Spin dynamics and exchange interaction in semiconductor quantum dots

Size: px
Start display at page:

Download "Spin dynamics and exchange interaction in semiconductor quantum dots"

Transcription

1 Spin dynamics and exchange interaction in semiconductor quantum dots Thierry AMAND Laboratoire de Nanophysique, Magnétisme et Opto-électronique de Toulouse (FRE LPMC UPS-INSA-CNRS n 686) Spin-electronics and Spin-optoelectronics in Semiconductors Bad Honnef, -3 November 003

2 Outline From magneto-electronics electronics to spintronics Spin relaxation in semiconductor nanostructures Intrinsic quantum dots (QD): X 0 exchange fine structure and pseudo-spin spin relaxation quenching. Negatively charged QDs : X spin relaxation quenching, spin memory of resident electrons with short optical pulses Multicharged exciton : X, X 3... Conclusion, perspectives

3 Spintronics in semiconductor quantum nanostructures Magnetoelectronics : based on GMR, TMR in metallic ferromagnetic (nano)structures devices : magnetic positioning sensors, reading heads, MRAMs Spintronics : Use spin degree of freedom in addition of charge in SC based devices spin magneto-optoelectronic devices : Spin effect Transistor Spin-LED, Spin-VCSEL Single electron spin memories in Quantum dots Entangled photon pair sources Spin-based quantum gates (C-NOT, Spin rotation )

4 Spintronics in semiconductor quantum nanostructures The problems to deal with : Spin injection into semiconductors - Well known optical pumping techniques (rely on spin-orbit interaction) - From a spin aligner : DMS under magnetic field (CdMnTe, II Mn VI...) ferromagnetic SC (GaMnAs, ) Ferromagnetic metal (Fe, Co) (see poster B. Liu, H. Carrère et al. ) or half metal (Fe O 3 ) Control of spin relaxation mechanism Crystal orientation, localisation of electron wave function Control of spin precession Magnetic field, electric field, g-tensor engineering Spin transport Spin diffusion length

5 Outline From magneto-electronics electronics to spintronics Spin relaxation in semiconductor nanostructures Intrinsic quantum dots (QD): X 0 exchange fine structure and pseudo-spin spin relaxation quenching. Negatively charged QDs : X spin relaxation quenching, spin memory of resident electrons with short optical pulses Multicharged exciton : X, X 3... Conclusion, perspectives

6 Spin interaction mechanisms Spin orbit coupling : Elliot-Yafet (1963) Spin orbit induced spin flip during momentum scattering τ ~ s τ k D Yakonov-Perel (1971) crystal with inversion asymmetry Electron-hole exchange interaction : Bir-Aronov-Pikus (1975) p-doped material Electron-nuclear hyperfine interaction : Overhauser (1958), Lampel (1968) electrons localised on donors S = ( ΩBIA + ΩSIA) S τ <<1 H e h exc = Ω k τ 1 s ~ Ω τ k H e h SR H=Aˆ. I Sˆ + H τ e h LR 1 s ~ π e h H exc N hole 1 τ s ~ AI ( I + 1) / V loc

7 Spin relaxation mechanisms EA, DP and BAP spin relaxation mechanisms closely linked to E(k) 3D Electron spin relaxation times : τ s,e ~ ns range (10 K) D : Single particle processes : spin-flip D Yakonov and Kachorovskii (1986) : electron spin relaxation in QW (~ 100 ps) suppression in [110] GaAs/AlGaAs QW (Y. Ohno et al., 1999) τ s,e ~ 0 300K Ferreira-Bastard (1991) : Hole spin relaxation in quantum wells (QW) (10ps-1ns) quenching of heavy-hole spin relaxation at small k (X. Marie et al. 1999) Two particles process : spin flip-flop M. Z. Maialle, E. Andrada et Silva, Sham et al. (1993) (MAS) : Electron-hole exchange interaction in D exciton : s X LT X, k τ s,x ~ 10 ps τ 1, ~ Ω τ

