Mathematics and Center for Theoretical Biological Physics (CTBP) University of California, San Diego (UCSD), USA

2 Collaborators Jianwei Che (Genomics Inst. of Novartis Res. Found) Li-Tien Cheng (Math, UCSD) Joachim Dzubiella (Phys., Tech. Univ. Munich) J. Andrew McCammon (Biochem & CTBP, UCSD) Piotr Setny (Biophysics, Univ. of Warsaw) Zhongming Wang (Math & Biochem, UCSD) Yang Xie (ME, Georgia Tech) Support NSF, DOE, DFG, Sloan, NIH, HHMI, CTBP

3 OUTLINE 1. Introduction 2. A variational model of solvation 3. The level-set method 4. Numerical results 5. Electrostatic free energy 6. Conclusions 3

4 1. Introduction 4

5 water solvation water conformational change solute solute G =? solute binding water Biological prcess and free energy receptor ligand solvent solvent solute solute Explicit solvent vs. implicit solvent 5

6 Established implicit-solvent models Get data of biomolecules. Generate solute-solvent interface. Calculate surface energy. Calculate the electrostatic free energy using PB/GB with the surface as dielectric boundary. G = G np + G p ( : Surface area) 6

7 Example 1. Capillary evaporation in hydrophobic confinement. D L Koishi et al., Phys. Rev. Lett., 93, ,

8 Example 2. A receptorligand (pocket wallmethane atom) system. Setny, J. Chem. Phys., 127, , MD: weakly solvated pocket, strong hydrophobic attraction. SASA/MSA: Onset of attraction is wrong by 2-4 Angstroms! 8

9 Example 3. Evaporation in proteins. MD simulations of the melittin protein tetramer Water in hydrophobic core Stable nanobubble Liu et al., Nature, 437, 159, More MD simulations Electrostatics Curvature Giovambattista et al., PNAS, 105, 2274,

10 Possible issues of fixed-surface models Hydrophobic cavities Curvature correction Decoupling of polar and nonpolar contributions Strong curvature effects at small scales R 0 = 73mJ /m 2 = 0.9 Symbols: MD, SPC/E water, P=1bar, T=300K. = 0 1 2H : H : ( ) the Tolman length mean curvature Huang, Geissler, & Chandler, J. Phys. Chem. B, 105, 6704,

11 2. A Variational Model of Solvation 11

12 A variational implicit-solvent model (VISM) Dzubiella, Swanson, & McCammon, Phys. Rev. Lett., 96, , Dzubiella, Swanson, & McCammon, J. Chem. Phys., 124, , Guiding principles solute solvent Solvation structure = Solute atomic positions + Solute-solvent interface. Free-energy minimization determines solute-solvent interfaces. Free energy couples different interactions: polar, nonpolar, dispersive, etc. 12

13 A free-energy functional r i m Q i w G geom [] = Pvol() + ( r )ds c j, q j, ( r )ds : Creation of a cavity in the solvent Liquid-vapor pressure difference Molecular rearrangement near the interface = ( r ): ( r ) = 0 1 2H( r ) : H = H( r ): Surface tension [ ] (Scaled Particle Theory) 0 : the (planar) surface tension the Tolman length, a fitting parameter mean curvature 13

14 G geom [] = Pvol() + 0 area() 2 0 HdS +c K KdS Hadwiger s Theorem ( ) Let C = the set of all convex bodies, M = the set of finite union of convex bodies. If is rotationally and translationally invariant, additive: then conditionally continuous: Application to nonpolar solvation Roth, Harano, & Kinoshita, Phys. Rev. Lett., 97, , Harano, Roth, & Kinoshita, Chem. Phys. Lett., 432, 275,

15 G vdw [] = w w U( r )dv r i m Q i w solute-solvent van der Waals interaction U( r ) = i U i ( r r i ) U i (r) = U LJ,i (r) = 4 i ( i ) 12 r i r ( ) 6 G elec [] - Electrostatic free energy O c j, q j, The Poisson-Boltzmann (PB) theory The generalized Born (GB) model 15

16 Coupling solute molecular mechanics with implicit solvent Molecular mechanical interactions of solute atoms V[ r 1,..., r N ] = i, j W bond i, j,k,l i, j ( r i, r j ) + + W torsion ( r + W Coulomb An effective total Hamiltonian i, j,k W bend ( r i,q i ; r j,q j ) ( r i, r j, r k ) H[; r 1,..., r N ] = V[ r 1,..., r N ] + G[; r 1,..., r N ], minh[; r 1,..., r N ] i, r j, r k, r l ) + i, j W LJ ( r i, r j ) Equilibrium conformations 16

