Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms

Size: px
Start display at page:

Download "Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms"

Transcription

1 Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms Dmitry Yershov 1 Stephen Bond 1 Robert Skeel 2 1 University of Illinois at Urbana-Champaign 2 Purdue University 2009 SIAM Annual Meeting D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 1 / 20

2 Outline 1 Introduction 2 Problem formulation 3 Discretization techniques 4 Multilevel Summation Method (MSM) 5 Numerical experiments D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 2 / 20

3 Introduction Poisson and Generalized Poisson equations arise in numerous areas of science and engineering For many problems of interest analytical solution is not known Naive numerical implementation usually requires significant computational time to achieve reasonable accuracy Fast algorithms are critical for advances in many fields of research D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 3 / 20

4 Problem formulation Generalized Poisson Equation (GPE): (ɛ( x) Φ( x)) = ρ( x) D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 4 / 20

5 Problem formulation Generalized Poisson Equation (GPE): Where (ɛ( x) Φ( x)) = ρ( x) ρ( x) = N k=1 q kδ( x x k ) D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 4 / 20

6 Problem formulation Generalized Poisson Equation (GPE): Where (ɛ( x) Φ( x)) = ρ( x) ρ( x) = N k=1 q kδ( x x k ) ɛ( x) = ɛ 0 const. x Ω 0 D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 4 / 20

7 Problem formulation Generalized Poisson Equation (GPE): Where (ɛ( x) Φ( x)) = ρ( x) ρ( x) = N k=1 q kδ( x x k ) ɛ( x) = ɛ 0 const. x Ω 0 ɛ( x) = ɛ 1 const. x Ω 1 D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 4 / 20

8 Problem formulation Generalized Poisson Equation (GPE): Where (ɛ( x) Φ( x)) = ρ( x) ρ( x) = N k=1 q kδ( x x k ) ɛ( x) = ɛ 0 const. x Ω 0 ɛ( x) = ɛ 1 const. x Ω 1 ɛ( x) smoothly changes its value between ɛ 0 and ɛ 1 in Ω region D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 4 / 20

9 Difficulties with solving GPE directly Singularities in charge distribution Unbounded domain Boundary conditions at infinity D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 5 / 20

10 Solvent reaction and effective charge distribution Effective charge distribution ɛ 0 Φ( x) = ρ( x) + ρ f ( x) D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 6 / 20

11 Solvent reaction and effective charge distribution Effective charge distribution ɛ 0 Φ( x) = ρ( x) + ρ f ( x) If x Ω 0, then ρ f ( x) = 0 D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 6 / 20

12 Solvent reaction and effective charge distribution Effective charge distribution ɛ 0 Φ( x) = ρ( x) + ρ f ( x) If x Ω 0, then ρ f ( x) = 0 If x Ω 1, then ρ f ( x) = 0 D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 6 / 20

13 Solvent reaction and effective charge distribution Effective charge distribution ɛ 0 Φ( x) = ρ( x) + ρ f ( x) If x Ω 0, then ρ f ( x) = 0 If x Ω 1, then ρ f ( x) = 0 If x Ω, then ( ɛ( x) ) ρ f ( x) log ( ɛ 0 Φ( x) ) = 0 ɛ 0 1 ( ɛ 0 Φ( x) = ρ( x 4π x x ) + ρ f ( x ) ) d x Ω D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 6 / 20

14 Discretization with Projection method G(r) = 1 4πr ( ɛ( x) ) ρ f ( x) log G( x x ) ( ρ( x ) + ρ f ( x ) ) d x = 0 ɛ 0 Ω Discretize domain with Cartesian grid D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 7 / 20

15 Discretization with Projection method G(r) = 1 4πr ( ɛ( x) ) ρ f ( x) log G( x x ) ( ρ( x ) + ρ f ( x ) ) d x = 0 ɛ 0 Ω Discretize domain with Cartesian grid Let {φ i } be basis functions D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 7 / 20

16 Discretization with Projection method G(r) = 1 4πr ( ɛ( x) ) ρ f ( x) log G( x x ) ( ρ( x ) + ρ f ( x ) ) d x = 0 ɛ 0 Ω Discretize domain with Cartesian grid Let {φ i } be basis functions Approximate solution ρ = i ρ iφ i D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 7 / 20