8 Optical orientation in quantum wells σ + Oz AlGaAs/GaAs/AlGaAs s z -1/> 1/> σ + σ j z 3/> -3/> Electrons (CB) HH (VB) k = D EXCITONS (HH) J z =j z +s z J=1 Circular excitation 1 = 3/, 1/ 1 = 3/,1/ J= + σ + σ 0 k = 0 X = Linear excitation ( ) Y = σ X σ Y ( 1 1 ) i 0 0

9 Exciton spin relaxation in QW GaAs/AlGaAs quantum wells Circular (σ + ) excitation 3x10 8 cm - 4x10 9 6x10 9 RESONANT EXCITATION : T s1 ~ ps S. Bar-Ad et al., PRL 68 (199) A. Vinattieri et al., PRB 50 (1994) T. Amand et al., PRL 78 (1997) Linear excitation 10 9 cm - 5x10 9 x TIME (ps) T s ~ 0-50 ps R.Worsley et al., PRL 76 (1996) X. Marie et al., PRL (1997) Fast exciton spin relaxation due to internal (P circ,,mas) or mutual exciton exchange (P lin ) Spin relaxation in QW- microcavities : See poster by P. Renucci et al.

10 Spin dynamics in Quantum Dots Discrete energy levels Slowing down of the spin relaxation? localised electrons in bulk SC : mutual e-e anisotropic exchange (DM) * R. I. Dzhioev et al., Soviet Phys. JETP 56 (198) Electron bound to * J. M. Kikkawa et al. Phys. Lett. 7, 1341 (1998) donors in GaAs : * K. Kavokin PRB 64 (001) τ SA ~ 100 ns! Single QD cw spectroscopy: * D. Gammon et al., Science 73 (1996) GaAs QD * Kuther et al., PRB 58 (1998) InGaAs QD Time-resolved spectroscopy in QD s * M. Chamarro et al., J. Lum. (1996) * D. Awschalom et al., PRB 59 (1999) CdSe QD * Gotoh et al. Appl. Phys. Lett. 7, 1341 (1998) Theory * A. Khaetski, Y. Nazarov, PRB 61,(000) * Merkulov et al., PRB 65 (00)

11 Electronic states in quantum dots J.P. Mc Caffey et al., JAP 88, 7(000) GaAs barrier (3D states) Wetting layer (D states) Conduction band D(E) Discrete energy levels Excited levels CB ground state c p x, y c s s hh hh p x, y Valence band E s, p : carrier envelope orbital state

12 Single QD spectroscopy substrate back contact tunnel barrier InAs rings blocking barrier AlAs/GaAs gate charge tuneable structures V g 1 Fermi energy V g 1,90 X 0 X 1- X - X 3-1,85 Energy (ev) 1,80 1,75 R.J. Warburton, et al., Nature 405, 96 (000) 1,70 WL charged -0,6-0,4-0, 0,0 0, Gate Voltage (V g )

13 Single QD spectroscopy : charged exciton states cw spectroscopy using confocal microscope + sub-micron mask B. Urbaszek, et al., Phys. Rev. Lett. 90, (003). Fine structure splitting PL (counts) Determination of the relevant interparticle exchange energies (without B) 0 1,10 1,11 1,1 1,13 0 X V X - x 0 1,1 1,13 1,14 X 1- X V X 1- x V 1,13 1,14 1,15 Energy (ev)

14 Outline From magneto-electronics electronics to spintronics Spin relaxation in semiconductor nanostructures Intrinsic quantum dots (QD): X 0 exchange fine structure and pseudo-spin spin relaxation quenching. Negatively charged QDs : X spin relaxation quenching, spin memory of resident electrons with short optical pulses Multicharged exciton : X, X 3... Conclusion, perspectives