17 3. The Level-Set Method 17

18 The level-set method Interface motion V n = V n ( r,t) for Level-set representation r (t) (t) = { r :( r,t) = 0} r z = ( r,t) The level-set equation ( r (t),t) = 0 t + r t = 0 r t = ( r t ) = ( n r t ) = V n 18

19 Examples of normal velocity Geometrically based motion Motion by mean curvature V n = H Motion by the surface Laplacian of mean curvature V n = s H External field u = H in on on on n n 19

20 Level-set formulas of geometrical quantities Unit normal Mean curvature Gaussian curvature n = H = 1 2 n K = n adj(he()) n Surface integral f ( r )ds = R 3 f ( r )()dv Volume integral f ( r )dv = R 3 f ( r )[1 H()]dV 20

21 Topological changes Merging Break-up Disappearing Nucleation? Accuracy issues Interface approximation Conservation of mass Rigorous analysis 21

22 Application to variational solvation Cheng, Dzubiella, McCammon, & Li, J. Chem. Phys. 127, , Cheng, Xie, Dzubiella, McCammon, Che, & Li, J. Chem. Theory Comput., 5, 257, Cheng, Wang, Setny, Dzubiella, Li, & McCammon, J. Chem. Phys., Relaxation dr i dt = r i H[; r 1,..., r N ] = r i V[ r 1,..., r N ] r i G[] V n = H[;, r 1,..., r N ] = G[] G[]( r ) = P [H( r ) K( r )] w U( r ) + G elec [] dv =1 ds = 2H HdS = K 22

23 Algorithm Step 1. Input parameters and initialize level-set function Step 2. Calculate the normal and curvatures Step 3. Calculate and extend the normal velocity Step 4. Solve the level-set equation Step 5. Reinitialize the level-set function Step 6. Solve ODEs for the motion of solute particles Step 7. Set and go to Step 2 23

24 New level-set techniques Pre-computation of the potential Numerical regularization Fast numerical integration Local level-set method Efficiency 4,000 solute atoms, 50x50x50 grid size, a good initial guess 5 minutes 4,000 solute atoms, high resolution, a bad initial guess about 2 4 hours Dynamics: a different situation 24

25 4. Numerical Results 25

26 Comparison of PMF by the level-set (circles) and MD (solid line) calculations. Paschek, J. Chem. Phys., 120, 6674,

27 Comparison of the level-set and MD calculations for the two paraffin plates. MD: Koishi et al. Phys. Rev. Lett., 93, , 2004; J. Chem. Phys., 123, ,

28 Two helical alkanes ( ~30 atoms) Mean curvature Parameters: =1.2, =

29 Solvation of C60 fullerene (nonpolar) Mean curvature Solvation free energy from MD Best fit Tolman length =1.2 Side note: enthalpy-entropy compensation in solvation: Solvation free energy is a difference of big numbers: Solvation entropy Solvation enthalpy A big problem for solvation free-energy calculations! 29

30 A Hydrophobic receptor-ligand system Each wall consists of 4,242 atoms. System setup for the levelset VISM calculation. 30

31 31

32 32

33 Free energy vs. the distance between ligand and wall: a bimodal behavior. 33

34 A model system of 4 atoms Left: initial positions. Right: final positions. 34

35 A benzene molecule 35

36 A two-particle system: the surface motion influences the particle motion 36

37 5. Electrostatic Free Energy 37

38 The Coulomb-field approximation G elec [] = w m w G elec []( r 1 1 ) = w Q i ( r r 2 i ) r r 3 dv i Q i ( r 2 N r i ) r r 3 R m i=1 i Q A Single charged particle 12 6 G(R) = 4(R 2 2R) +16 w 9 Q R 3R m N i=1 w Level-set VISM vs. exact solution 38

39 The Poisson-Boltzmann (PB) theory Electrostatic free energy G elec [] = ( r ) 8 ( r ) 2 + f ( r )( r ) 1 w electrostatic potential PBE: ( r ) = f w m w in solute region ( r )( r ) w in solvent region m w = fixed charges of molecular atoms = characteristic function of w c j q j e q j( j j c j (e q j( r ) 1) dv r ) = 4 f ( r ) 39

40 Effective electrostatic surface force G elec []( r ) = m s ( r )( r ) 2 1 j c j (e q j( r ) Charge neutrality, convexity, and Jensen s inequality G elec [] >0 Force attractive to solutes! See: B. Chu, Molecular Forces, Wiley, Lemma 1) (,z u )vdv = (u m u w )v(z) 40