17 Discretization with Projection method G(r) = 1 4πr ( ɛ( x) ) ρ f ( x) log G( x x ) ( ρ( x ) + ρ f ( x ) ) d x = 0 ɛ 0 Ω Discretize domain with Cartesian grid Let {φ i } be basis functions Approximate solution ρ = i ρ iφ i r = ρ log(ɛ/ɛ 0 ) G(ρ + ρ) D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 7 / 20

18 Discretization with Projection method G(r) = 1 4πr ( ɛ( x) ) ρ f ( x) log G( x x ) ( ρ( x ) + ρ f ( x ) ) d x = 0 ɛ 0 Ω Discretize domain with Cartesian grid Let {φ i } be basis functions Approximate solution ρ = i ρ iφ i r = ρ log(ɛ/ɛ 0 ) G(ρ + ρ) Minimize residual by projecting it on test space rψ j = 0 D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 7 / 20

19 Linear system of equations Linear system Where I is the identity matrix (I A)x = f A ij = j log(ɛ( x)/ɛ 0 ) G( x x i ) x is vector of unknown coefficients ρ i f j = j log(ɛ( x)/ɛ 0 ) ( k q kg( x x k ) ) D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 8 / 20

20 New difficulties have arisen In general, matrix A is dense, due to Green s function global support Matrix-vector product costs O(N 2 ) operations All iterative solvers use at least O(N 2 ) operations to find solution Can we do better? D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 9 / 20

21 Fast matrix-vector product and N-body solver We need to compute ɛ 0 Φ( x) = G( x x ) ( ρ( x ) + ρ( x ) ) d x = k G( x x k )q k + i G( x x i )ρ i Use fast N-body solver to compute electrostatic potential and forces We use Multilevel Summation Method (MSM) as fast and easy-to-implement N-body solver D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 10 / 20

22 Green s function splitting G = G G G i (r) r D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 11 / 20

23 Green s function splitting G = G G 1 + G G 3 G G i (r) r D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 11 / 20

24 Green s function splitting G = G G 1 + G 1 G 2 + G G 3 G G 2 G i (r) r D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 11 / 20

25 Green s function splitting G = G G 1 + G 1 G 2 + G G 3 G G 2 G i (r) r D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 11 / 20

26 Green s function splitting G = G G 1 + G 1 G 2 + G 2 G = G 0,1 + G 1,2 + G 2, G G 1 G 1 G 2 G 2 G 3 G i (r) G i+1 (r) r D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 12 / 20

27 Matrix form of MSM Mesh restrict prolongate levels restrict prolongate anterpolate interpolate Particle level calculate directly G( x x ) = G 0,1 ( x x ) + P 1 ( x) ( G 1,2 + P 2 (G 2,3 +...)R 2 ) R1 ( x ) D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 13 / 20

28 ε Born ion problem Point charge at origin Spherically symmetric ɛ( x) = ɛ(r), where r = x Analytic solution exists for any ɛ ρ f (r) = q ɛ 0ɛ (r) r 2 ɛ 2 (r) r D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 14 / 20

29 Scalability and error versus system size time [sec. / it.] no MSM a/h = 4 a/h = 6 a/h = 8 % relative error no MSM a/h = 4 a/h = 6 a/h = number of elements h [A] a is Green s function cutoff radius h is grid s step-size D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 15 / 20

30 Methanol molecule D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 16 / 20

31 Methanol molecule effective charge and reaction field D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 17 / 20

32 Methanol molecule in vacuum vs. water solution D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 18 / 20

33 Conclusion We developed fast and scalable algorithm for solving GPE With use of MSM we achieved linear complexity Method is second order accurate in terms of grid s step-size D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 19 / 20

34 The END Thank you! D. Yershov (Computer UIUC) Laplace-Centered Poisson Solvers and MSM 2009 SIAM Annual Meeting 20 / 20

A Fast N-Body Solver for the Poisson(-Boltzmann) Equation

A Fast N-Body Solver for the Poisson(-Boltzmann) Equation A Fast N-Body Solver for the Poisson(-Boltzmann) Equation Robert D. Skeel Departments of Computer Science (and Mathematics) Purdue University http://bionum.cs.purdue.edu/2008december.pdf 1 Thesis Poisson(-Boltzmann)

More information

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere Michael Levy University of Colorado at Boulder Department of Applied Mathematics August 10, 2007 Outline 1 Background

More information

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4 H atom solution Contents 1 Introduction 2 2 Coordinate system 2 3 Variable separation 4 4 Wavefunction solutions 6 4.1 Solution for Φ........................... 6 4.2 Solution for Θ...........................