15 InAs/GaAs Quantum Dots Self-organized QD Anisotropic exchange interaction 1 X>=( 1>+ -1>)/ // [110] Y>=( 1>- -1>)/ // [1-10] GaAs Exciton fine structure 150 µev Single dot cw spectroscopy Bayer et al., PRL 8 (1999)

16 Exciton fine structure in quantum dots D d 1, + 1, 1, 1 C v X (110) 1 Y (110 ) 1 s c s v ± s c s v X 0 0 << 1, +,, electron-hole exchange parameters : 0 : dark/bright splitting 1 : interfaces/shape asymmetry {(1,1,0), (1,-1,0)} R. I. Dzhioev et al., JETP Lett., 65, 804 (1997); C. Gourdon et al. Phys. Rev. B 46, 4644 (199)

17 Exciton fine structure in quantum dots : electron-hole exchange effective Spin Hamiltonian : K. V. Kavokin, Phys. Stat. Sol. 00 Hˆ exc e h = = 0 0 j j Z Z s s Z Z ( j s j s ) + ( j s + j s ) X ( ) j s + j s + ( j s + j s ) + X Y Y + X + X + Y Y s : electron spin j : heavy hole pseudo-spin states (neglect light holes) ± 1 3 hole 0 : short range contribution ~ 500 µev 1 : short + long range contributions (couple bright excitons, J=1) ~ µev : short range contribution (couple dark excitons, J=) ~ 0-50 µev

18 Pseudo-spin spin relaxation quenching of the X 0 ground state Resonant photo-generation of linear excitons : X 0 Time resolved PL spectroscopy σ x P L 1 I I = X Y I + I 0.75 No measurable decay τ s1 > 0 ns! X Y s c s v + Strong linear polarization s c s v Intensity (arb. units) σ X, T=10 K Time (ps) I X 0.4 I Y 0. Linear Polarization Neither the electron, nor the hole spin relax on the exciton time scale M. Paillard et al, PRL 86 (001)

19 X 0 PL linear polarisation dynamics/temperature Strong temperature dependence for T > 30 K Activation energy E a ~ 30 mev 1 Linear Polarization 0.1 Time decay 10K 30K 40K 50K 60K 70K 80K /kT Time (ps) Temperature dependence on spin relaxation in QD : see poster M. Sénès, X. Marie et al.

20 Mechanism for linear exciton spin relaxation Two (InAs) LO phonon quasi-resonant nd order process Yields an activation energy of ~ 30 mev at low temperature ( s (S c, c p hh,s hh ) ) 1 T N S LO N = e LO ( N Ω kt LO LO 1 + 1) 1 1 Ω kt T S e LO,T 0 Bimberg and Grundmann PRB (1999) E. Tsitsishvili et al. Phys. Rev. B 66 (00)

21 Exciton Spin coherence quantum beats in QD s self-assembled InAs/GaAs ensemble of small QD s σ + circularly-polarized laser excitation creates 1 the quantum superposition : ψ = ( X + i Y ) Intensity 1400 period = 140 ps P = 40 mw ω exc = ev ω det = 1.30 ev τ decay = 900 ps τ s,inhom = 75 ps I + exp I - exp Fit I + Fit I Time (ps) Pc exp Fit Pc 0,6 0,3 0,0-0,3-0,6-0,9 Circular Polarisation Y X g 1 σ + 1 ~ 30 µev Damping : spin dephasing due to inhomogeneous broadening ω LO Time resolved PL spectroscopy : M. Sénès et al. (004)

22 Exciton states under longitudinal magnetic field QD EXCITON EIGENSTATES : B z = 0 B z 0 +1> X>=( 1>+ 1>)/ Y>=( 1> 1>)/i 1 Linear σ X excitation Linearly-polarized PL Ω z = ( g + g ) µ B >> e Ωz Circular σ + excitation Circularly-polarized PL h B 1> z 1