41 41

42 42

43 43

44 44

45 45

46 46

47 6. Conclusions 47

48 Variational implicit-solvent model Coupling polar and nonpolar interactions Capturing hydrophobic cavities Curvature correction Extension Coupling with molecular mechanics Electrosttic surface forces A level-set method for variational solvation Capturing hydrophobic cavities New level-set techniques 48

49 Poisson-Boltzmann theory Mathematical analysis: bounds Extension to include the excluded volume effect Further development Coupling the PB and level-set calculations Stochastic level-set VISM Solvent dynamics: Rayleigh-Plesset equation Multiscale modeling and simulation Mathematical problems Derivation of the free-energy functional Constrained motion by mean curvature 49

50 References J. Dzubiella, J.M.J. Swanson, & J.A. McCammon, Phys. Rev. Lett., 96, , J. Dzubiella, J.M.J. Swanson, & J.A. McCammon, J. Chem. Phys., 124, , L.-T. Cheng, J. Dzubiella, J.A. McCammon, & B. Li, J. Chem. Phys., 127, , J. Che, J. Dzubiella, B. Li, & J.A. McCammon, J. Phys. Chem. B, 112, 3058, L.-T. Cheng, Y. Xie, J. Dzubiella, J.A. McCammon, J. Che, & B. Li, J. Chem. Theory Comput., 5, 257, B. Li, SIAM J. Math. Anal., 40, 2536, B. Li, Nonlinearity, 19, 2581, L.-T. Cheng, Z. Wang, P. Setny, J. Dzubiella, B. Li, & J.A. McCammon, J. Chem. Phys., 2009 (accepted). P. Setny, Z. Wang, L-T. Cheng, B. Li, J. A. McCammon, & J. Dzubliella, 2009 (submitted). 50

51 Thank You! 51

Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation

Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation Bo Li Math Dept & CTBP, UCSD Li-Tien Cheng (Math, UCSD) Zhongming Wang (Math & Biochem, UCSD) Yang Xie (MAE,

More information

Variational Implicit Solvation of Biomolecules: From Theory to Numerical Computations

Variational Implicit Solvation of Biomolecules: From Theory to Numerical Computations Variational Implicit Solvation of Biomolecules: From Theory to Numerical Computations Bo Li Department of Mathematics and Center for Theoretical Biological Physics UC San Diego CECAM Workshop: New Perspectives

More information

Level-Set Variational Implicit-Solvent Modeling of Biomolecular Solvation

Level-Set Variational Implicit-Solvent Modeling of Biomolecular Solvation Level-Set Variational Implicit-Solvent Modeling of Biomolecular Solvation Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego The 7 th International Congress of Chinese

More information

Variational Implicit Solvation: Empowering Mathematics and Computation to Understand Biological Building Blocks

Variational Implicit Solvation: Empowering Mathematics and Computation to Understand Biological Building Blocks Variational Implicit Solvation: Empowering Mathematics and Computation to Understand Biological Building Blocks Bo Li Department of Mathematics and NSF Center for Theoretical Biological Physics UC San

More information

Dielectric Boundary in Biomolecular Solvation Bo Li Department of Mathematics and Center for Theoretical Biological Physics UC San Diego

Dielectric Boundary in Biomolecular Solvation Bo Li Department of Mathematics and Center for Theoretical Biological Physics UC San Diego Dielectric Boundary in Biomolecular Solvation Bo Li Department of Mathematics and Center for Theoretical Biological Physics UC San Diego International Conference on Free Boundary Problems Newton Institute,

More information

Research Statement. Shenggao Zhou. November 3, 2014

Research Statement. Shenggao Zhou. November 3, 2014 Shenggao Zhou November 3, My research focuses on: () Scientific computing and numerical analysis (numerical PDEs, numerical optimization, computational fluid dynamics, and level-set method for interface

More information

Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation

Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation Zhongming Wang,, Jianwei Che, 2, Li-Tien Cheng, 3, Joachim Dzubiella, 4, Bo Li, 5, 6, and J. Andrew

More information

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Bo Li Dept. of Math & NSF Center for Theoretical Biological Physics UC San Diego, USA Collaborators: Li-Tien Cheng

More information

Continuum Electrostatics for Ionic Solutions with Nonuniform Ionic Sizes

Continuum Electrostatics for Ionic Solutions with Nonuniform Ionic Sizes Continuum Electrostatics for Ionic Solutions with Nonuniform Ionic Sizes Bo Li Department of Mathematics and Center for Theoretical Biological Physics (CTBP) University of California, San Diego, USA Supported