More information

Practical in Numerical Astronomy, SS 2012 LECTURE 9

Practical in Numerical Astronomy, SS 2012 LECTURE 9 Practical in Numerical Astronomy, SS 01 Elliptic partial differential equations. Poisson solvers. LECTURE 9 1. Gravity force and the equations of hydrodynamics. Poisson equation versus Poisson integral.

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Computer simulation methods (2) Dr. Vania Calandrini

Computer simulation methods (2) Dr. Vania Calandrini Computer simulation methods (2) Dr. Vania Calandrini in the previous lecture: time average versus ensemble average MC versus MD simulations equipartition theorem (=> computing T) virial theorem (=> computing

More information

Electrodynamics PHY712. Lecture 4 Electrostatic potentials and fields. Reference: Chap. 1 & 2 in J. D. Jackson s textbook.

Electrodynamics PHY712. Lecture 4 Electrostatic potentials and fields. Reference: Chap. 1 & 2 in J. D. Jackson s textbook. Electrodynamics PHY712 Lecture 4 Electrostatic potentials and fields Reference: Chap. 1 & 2 in J. D. Jackson s textbook. 1. Complete proof of Green s Theorem 2. Proof of mean value theorem for electrostatic

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Electrostatic II Notes: Most of the material presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartolo, Chap... Mathematical Considerations.. The Fourier series and the Fourier

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

Multigrid and Domain Decomposition Methods for Electrostatics Problems

Multigrid and Domain Decomposition Methods for Electrostatics Problems Multigrid and Domain Decomposition Methods for Electrostatics Problems Michael Holst and Faisal Saied Abstract. We consider multigrid and domain decomposition methods for the numerical solution of electrostatics

More information

Multigrid Methods for Discretized PDE Problems

Multigrid Methods for Discretized PDE Problems Towards Metods for Discretized PDE Problems Institute for Applied Matematics University of Heidelberg Feb 1-5, 2010 Towards Outline A model problem Solution of very large linear systems Iterative Metods

More information

Computational Bioelectrostatics

Computational Bioelectrostatics Computational Bioelectrostatics Matthew Knepley Computational and Applied Mathematics Rice University Scientific Computing Seminar University of Houston Houston, TX April 20, 2017 M. Knepley (CAAM) MGK

More information

Accepted Manuscript. Correcting Mesh-Based Force Calculations to Conserve Both Energy and Momentum in Molecular Dynamics Simulations

Accepted Manuscript. Correcting Mesh-Based Force Calculations to Conserve Both Energy and Momentum in Molecular Dynamics Simulations Accepted Manuscript Correcting Mesh-Based Force Calculations to Conserve Both Energy and Momentum in Molecular Dynamics Simulations Robert D. Seel, David J. Hardy, James C. Phillips PII: S001-1(0)001-1

More information

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS MICHAEL HOLST AND FAISAL SAIED Abstract. We consider multigrid and domain decomposition methods for the numerical

More information

Neighbor Tables Long-Range Potentials

Neighbor Tables Long-Range Potentials Neighbor Tables Long-Range Potentials Today we learn how we can handle long range potentials. Neighbor tables Long-range potential Ewald sums MSE485/PHY466/CSE485 1 Periodic distances Minimum Image Convention:

More information

CS 542G: The Poisson Problem, Finite Differences

CS 542G: The Poisson Problem, Finite Differences CS 542G: The Poisson Problem, Finite Differences Robert Bridson November 10, 2008 1 The Poisson Problem At the end last time, we noticed that the gravitational potential has a zero Laplacian except at

More information

Improved Solvation Models using Boundary Integral Equations

Improved Solvation Models using Boundary Integral Equations Improved Solvation Models using Boundary Integral Equations Matthew Knepley and Jaydeep Bardhan Computational and Applied Mathematics Rice University SIAM Conference on the Life Sciences Minneapolis, MN