23 Spin dynamics in longitudinal magnetic field PL circular polarisation dynamics σ + circularly-polarized laser resonant excitation M. Paillard et al, PRL 86 (001) T=1.7 K σ + σ + B =.5T σ σ + 1,0 0, ,0 Circular Polarization (quasi-circular eigenstates) No decay regardless of the magnetic field value up to 5 T The electron and hole spins are totally frozen at low temperature

24 Spin Dynamics under magnetic field Pseudo-spin formalism for QD exciton : S = 1/ (R.I. Dzhioev et al., Phys. of Solid State 40, 790 (1998)) X> et Y> S x =1/ et 1/ P Lin = S x +1> et -1> S z =1/ et 1/ P C = S z Z z S Z (0) B z H = Pump σ + σ x S Z (0) S X (0) ( ωσ + Ω σ ) x Inhomogeneous system z z 1 =ω S z (t) = ω S (t) S x (t) X σ x(z) : Pauli matrixes S ( x+ωz z) S t Ω. S(0) S( ) Ω Ω average

25 Orientation - alignment conversion Circular polarisation 1,0 0,8 0,6 0,4 0, σ + exc. P C P C ~ Ω ω + ~ ω laser ~ ' 0, ,5 0,4 0,3 0, 0,1 P C P Lin laser ~ ω ' ~ ~ ω Ω z ~ + Ω z ~ ~ + ω + Ω z 0, z σ X exc. Linear polarisation 1,0 0,8 0,6 0,4 0, σ X exc. Magnetic field (T) ~ ω laser. ~ ~ ~ ' ω + ω + Ω z P Lin P Lin 0, ,5 0,4 0,3 0, 0,1 P Lin P C laser ~ ~ ω. Ω ~ ω ' z ~ ~ + ω + Ω z σ + exc. 0, ~ ω ω ~ Ω Ω ( ) average ( ) average g e + g hh ~3 M.Bayer et al., Phys. Rev. Lett. 8, 1748 (1999) 1/ 1 10 µev

26 Circular/Linear polarisation under longitudinal magnetic field Resonant excitation of : σ + s c s v or 1 s c s v + σ x (elliptical eigenstates) s c s v X 0 Polarisation decay time ( ps ) σ + σ + σ x σ x P exc = 1 mw λ exc = 1100 nm B = 0.4 T Tem perature (K) X 0 Circular polarisation more robust against temperature than linear polarisation Temperature dependence on spin relaxation in QD : see poster M. Sénès, X. Marie et al.

27 Outline From magneto-electronics electronics to spintronics Spin relaxation in semiconductor nanostructures Intrinsic quantum dots (QD): X 0 exchange fine structure and pseudo-spin spin relaxation quenching. Negatively charged QDs : X spin relaxation quenching, spin memory of resident electrons with short optical pulses Multicharged exciton : X, X 3... Conclusion, perspectives

28 The X complex : QD trion cw non resonant excitation s c s v s c s v X or sc s v s c s v X - PL (counts) ,1 1,13 1,14 X V X 1- x 0 1,13 1,14 1,15 Energy (ev) (ev) The trion ground state doublet is not split by anisotropy (Kramers theorem)

29 N-doped self-assembled InAs/GaAs QDs ensemble time resolved PL, non resonant excitation PL Intensity. (arb. units) p c v x -p x First excited state 00 ps 600 ps 1000 ps 1400 ps 1800 ps s c -s v Ground State nm 40 nm InAs Si InAs Si GaAs W avelength (nm) - observation of far-ir intraband absorption around 43 mev - observation of luminescence in strictly resonant excitation ~1 doping electron/qd

30 Spin dynamics of trion states X in doped QD Resonant σ + excitation Photo-generation of : s c s v P c σ + 1 I I + + I I 0.7 No measurable decay T s1 > 0 ns! = + s c s v Strong circular polarization s c s v X - Intensity (arb. units) I - T=10 K Time (ps) I + 1 0,1 0,01 M. Sénès et al. 6th ICPS, Edinburg (00) Circular Polarization Hole spin stability in the ground state trion