More information

Coupling the Level-Set Method with Molecular Mechanics for Variational Implicit Solvation of Nonpolar Molecules

Coupling the Level-Set Method with Molecular Mechanics for Variational Implicit Solvation of Nonpolar Molecules Coupling the Level-Set Method with Molecular Mechanics for Variational Implicit Solvation of Nonpolar Molecules Li-Tien Cheng, 1, Yang Xie, 2, Joachim Dzubiella, 3, J Andrew McCammon, 4, Jianwei Che, 5,

More information

Application of the level-set method to the implicit solvation of nonpolar molecules

Application of the level-set method to the implicit solvation of nonpolar molecules Application of the level-set method to the implicit solvation of nonpolar molecules Li-Tien Cheng, 1, Joachim Dzubiella, 2, 3, 4, J. Andrew McCammon, 3, 5, and Bo Li 1, 1 Department of Mathematics, University

More information

Dewetting-controlled binding of ligands to hydrophobic pockets. Abstract

Dewetting-controlled binding of ligands to hydrophobic pockets. Abstract Dewetting-controlled binding of ligands to hydrophobic pockets P. Setny, 1, 2 Z. Wang, 1, 3 L.-T. Cheng, 3 B. Li, 3, 4 J. A. McCammon, 1, 4, 5 and J. Dzubiella 6 1 Department of Chemistry and Biochemistry,

More information

Motion of a Cylindrical Dielectric Boundary

Motion of a Cylindrical Dielectric Boundary Motion of a Cylindrical Dielectric Boundary Bo Li Department of Mathematics and NSF Center for Theoretical Biological Physics UC San Diego Collaborators Li-Tien Cheng, Michael White, and Shenggao Zhou

More information

Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach

Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach Li-Tien Cheng, 1, Zhongming Wang, 2, 1, 2, 3, Piotr Setny, Joachim Dzubiella, 4, Bo

More information

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Li-Tien Cheng Bo Li Zhongming Wang August 6, Abstract A level-set method is developed for the numerical minimization

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

Numerical Methods for Solvent Stokes Flow and Solute-Solvent Interfacial Dynamics of Charged Molecules

Numerical Methods for Solvent Stokes Flow and Solute-Solvent Interfacial Dynamics of Charged Molecules Numerical Methods for Solvent Stokes Flow and Solute-Solvent Interfacial Dynamics of Charged Molecules Hui Sun Shenggao Zhou Li-Tien Cheng Bo Li July 30, 2018 Abstract We develop a computational model

More information

Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach

Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach Interfaces and Hydrophobic Interactions in Receptor-Ligand Systems: A Level-Set Variational Implicit Solvent Approach Li-Tien Cheng, 1, Zhongming Wang, 2, 1, 2, 3, Piotr Setny, Joachim Dzubiella, 4, Bo

More information

6 Hydrophobic interactions

6 Hydrophobic interactions The Physics and Chemistry of Water 6 Hydrophobic interactions A non-polar molecule in water disrupts the H- bond structure by forcing some water molecules to give up their hydrogen bonds. As a result,

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

Mean-Field Description of Ionic Size Effects

Mean-Field Description of Ionic Size Effects Mean-Field Description of Ionic Size Effects Bo Li Department of Mathematics and NSF Center for Theoretical Biological Physics University of California, San Diego Work Supported by NSF, NIH, CSC, CTBP

More information

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions Van der Waals Interactions

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects

Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects Statistical Thermodynamics Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects Dr. Ronald M. Levy ronlevy@temple.edu Bare Molecular Mechanics Atomistic Force Fields: torsion

More information

arxiv: v1 [math.na] 5 Dec 2017

arxiv: v1 [math.na] 5 Dec 2017 A New Phase-Field Approach to Variational Implicit Solvation of Charged Molecules with the Coulomb-Field Approximation Yanxiang Zhao Department of Mathematics, the George Washington University, 81 22nd

More information

Advanced in silico drug design

Advanced in silico drug design Advanced in silico drug design RNDr. Martin Lepšík, Ph.D. Lecture: Advanced scoring Palacky University, Olomouc 2016 1 Outline 1. Scoring Definition, Types 2. Physics-based Scoring: Master Equation Terms

More information

A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes

A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes THE JOURNAL OF CHEMICAL PHYSICS 122, 124706 2005 A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes Seiichiro Tanizaki

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

Solvation and Macromolecular Structure. The structure and dynamics of biological macromolecules are strongly influenced by water:

Solvation and Macromolecular Structure. The structure and dynamics of biological macromolecules are strongly influenced by water: Overview Solvation and Macromolecular Structure The structure and dynamics of biological macromolecules are strongly influenced by water: Electrostatic effects: charges are screened by water molecules

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

The Poisson Boltzmann Theory and Variational Implicit Solvation of Biomolecules

The Poisson Boltzmann Theory and Variational Implicit Solvation of Biomolecules The Poisson Boltzmann Theory and Variational Implicit Solvation of Biomolecules Bo Li Department of Mathematics and NSF Center for Theoretical Biological Physics (CTBP) UC San Diego FUNDING: NIH, NSF,

More information

Water and Aqueous Solutions. 2. Solvation and Hydrophobicity. Solvation

Water and Aqueous Solutions. 2. Solvation and Hydrophobicity. Solvation Water and Aqueous Solutions. Solvation and Hydrophobicity Solvation Solvation describes the intermolecular interactions of a molecule or ion in solution with the surrounding solvent, which for our purposes

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

Molecular Modeling -- Lecture 15 Surfaces and electrostatics

Molecular Modeling -- Lecture 15 Surfaces and electrostatics Molecular Modeling -- Lecture 15 Surfaces and electrostatics Molecular surfaces The Hydrophobic Effect Electrostatics Poisson-Boltzmann Equation Electrostatic maps Electrostatic surfaces in MOE 15.1 The

More information

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions: Van der Waals Interactions

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

Molecular Simulation III

Molecular Simulation III Molecular Simulation III Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Molecular Dynamics Jeffry D. Madura Department of Chemistry & Biochemistry Center

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Protein-Ligand Interactions* and Energy Evaluation Methods

Protein-Ligand Interactions* and Energy Evaluation Methods Protein-Ligand Interactions* and Energy Evaluation Methods *with a revealing look at roles of water Glen E. Kellogg Department of Medicinal Chemistry Institute for Structural Biology, Drug Discovery &

More information

Research Statement. 1. Electrostatics Computation and Biomolecular Simulation. Weihua Geng Department of Mathematics, University of Michigan

Research Statement. 1. Electrostatics Computation and Biomolecular Simulation. Weihua Geng Department of Mathematics, University of Michigan Research Statement Weihua Geng Department of Mathematics, University of Michigan I am interested in modeling problems in structural and systems biology using differential equations and integral equations,

More information

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole ONETEP PB/SA: Application to G-Quadruplex DNA Stability Danny Cole Introduction Historical overview of structure and free energy calculation of complex molecules using molecular mechanics and continuum

More information

k θ (θ θ 0 ) 2 angles r i j r i j

k θ (θ θ 0 ) 2 angles r i j r i j 1 Force fields 1.1 Introduction The term force field is slightly misleading, since it refers to the parameters of the potential used to calculate the forces (via gradient) in molecular dynamics simulations.

More information

= (-22) = +2kJ /mol

= (-22) = +2kJ /mol Lecture 8: Thermodynamics & Protein Stability Assigned reading in Campbell: Chapter 4.4-4.6 Key Terms: DG = -RT lnk eq = DH - TDS Transition Curve, Melting Curve, Tm DH calculation DS calculation van der

More information

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: DISCRETE TUTORIAL Agustí Emperador Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: STRUCTURAL REFINEMENT OF DOCKING CONFORMATIONS Emperador

More information

Supplementary Methods

Supplementary Methods Supplementary Methods MMPBSA Free energy calculation Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) has been widely used to calculate binding free energy for protein-ligand systems (1-7).

More information

Solutions and Non-Covalent Binding Forces

Solutions and Non-Covalent Binding Forces Chapter 3 Solutions and Non-Covalent Binding Forces 3.1 Solvent and solution properties Molecules stick together using the following forces: dipole-dipole, dipole-induced dipole, hydrogen bond, van der

More information

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Jakob P. Ulmschneider and William L. Jorgensen J.A.C.S. 2004, 126, 1849-1857 Presented by Laura L. Thomas and

More information

Chapter 1. Topic: Overview of basic principles

Chapter 1. Topic: Overview of basic principles Chapter 1 Topic: Overview of basic principles Four major themes of biochemistry I. What are living organism made from? II. How do organism acquire and use energy? III. How does an organism maintain its

More information

Lecture 11: Potential Energy Functions

Lecture 11: Potential Energy Functions Lecture 11: Potential Energy Functions Dr. Ronald M. Levy ronlevy@temple.edu Originally contributed by Lauren Wickstrom (2011) Microscopic/Macroscopic Connection The connection between microscopic interactions