More information

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

Review: From problem to parallel algorithm

Review: From problem to parallel algorithm Review: From problem to parallel algorithm Mathematical formulations of interesting problems abound Poisson s equation Sources: Electrostatics, gravity, fluid flow, image processing (!) Numerical solution:

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

Numerical Solution of Nonlinear Poisson Boltzmann Equation

Numerical Solution of Nonlinear Poisson Boltzmann Equation Numerical Solution of Nonlinear Poisson Boltzmann Equation Student: Jingzhen Hu, Southern Methodist University Advisor: Professor Robert Krasny A list of work done extended the numerical solution of nonlinear

More information

Iterative Methods for Ill-Posed Problems

Iterative Methods for Ill-Posed Problems Iterative Methods for Ill-Posed Problems Based on joint work with: Serena Morigi Fiorella Sgallari Andriy Shyshkov Salt Lake City, May, 2007 Outline: Inverse and ill-posed problems Tikhonov regularization

More information

University of Illinois at Chicago Department of Physics

University of Illinois at Chicago Department of Physics University of Illinois at Chicago Department of Physics Electromagnetism Qualifying Examination January 4, 2017 9.00 am - 12.00 pm Full credit can be achieved from completely correct answers to 4 questions.

More information

Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms

Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms Dmitry Yershov and Steve LaValle Computer Science niversity of Illinois at rbana-champaign WAFR 2010 December 15, 2010

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM)

Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM) Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM) James R. Nagel September 30, 2009 1 Introduction Numerical simulation is an extremely valuable tool for those who wish

More information

Robust solution of Poisson-like problems with aggregation-based AMG

Robust solution of Poisson-like problems with aggregation-based AMG Robust solution of Poisson-like problems with aggregation-based AMG Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Paris, January 26, 215 Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

On the adaptive finite element analysis of the Kohn-Sham equations

On the adaptive finite element analysis of the Kohn-Sham equations On the adaptive finite element analysis of the Kohn-Sham equations Denis Davydov, Toby Young, Paul Steinmann Denis Davydov, LTM, Erlangen, Germany August 2015 Denis Davydov, LTM, Erlangen, Germany College

More information

CLASSICAL ITERATIVE METHODS

CLASSICAL ITERATIVE METHODS CLASSICAL ITERATIVE METHODS LONG CHEN In this notes we discuss classic iterative methods on solving the linear operator equation (1) Au = f, posed on a finite dimensional Hilbert space V = R N equipped

More information

Poisson Equation in 2D

Poisson Equation in 2D A Parallel Strategy Department of Mathematics and Statistics McMaster University March 31, 2010 Outline Introduction 1 Introduction Motivation Discretization Iterative Methods 2 Additive Schwarz Method

More information

Simulation of a simple electron gun. David Moore 1 San Diego Miramar College

Simulation of a simple electron gun. David Moore 1 San Diego Miramar College Simulation of a simple electron gun David Moore 1 San Diego Miramar College (Dated: 3 December 2013) In this paper the properties of a cylindrically symmetric five component electron gun are calculated

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

TUTORIAL 7. Discussion of Quiz 2 Solution of Electrostatics part 1

TUTORIAL 7. Discussion of Quiz 2 Solution of Electrostatics part 1 TUTORIAL 7 Discussion of Quiz 2 Solution of Electrostatics part 1 Quiz 2 - Question 1! Postulations of Electrostatics %&''()(*+&,-$'.)/ : % (1)!! E # $$$$$$$$$$ & # (2)!" E # #! Static Electric field is

More information

Fast Multipole Methods

Fast Multipole Methods An Introduction to Fast Multipole Methods Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park http://www.umiacs.umd.edu/~ramani Joint work with Nail A. Gumerov

More information

arxiv: v1 [math.na] 10 Oct 2014

arxiv: v1 [math.na] 10 Oct 2014 Unconditionally stable time splitting methods for the electrostatic analysis of solvated biomolecules arxiv:1410.2788v1 [math.na] 10 Oct 2014 Leighton Wilson and Shan Zhao Department of Mathematics, University

More information

Electrodynamics PHY712. Lecture 3 Electrostatic potentials and fields. Reference: Chap. 1 in J. D. Jackson s textbook.