31 Circular polarisation dynamics in charged QD Non resonant σ + excitation in the wetting layer (1.44 ev) : Intensity (arb. units) I + I - T= 10 K Time (ps) Two regimes : - Fast initial sign reversal (~10 ps) - slow evolution of the negative polarization down to -50% (~ 1 ns) - power dependent effect in cw S. Cortez et al., M. Sénès et al. Phys. Rev. Lett. 89, (00) 0, 0,0-0, -0,4-0,6 Circular polarisation Intensity (arb. units) I Time (ps) I - 0,3 0, 0,1 0,0-0,1-0, Circular polarisation

32 Circular polarisation dynamics in charged QD Simplified theoretical interpretation (without fine structure of excited trions) : We suppose that : the hole spin is completely depolarized before its capture in the dots we photo-inject only a single electron-hole pair per dots ( low excitation intensity). At t = 0, there are 4 possible configurations for the dots: Bright Dark «Unpolarized trions» Exchange Fast energy relaxation (~1ps) 3/ -3/ Pauli blocking 3/ -3/

33 Circular polarisation dynamics in charged QD Evolution of bright trion : AEI σ ++ 3/ - 3/ σ Fast simultaneous electron/hole spin flip ( ~10 ps ) due to electron-hole exchange interaction 1 After a fast energy relaxation, the trion is stable negative circular polarisation emitted Evolution of dark trion : SOI dark - 3/ - 3/ σ Slow single particle spin flip ( τ S 1 ns ) of the P c electron (Spin-Orbit Interaction). Same final state as bright trions, σ - emitted Experimentally, we don t observe any effect due to the dark state splitting

34 Circular polarisation dynamics in charged QD resident electron : or t = 0 + AEI σ + dark σ + σ Emission circular polarization : P = +33 % 3/ -3/ 3/ -3/ time t > τ flip -flop σ σ + σ dark P = 33 % -3/ -3/ 3/ -3/ t > τ e spin-flip σ σ + σ σ P = 50 % -3/ 3/ -3/ -3/

35 Circular polarisation dynamics in charged QD n 1 : S 0 s v (σ + PL) n : S 0 s v (σ - PL) Unpolarised trions n 3 : T -1 s v (σ + PL) n 4 : T -1 s v (σ - PL) bright trion dark trion dn dt 1 dn dt dn dt 3 dn dt 4 n = τ 1 r n = τ n = τ r 3 r n = τ ( n 4 sf n + τ n τ + n 1 3 P circ = ( n1 + n3) + 3 ff 3 ff n + τ ) n n 4 sf Circular polarisation 0,4 τ r =700 ps WL σ + excitation 10K τ ff =60 ps 0, τ sf =800 ps 0,0-0, -0,4-0,6-0,8 experiment model Time (ps)

36 H Iˆ Excited Trion X fine structure ( ˆj Iˆ ~ ˆj Iˆ ) + ( ˆj Iˆ + ˆj Iˆ ) + η ~ ˆj Kˆ + η ~ ( ˆj Kˆ ˆj Kˆ ) + η ~ ( ˆj Kˆ ˆj Kˆ ) ex 3 ~ ˆ e e h e e jziˆ ~,, = + 0 z + 1 x x y y x x y y 0 z z 1 x x y y x x + 4 I ˆ = s + s ˆ1 ˆ Kˆ = s s ˆ1 ˆ ~ = 1 s_ p ( s i s i + ) i x _ ~ η = 1 s_ p ( s i s i ) i x _ y i=0,1, y Symmetric QD : S * 0 s v or The isotropic e-h exchange splits the electron triplet Asymmetric QD : s c,p c,s v e e 5 ~ ~ mev 0 0 v T 1 s,t + 1 v T 0 s or v T 1 s,t + 1 s s v v (bright) (dark) The anisotropic e-h exchange couples optically active triplet states with excited singlet s c,s c,s v E 45meV s p S 0 s v or