More information

1. Liquid Wall Ablation 2. FLiBe Properties

1. Liquid Wall Ablation 2. FLiBe Properties 1. Liquid Wall Ablation 2. FLiBe Properties A. R. Raffray and M. Zaghloul University of California, San Diego ARIES-IFE Meeting Princeton Plasma Physics Laboratory Princeton, New Jersey October 2-4, 2002

More information

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia University of Groningen Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia IMPORTANT NOTE: You are advised to consult the publisher's version

More information

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria Other Cells Hormones Viruses Toxins Cell Bacteria ΔH < 0 reaction is exothermic, tells us nothing about the spontaneity of the reaction Δ H > 0 reaction is endothermic, tells us nothing about the spontaneity

More information

Biomolecules: The Molecules of Life. 1.2 Biomolecules: The Molecules of Life. Covalent bonding alternatives

Biomolecules: The Molecules of Life. 1.2 Biomolecules: The Molecules of Life. Covalent bonding alternatives Biomolecules: The Molecules of Life What property unites H, O, C and N and renders these atoms so appropriate to the chemistry of life? Answer: Their ability to form covalent bonds by electron-pair sharing.

More information

Statistical Theory and Learning from Molecular Simulations

Statistical Theory and Learning from Molecular Simulations Statistical Theory and Learning from Molecular Simulations Lawrence R. Pratt 1 and Susan B. Rempe 2 1 Department of Chemical & Biomolecular Engineering 2 Center for Biological and Material Sciences, Sandia

More information

Contributions of solvent solvent hydrogen bonding and van der Waals interactions to the attraction between methane molecules in water

Contributions of solvent solvent hydrogen bonding and van der Waals interactions to the attraction between methane molecules in water Ž. Biophysical Chemistry 71 1998 199 204 Contributions of solvent solvent hydrogen bonding and van der Waals interactions to the attraction between methane molecules in water Jeffrey A. Rank, David Baker

More information

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors Thomas Steinbrecher Senior Application Scientist Typical Docking Workflow Databases

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Biophysical Journal, Volume 98 Supporting Material Molecular dynamics simulations of anti-aggregation effect of ibuprofen Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Supplemental

More information

BIBC 100. Structural Biochemistry

BIBC 100. Structural Biochemistry BIBC 100 Structural Biochemistry http://classes.biology.ucsd.edu/bibc100.wi14 Papers- Dialogue with Scientists Questions: Why? How? What? So What? Dialogue Structure to explain function Knowledge Food

More information

Potential Energy (hyper)surface

Potential Energy (hyper)surface The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = " d dx U(x) Conformation

More information

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17)

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17) 16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit By Anthony Quintano - https://www.flickr.com/photos/quintanomedia/15071865580, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=38538291

More information

Chapter 12 Intermolecular Forces and Liquids

Chapter 12 Intermolecular Forces and Liquids Chapter 12 Intermolecular Forces and Liquids Jeffrey Mack California State University, Sacramento Why? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature

More information

Free energy calculations using molecular dynamics simulations. Anna Johansson

Free energy calculations using molecular dynamics simulations. Anna Johansson Free energy calculations using molecular dynamics simulations Anna Johansson 2007-03-13 Outline Introduction to concepts Why is free energy important? Calculating free energy using MD Thermodynamical Integration

More information

SCORING. The exam consists of 5 questions totaling 100 points as broken down in this table:

SCORING. The exam consists of 5 questions totaling 100 points as broken down in this table: UNIVERSITY OF CALIFORNIA, BERKELEY CHEM C130/MCB C100A MIDTERM EXAMINATION #2 OCTOBER 20, 2016 INSTRUCTORS: John Kuriyan and David Savage THE TIME LIMIT FOR THIS EXAMINATION: 1 HOUR 50 MINUTES SIGNATURE:

More information

Sunyia Hussain 06/15/2012 ChE210D final project. Hydration Dynamics at a Hydrophobic Surface. Abstract:

Sunyia Hussain 06/15/2012 ChE210D final project. Hydration Dynamics at a Hydrophobic Surface. Abstract: Hydration Dynamics at a Hydrophobic Surface Sunyia Hussain 6/15/212 ChE21D final project Abstract: Water is the universal solvent of life, crucial to the function of all biomolecules. Proteins, membranes,

More information

2 Structure. 2.1 Coulomb interactions

2 Structure. 2.1 Coulomb interactions 2 Structure 2.1 Coulomb interactions While the information needed for reproduction of living systems is chiefly maintained in the sequence of macromolecules, any practical use of this information must