Electrodynamics PHY712. Lecture 3 Electrostatic potentials and fields. Reference: Chap. 1 in J. D. Jackson s textbook. Electrodynamics PHY712 Lecture 3 Electrostatic potentials and fields Reference: Chap. 1 in J. D. Jackson s textbook. 1. Poisson and Laplace Equations 2. Green s Theorem 3. One-dimensional examples 1 Poisson

More information

Numerical tensor methods and their applications

Numerical tensor methods and their applications Numerical tensor methods and their applications 8 May 2013 All lectures 4 lectures, 2 May, 08:00-10:00: Introduction: ideas, matrix results, history. 7 May, 08:00-10:00: Novel tensor formats (TT, HT, QTT).

More information

7 Mathematical Methods 7.6 Insulation (10 units)

7 Mathematical Methods 7.6 Insulation (10 units) 7 Mathematical Methods 7.6 Insulation (10 units) There are no prerequisites for this project. 1 Introduction When sheets of plastic and of other insulating materials are used in the construction of building

More information

Numerical Methods for PDE-Constrained Optimization

Numerical Methods for PDE-Constrained Optimization Numerical Methods for PDE-Constrained Optimization Richard H. Byrd 1 Frank E. Curtis 2 Jorge Nocedal 2 1 University of Colorado at Boulder 2 Northwestern University Courant Institute of Mathematical Sciences,

More information

Motivation: Sparse matrices and numerical PDE's

Motivation: Sparse matrices and numerical PDE's Lecture 20: Numerical Linear Algebra #4 Iterative methods and Eigenproblems Outline 1) Motivation: beyond LU for Ax=b A little PDE's and sparse matrices A) Temperature Equation B) Poisson Equation 2) Splitting

More information

Numerical Simulation of the Hagemann Entrainment Experiments

Numerical Simulation of the Hagemann Entrainment Experiments CCC Annual Report UIUC, August 14, 2013 Numerical Simulation of the Hagemann Entrainment Experiments Kenneth Swartz (BSME Student) Lance C. Hibbeler (Ph.D. Student) Department of Mechanical Science & Engineering

More information

Molecular Modeling -- Lecture 15 Surfaces and electrostatics

Molecular Modeling -- Lecture 15 Surfaces and electrostatics Molecular Modeling -- Lecture 15 Surfaces and electrostatics Molecular surfaces The Hydrophobic Effect Electrostatics Poisson-Boltzmann Equation Electrostatic maps Electrostatic surfaces in MOE 15.1 The

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM)

1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM) 1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM) 1.1 Introduction In this work, performances of two most widely

More information

Solvation and Macromolecular Structure. The structure and dynamics of biological macromolecules are strongly influenced by water:

Solvation and Macromolecular Structure. The structure and dynamics of biological macromolecules are strongly influenced by water: Overview Solvation and Macromolecular Structure The structure and dynamics of biological macromolecules are strongly influenced by water: Electrostatic effects: charges are screened by water molecules

More information

Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation

Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation Bo Li Math Dept & CTBP, UCSD Li-Tien Cheng (Math, UCSD) Zhongming Wang (Math & Biochem, UCSD) Yang Xie (MAE,

More information

INGENIERÍA EN NANOTECNOLOGÍA

INGENIERÍA EN NANOTECNOLOGÍA ETAPA DISCIPLINARIA TAREAS 385 TEORÍA ELECTROMAGNÉTICA Prof. E. Efren García G. Ensenada, B.C. México 206 Tarea. Two uniform line charges of ρ l = 4 nc/m each are parallel to the z axis at x = 0, y = ±4

More information

PDE Metric Solution. Gleb Kotousov Supervised by Vladimir Bazhanov Research School of Physics and Engineering Australian National University.