37 Circular polarisation dynamics in charged QD Intra-dot σ + circular excitation (d v -d c ) λ exc =9478 A λ det =10850 A Intensity (arb.units) σ + σ + σ σ + τ r =700ps τ ff =0 ps τ sf =800 ps 1,0 0,8 0,6 0,4 0, 0,0 Circular polarisation Time (ps) Fast (~0 ps) depolarisation, no negative circular polarisation

38 Circular polarisation dynamics in charged QD Intra-dot σ + circular excitation (d v -d c ) photogeneration of X t = 0 AEI Emission circular polarization : σ + σ + P = +100 % time 3/ 3/ t > τ flip -flop σ σ + P = 0-3/ 3/ Experimentally, τ flip-flop ~ 0 ps Hole spin stable during intra-dot relaxation

39 Spin memory in charged QD - to write and read the spin of a resident electron in N-doped self- assembled quantum dot using non resonant polarized light excitation - spin state non limited by the radiative lifetime or Wetting layer «gap» 1.4 ev σ+ Ground state luminescence 1.15 ev

40 Spin memory in charged QD Circular polarisation induced by the pump pulse onto the luminescence of a linearly-polarised probe Delay Pump-induced circular polarisation (%) Pumpσ + - Pump pulse σ + Probe σ X - Probe pulse σ x, delay >> τ rad - Circular polarisation of the time-integrated luminescence associated to the probe pulse Spin relaxation time of resident electron ~ 15 ns S. Cortez et al., M. Sénès et al. Phys. Rev. Lett. 89 (00)

41 Spin dynamics of trion states X in doped QDs Temperature dependence of the negative circular polarisation Non resonant σ + excitation in the wetting layer Circular Polarisation 0,4 0, 0,0-0, -0,4-0,6 10 K 30 K 50 K 70 K 90 K 0,4 0, 0,0-0, -0,4-0,6-0, ,8 Time (ps)

42 Outline From magneto-electronics electronics to spintronics Spin relaxation in semiconductor nanostructures Intrinsic quantum dots (QD): X 0 exchange fine structure and pseudo-spin spin relaxation quenching. Negatively charged QDs : X spin relaxation quenching, spin memory of resident electrons with short optical pulses Multicharged exciton : X, X 3... Conclusion, perspectives

43 X - single dot spectroscopy S 0 * T ±1 T 0 0 * final state :, T ±1,T I(T ±1 ) = I(T 0 ) S0 0 T +1 T 0 S 0 * s c -p xc e-e exchange: (ee) 7 mev s v -p xc e-h exchange: X eh 0 = _ Broad Singlet final state : τ relax (S 0 * S 0 ) p x s 0. 1meV /Γ ~ 1 ps B. Urbaszek et al. Phys. Rev. Lett. 90, (003).

44 X 3- single dot spectroscopy PL (counts) a p c x 0 1,10 1,11 1,1 1,13 E < X ee X 3- E s c s v p c y X 3- Energy (ev) weakly asymmetric QDs : -0.14V S=1 S=3/ S=1/ or Fine structure splitting : ( ) eh eh X + X 0. mev 0 = px _ s p y _ s ( ) eh eh eh X p s + X p _ s X p _ s ( X ) X eh px_ s y _ x 3 x different value for if 1 or electrons in the p-shell ( X ) B. Urbaszek et al. Phys. Rev. Lett. 90, (003).