More information

A Gentle Introduction to (or Review of ) Fundamentals of Chemistry and Organic Chemistry

A Gentle Introduction to (or Review of ) Fundamentals of Chemistry and Organic Chemistry Wright State University CORE Scholar Computer Science and Engineering Faculty Publications Computer Science and Engineering 2003 A Gentle Introduction to (or Review of ) Fundamentals of Chemistry and Organic

More information

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 1 Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 11.1 A Molecular Comparison of Liquids and Solids The state of matter (Gas, liquid or solid) at a particular temperature and pressure depends

More information

Multiscale Diffusion Modeling in Charged and Crowded Biological Environments

Multiscale Diffusion Modeling in Charged and Crowded Biological Environments Multiscale Diffusion Modeling in Charged and Crowded Biological Environments Andrew Gillette Department of Mathematics University of Arizona joint work with Pete Kekenes-Huskey (U. Kentucky) and J. Andrew

More information

Biochemistry 530: Introduction to Structural Biology. Autumn Quarter 2014 BIOC 530

Biochemistry 530: Introduction to Structural Biology. Autumn Quarter 2014 BIOC 530 Biochemistry 530: Introduction to Structural Biology Autumn Quarter 2014 Course Information Course Description Graduate-level discussion of the structure, function, and chemistry of proteins and nucleic

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

schematic diagram; EGF binding, dimerization, phosphorylation, Grb2 binding, etc.

schematic diagram; EGF binding, dimerization, phosphorylation, Grb2 binding, etc. Lecture 1: Noncovalent Biomolecular Interactions Bioengineering and Modeling of biological processes -e.g. tissue engineering, cancer, autoimmune disease Example: RTK signaling, e.g. EGFR Growth responses

More information

Calculation of entropy from Molecular Dynamics: First Principles Thermodynamics Mario Blanco*, Tod Pascal*, Shiang-Tai Lin#, and W. A.

Calculation of entropy from Molecular Dynamics: First Principles Thermodynamics Mario Blanco*, Tod Pascal*, Shiang-Tai Lin#, and W. A. Calculation of entropy from Molecular Dynamics: First Principles Thermodynamics Mario Blanco*, Tod Pascal*, Shiang-Tai Lin#, and W. A. Goddard III Beckman Institute *Caltech Pasadena, California, USA #

More information

Concept review: Binding equilibria

Concept review: Binding equilibria Concept review: Binding equilibria 1 Binding equilibria and association/dissociation constants 2 The binding of a protein to a ligand at equilibrium can be written as: P + L PL And so the equilibrium constant

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

Principles of Physical Biochemistry

Principles of Physical Biochemistry Principles of Physical Biochemistry Kensal E. van Hold e W. Curtis Johnso n P. Shing Ho Preface x i PART 1 MACROMOLECULAR STRUCTURE AND DYNAMICS 1 1 Biological Macromolecules 2 1.1 General Principles

More information

Aqueous solutions. Solubility of different compounds in water

Aqueous solutions. Solubility of different compounds in water Aqueous solutions Solubility of different compounds in water The dissolution of molecules into water (in any solvent actually) causes a volume change of the solution; the size of this volume change is

More information

The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii

The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii Fundamental Points About Which to Be Thinking It s clear the PES is useful, so how can I construct it for an arbitrary

More information

Electrolytes. Chapter Basics = = 131 2[ ]. (c) From both of the above = = 120 8[

Electrolytes. Chapter Basics = = 131 2[ ]. (c) From both of the above = = 120 8[ Chapter 1 Electrolytes 1.1 Basics Here we consider species that dissociate into positively and negatively charged species in solution. 1. Consider: 1 H (g) + 1 Cl (g) + ()+ () = { } = (+ )+ ( ) = 167[

More information

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea The Scaled Effective Solvent Method for Predicting the Equilibrium Ensemble of Structures with Analysis of Thermodynamic Properties of Amorphous Polyethylene Glycol-Water Mixtures Hyeyoung Shin a, Tod

More information

Kd = koff/kon = [R][L]/[RL]

Kd = koff/kon = [R][L]/[RL] Taller de docking y cribado virtual: Uso de herramientas computacionales en el diseño de fármacos Docking program GLIDE El programa de docking GLIDE Sonsoles Martín-Santamaría Shrödinger is a scientific

More information

Electrostatics interactions in condensed matter, theory and simulation

Electrostatics interactions in condensed matter, theory and simulation Electrostatics interactions in condensed matter, theory and simulation A.C. Maggs CNRS + ESPCI + ParisTech + Paris Sciences et Lettres June 2016 Institutes CNRS: 10,000 researchers fundamental and applied