PDE Metric Solution. Gleb Kotousov Supervised by Vladimir Bazhanov Research School of Physics and Engineering Australian National University. PDE Metric Solution Gleb Kotousov Supervised by Vladimir Bazhanov Research School of Physics and Engineering Australian National University Abstract The following report details the research carried out

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

Error Analysis of the Poisson P 3 MForce Field Scheme for Particle-Based Simulations of Biological Systems

Error Analysis of the Poisson P 3 MForce Field Scheme for Particle-Based Simulations of Biological Systems Journal of Computational Electronics 4: 179 183, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. Error Analysis of the Poisson P 3 MForce Field Scheme for Particle-Based

More information

Non-bonded interactions

Non-bonded interactions speeding up the number-crunching continued Marcus Elstner and Tomáš Kubař December 3, 2013 why care? number of individual pair-wise interactions bonded interactions proportional to N: O(N) non-bonded interactions

More information

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG. Lehrstuhl für Informatik 10 (Systemsimulation)

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG. Lehrstuhl für Informatik 10 (Systemsimulation) FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 1 (Sstemsimulation) Efficient hierarchical grid coarsening

More information

Monte Carlo Method for Finding the Solution of Dirichlet Partial Differential Equations

Monte Carlo Method for Finding the Solution of Dirichlet Partial Differential Equations Applied Mathematical Sciences, Vol. 1, 2007, no. 10, 453-462 Monte Carlo Method for Finding the Solution of Dirichlet Partial Differential Equations Behrouz Fathi Vajargah Department of Mathematics Guilan

More information

Moment of inertia. Contents. 1 Introduction and simple cases. January 15, Introduction. 1.2 Examples

Moment of inertia. Contents. 1 Introduction and simple cases. January 15, Introduction. 1.2 Examples Moment of inertia January 15, 016 A systematic account is given of the concept and the properties of the moment of inertia. Contents 1 Introduction and simple cases 1 1.1 Introduction.............. 1 1.

More information

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012 First-order overdetermined systems for elliptic problems John Strain Mathematics Department UC Berkeley July 2012 1 OVERVIEW Convert elliptic problems to first-order overdetermined form Control error via

More information

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia University of Groningen Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia IMPORTANT NOTE: You are advised to consult the publisher's version

More information

Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects

Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects Statistical Thermodynamics Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects Dr. Ronald M. Levy ronlevy@temple.edu Bare Molecular Mechanics Atomistic Force Fields: torsion

More information

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. Alouges, et al., Int. J. Comp. Meth. and Ep. Meas., Vol. 5, No. 3 (07) 387 394 APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. ALOUGES, M. AUSSAL, A. LEFEBVRE-LEPOT, F. PIGEONNEAU

More information

when viewed from the top, the objects should move as if interacting gravitationally

when viewed from the top, the objects should move as if interacting gravitationally 2 Elastic Space 2 Elastic Space The dynamics and apparent interactions of massive balls rolling on a stretched horizontal membrane are often used to illustrate gravitation. Investigate the system further.

More information

Non-bonded interactions

Non-bonded interactions speeding up the number-crunching Marcus Elstner and Tomáš Kubař May 8, 2015 why care? key to understand biomolecular structure and function binding of a ligand efficiency of a reaction color of a chromophore

More information

On the hydrodynamic diffusion of rigid particles

On the hydrodynamic diffusion of rigid particles On the hydrodynamic diffusion of rigid particles O. Gonzalez Introduction Basic problem. Characterize how the diffusion and sedimentation properties of particles depend on their shape. Diffusion: Sedimentation:

More information

Scientific Computing II

Scientific Computing II Technische Universität München ST 008 Institut für Informatik Dr. Miriam Mehl Scientific Computing II Final Exam, July, 008 Iterative Solvers (3 pts + 4 extra pts, 60 min) a) Steepest Descent and Conjugate

More information

1. Poisson-Boltzmann 1.1. Poisson equation. We consider the Laplacian. which is given in spherical coordinates by (2)

1. Poisson-Boltzmann 1.1. Poisson equation. We consider the Laplacian. which is given in spherical coordinates by (2) 1. Poisson-Boltzmann 1.1. Poisson equation. We consider the Laplacian operator (1) 2 = 2 x + 2 2 y + 2 2 z 2 which is given in spherical coordinates by (2) 2 = 1 ( r 2 ) + 1 r 2 r r r 2 sin θ θ and in

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Long-range interactions: P 3 M, MMMxD, ELC, MEMD and ICC

Long-range interactions: P 3 M, MMMxD, ELC, MEMD and ICC Long-range interactions: P 3 M, MMMxD, ELC, MEMD and ICC Axel Arnold Institute for Computational Physics Universität Stuttgart October 10, 2012 Long-range interactions gravity Coulomb interaction dipolar

More information

INTRODUCTION TO MULTIGRID METHODS

INTRODUCTION TO MULTIGRID METHODS INTRODUCTION TO MULTIGRID METHODS LONG CHEN 1. ALGEBRAIC EQUATION OF TWO POINT BOUNDARY VALUE PROBLEM We consider the discretization of Poisson equation in one dimension: (1) u = f, x (0, 1) u(0) = u(1)

More information

Iterative Helmholtz Solvers

Iterative Helmholtz Solvers Iterative Helmholtz Solvers Scalability of deflation-based Helmholtz solvers Delft University of Technology Vandana Dwarka March 28th, 2018 Vandana Dwarka (TU Delft) 15th Copper Mountain Conference 2018

More information

Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems

Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems z Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems Johan Helsing Lund University Talk at Integral equation methods: fast algorithms and applications, Banff,

More information

Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications

Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications Gisela Pöplau Ursula van Rienen Rostock University DESY, Hamburg, April 26, 2005 Bas van der Geer Marieke de Loos Pulsar Physics

More information

Implementing Spherical Harmonics in the Poisson Boltzmann Equation for the Electrostatic-Potential. Alex Heitman Mentors: Dr. Madura Dr.

Implementing Spherical Harmonics in the Poisson Boltzmann Equation for the Electrostatic-Potential. Alex Heitman Mentors: Dr. Madura Dr. Implementing Spherical Harmonics in the Poisson Boltzmann Equation for the Electrostatic-Potential Alex Heitman Mentors: Dr. Madura Dr. Fleming Background - Potential Electrostatic Potential why important?

More information

Notes for Lecture 10

Notes for Lecture 10 February 2, 26 Notes for Lecture Introduction to grid-based methods for solving Poisson and Laplace Equations Finite difference methods The basis for most grid-based finite difference methods is the Taylor

More information

RBF-FD Approximation to Solve Poisson Equation in 3D

RBF-FD Approximation to Solve Poisson Equation in 3D RBF-FD Approximation to Solve Poisson Equation in 3D Jagadeeswaran.R March 14, 2014 1 / 28 Overview Problem Setup Generalized finite difference method. Uses numerical differentiations generated by Gaussian

More information

Shifted Laplace and related preconditioning for the Helmholtz equation

Shifted Laplace and related preconditioning for the Helmholtz equation Shifted Laplace and related preconditioning for the Helmholtz equation Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Schlumberger Gould Research), Martin Gander (Geneva) Douglas

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 34: Improving the Condition Number of the Interpolation Matrix Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Physics 2001 Problem Set 9 Solutions

Physics 2001 Problem Set 9 Solutions Physics 2001 Problem Set 9 Solutions Jeff Kissel December 4, 2006 1. A cube of concrete has a side of length l = 0.150 m. Within the volume of the cube, there are two spherical cavities, each with radius

More information

(b) Show that the charged induced on the hemisphere is: Q = E o a 2 3π (1)

(b) Show that the charged induced on the hemisphere is: Q = E o a 2 3π (1) Problem. Defects This problem will study defects in parallel plate capacitors. A parallel plate capacitor has area, A, and separation, D, and is maintained at the potential difference, V = E o D. There

More information

Bootstrap AMG. Kailai Xu. July 12, Stanford University

Bootstrap AMG. Kailai Xu. July 12, Stanford University Bootstrap AMG Kailai Xu Stanford University July 12, 2017 AMG Components A general AMG algorithm consists of the following components. A hierarchy of levels. A smoother. A prolongation. A restriction.

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations Poisson s and Laplace s Equations Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We will spend some time in looking at the mathematical foundations of electrostatics.