More information

Intermolecular Forces in Density Functional Theory

Intermolecular Forces in Density Functional Theory Intermolecular Forces in Density Functional Theory Problems of DFT Peter Pulay at WATOC2005: There are 3 problems with DFT 1. Accuracy does not converge 2. Spin states of open shell systems often incorrect

More information

BIOC : Homework 1 Due 10/10

BIOC : Homework 1 Due 10/10 Contact information: Name: Student # BIOC530 2012: Homework 1 Due 10/10 Department Email address The following problems are based on David Baker s lectures of forces and protein folding. When numerical

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

Water models in classical simulations

Water models in classical simulations Water models in classical simulations Maria Fyta Institut für Computerphysik, Universität Stuttgart Stuttgart, Germany Water transparent, odorless, tasteless and ubiquitous really simple: two H atoms attached

More information

Chapter 2 - Water 9/8/2014. Water exists as a H-bonded network with an average of 4 H-bonds per molecule in ice and 3.4 in liquid. 104.

Chapter 2 - Water 9/8/2014. Water exists as a H-bonded network with an average of 4 H-bonds per molecule in ice and 3.4 in liquid. 104. Chapter 2 - Water Water exists as a -bonded network with an average of 4 -bonds per molecule in ice and 3.4 in liquid. 104.5 o -bond: An electrostatic attraction between polarized molecules containing

More information

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction Biophysics II Key points to be covered By A/Prof. Xiang Yang Liu Biophysics & Micro/nanostructures Lab Department of Physics, NUS 1. van der Waals Interaction 2. Hydrogen bond 3. Hydrophilic vs hydrophobic

More information

Alek Marenich Cramer -Truhlar Group. University of Minnesota

Alek Marenich Cramer -Truhlar Group. University of Minnesota and Computational Electrochemistry Alek Marenich Cramer -Truhlar Group University of Minnesota Outline Solvation and charge models Energetics and dynamics in solution Computational electrochemistry Future

More information

Structure-based maximal affinity model predicts small-molecule druggability

Structure-based maximal affinity model predicts small-molecule druggability Structure-based maximal affinity model predicts small-molecule druggability Alan Cheng alan.cheng@amgen.com IMA Workshop (Jan 17, 2008) Druggability prediction Introduction Affinity model Some results

More information

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College

Computational Studies of the Photoreceptor Rhodopsin. Scott E. Feller Wabash College Computational Studies of the Photoreceptor Rhodopsin Scott E. Feller Wabash College Rhodopsin Photocycle Dark-adapted Rhodopsin hn Isomerize retinal Photorhodopsin ~200 fs Bathorhodopsin Meta-II ms timescale

More information

5th CCPN Matt Crump. Thermodynamic quantities derived from protein dynamics

5th CCPN Matt Crump. Thermodynamic quantities derived from protein dynamics 5th CCPN 2005 -Matt Crump Thermodynamic quantities derived from protein dynamics Relaxation in Liquids (briefly!) The fluctuations of each bond vector can be described in terms of an angular correlation

More information

The Chemical Basis of Life

The Chemical Basis of Life The Chemical Basis of Life Chapter 2 Objectives Identify the four elements that make up 96% of living matter. Distinguish between the following pairs of terms: neutron and proton, atomic number and mass

More information

MMGBSA: Thermodynamics of Biomolecular Systems

MMGBSA: Thermodynamics of Biomolecular Systems MMGBSA: Thermodynamics of Biomolecular Systems The MMGBSA approach employs molecular mechanics, the generalized Born model and solvent accessibility method to elicit free energies from structural information

More information

I-L Electronic Structure of a Molecule in Solution

I-L Electronic Structure of a Molecule in Solution 32 RESEARCH ACTIVITIES I Department of Theoretical Studies I-L Electronic Structure of a Molecule in Solution Chemical reaction is undoubtedly the most important issue in the theoretical chemistry, and

More information

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences PHYSICAL REVIEW E VOLUME 60, NUMBER 3 SEPTEMBER 1999 Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences Gavin E. Crooks* Department of Chemistry, University

More information

Colloids as nucleons

Colloids as nucleons Colloids as nucleons Willem Kegel & Jan Groenewold Van t Hoff Laboratory Utrecht University The Netherlands Finite-size equilibrium structures macroscopic phase separation Equilibrium clusters & periodic

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Yesterday s Nobel Prize: single-particle cryoelectron microscopy 2 Outline Energy

More information