More information

Physics 9 Spring 2012 Midterm 1 Solutions

Physics 9 Spring 2012 Midterm 1 Solutions Physics 9 Spring 22 NAME: TA: Physics 9 Spring 22 Midterm s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please

More information

Downloaded 06/02/16 to Redistribution subject to SIAM license or copyright; see

Downloaded 06/02/16 to Redistribution subject to SIAM license or copyright; see SIAM J. SCI. COMPUT. Vol. 38, No. 3, pp. A1538 A1560 c 2016 Society for Industrial and Applied Mathematics A FINITE ELEMENT BASED P 3 MMETHODFORN-BODY PROBLEMS NATALIE N. BEAMS, LUKE N. OLSON, AND JONATHAN

More information

Introduction to Electrostatics

Introduction to Electrostatics Chapter 1 Introduction to Electrostatics Problem Set #1: 1.5, 1.7, 1.12 (Due Monday Feb. 11th) 1.1 Electric field Coulomb showed experimentally that for two point charges the force is -proportionaltoeachofthecharges,

More information

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines Lecture 3. Electric Field Flux, Gauss Law Last Lecture: Electric Field Lines 1 iclicker Charged particles are fixed on grids having the same spacing. Each charge has the same magnitude Q with signs given

More information

SOLVING ELLIPTIC PDES

SOLVING ELLIPTIC PDES university-logo SOLVING ELLIPTIC PDES School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 POISSON S EQUATION Equation and Boundary Conditions Solving the Model Problem 3 THE LINEAR ALGEBRA PROBLEM

More information

Solving the 3D Laplace Equation by Meshless Collocation via Harmonic Kernels

Solving the 3D Laplace Equation by Meshless Collocation via Harmonic Kernels Solving the 3D Laplace Equation by Meshless Collocation via Harmonic Kernels Y.C. Hon and R. Schaback April 9, Abstract This paper solves the Laplace equation u = on domains Ω R 3 by meshless collocation

More information

Multiscale Modelling, taking into account Collisions

Multiscale Modelling, taking into account Collisions Multiscale Modelling, taking into account Collisions Andreas Adelmann (Paul Scherrer Institut) October 28, 2017 Multiscale Modelling, taking into account Collisions October 28, 2017 Page 1 / 22 1 Motivation

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Is My CFD Mesh Adequate? A Quantitative Answer

Is My CFD Mesh Adequate? A Quantitative Answer Is My CFD Mesh Adequate? A Quantitative Answer Krzysztof J. Fidkowski Gas Dynamics Research Colloqium Aerospace Engineering Department University of Michigan January 26, 2011 K.J. Fidkowski (UM) GDRC 2011

More information

Continuum Electrostatics for Ionic Solutions with Nonuniform Ionic Sizes

Continuum Electrostatics for Ionic Solutions with Nonuniform Ionic Sizes Continuum Electrostatics for Ionic Solutions with Nonuniform Ionic Sizes Bo Li Department of Mathematics and Center for Theoretical Biological Physics (CTBP) University of California, San Diego, USA Supported

More information

G pol = 1 2 where ρ( x) is the charge density at position x and the reaction electrostatic potential

G pol = 1 2 where ρ( x) is the charge density at position x and the reaction electrostatic potential EFFICIENT AND ACCURATE HIGHER-ORDER FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR POISSON BOLTZMANN ELECTROSTATICS CHANDRAJIT BAJAJ SHUN-CHUAN CHEN Abstract. The Poisson-Boltzmann equation is a partial differential

More information

SUMMARY PHYSICS 707 Electrostatics. E(x) = 4πρ(x) and E(x) = 0 (1)

SUMMARY PHYSICS 707 Electrostatics. E(x) = 4πρ(x) and E(x) = 0 (1) SUMMARY PHYSICS 707 Electrostatics The basic differential equations of electrostatics are E(x) = 4πρ(x) and E(x) = 0 (1) where E(x) is the electric field and ρ(x) is the electric charge density. The field

More information

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II November 5, 207 Prof. Alan Guth FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 207 A few items below are marked

More information

Iterative Methods for Ax=b

Iterative Methods for Ax=b 1 FUNDAMENTALS 1 Iterative Methods for Ax=b 1 Fundamentals consider the solution of the set of simultaneous equations Ax = b where A is a square matrix, n n and b is a right hand vector. We write the iterative

More information

Lecture notes for ELECTRODYNAMICS.

Lecture notes for ELECTRODYNAMICS. Lecture notes for 640-343 ELECTRODYNAMICS. 1 Summary of Electrostatics 1.1 Coulomb s Law Force between two point charges F 12 = 1 4πɛ 0 Q 1 Q 2ˆr 12 r 1 r 2 2 (1.1.1) 1.2 Electric Field For a charge distribution:

More information