45 Spin dynamics of trion states X 3 in doped QDs Intra-dot σ + circular excitation (p v -p c ) Intensity (a.u.) σ + σ + σ σ Time (ps) 70 K 30 K 10 K X 3- spin relaxation 10 K P circ = 0% Temperature activation : E a ~ 10 mev PSSN symposium, Kyoto (003) : Intensity (a.u.) Intensity (a.u.) 1000 WL σ + circular excitation σ + σ + σ σ + λ exc = 860 nm λ det = 1045 nm P = 50 mw T = 10 K Time (ps) λ exc = 860 nm λ det = 1045 nm P = 50 mw T = 90 K Time (ps) counter polarised PL (σ ) 1,0 0,5 0,0-0,5 0,4 0, 0,0-0, -0,4 Circular Polarization

46 Spin dynamics of trion states X 3 in doped QDs strongly asymmetric QDs : b E > X ee X 3- p c x p c y or S=0 S=1/ S=-1/ Single emission line, p s broadened by fast relaxation (~1 ps) c x c

47 Spin dynamics of trion states X 3 in doped QDs Intra-dot σ + circular excitation (p v -p c ) p xc resident electron : or AEI Emission circular polarization : t = 0 σ + σ + σ + P = +100 % time 3/ 3/ 3/ t > τ flip -flop σ σ + σ + P = + 33 % -3/ 3/ 3/ Activation energy E a E(p yc ) - E(p xc ) for spin relaxation

48 Spin dynamics of trion states X 3 in doped QDs WL excite σ + AEI t = 0 P = 0 σ + σ + σ + σ σ σ 3/ 3/ 3/ SOI -3/ -3/ -3/ t > τ flip -flop P = 33 % σ σ + σ + σ σ σ -3/ 3/ 3/ -3/ -3/ -3/ t > τ e spin-flip P = 33 % σ σ + σ + σ σ σ -3/ 3/ 3/ -3/ -3/ -3/

49 CW / Time resolved PL spectroscopy X : τ 1 flip flop X ~ τ S 1 * px _ s s _ s 1 1 px _ s px _ s s _ s _ e _ e ( ) / S τ * ~ 1 S _ S ps p s e x e s _ 0 p x s _ s 0 s _ s 1 : X singlet/triplet splitting (~ 5-7 mev) : X triplet fine structure (~ 0. mev) : X biexciton fine structure (~ 0.6 mev) { } : X 0 X, Y fine structure (~ µev) measured (cw-pl, transmission) p x _ s px _ s px _ s 1 : scaling 1 0? s _ s τ s _ s flip-flop ~ 100 ps 1 X 3 : 0 s _ s p 1 y _ s : Replace 1(0) by 1(0) τ flip flop 3 > τ flip flop p s p X X x _ p y τ 3 flip flop X e x e e _ e

50 Spin dynamics in QD s : conclusion, perspectives Comparison of cw-single dot and TRPL on QD ensembles exchange interaction plays a major role, spin-orbit interaction strongly reduced X 0 : - exciton ground state : anisotropic e-h exchange, fine structure - τ s,x ~ 0 ns, T 30 K, quenching of spin relaxation processes X : interest : manipulate localised spins with optical pulses - ground state trion : e-h exchange cancellation stable hole τ s,hh ~ 0 10 K - excited trion : e-h exchange efficient in anisotropic QD s τ ff ~ ps hole spin is stable in intra-dot relaxation - resident electron spin memory effect : τ s,e K long term spin decoherence : hyperfine interaction with nuclear spin? anisotropic exchange between localised electron? X n :- fine structure due to e-e exchange in final state (n > 1) - general trend : incomplete conduction electron orbital strong e-h exchange, τ ff all orbitals doublet filled e-h exchange cancelled

51 Conclusion, perspectives Time resolved experiments on single QD with time resolution < 0 ps Charge tuneable structure : X 0, X, X n Excitation with shaped optical pulses (chirped pulses ) light induced spin-spin coupling (C. Piermarocchi et al. Phys. Rev. Lett. 00) Other QD systems : Si QD? (QW : τ se ~ 1-10 µs), but optics?

52 Acknowledgements : Co-workers in Toulouse : Quantum Opto-electronic group, LNMO : X. Marie M. Sénès B. Urbaszek P. Renucci H. Carrère E. Vanelle Collaborations : S. Cortez, O. Krebs, P. Voisin, LPN (Marcoussis) R. Ferreira, G. Bastard, LPMC de l ENS (Paris) J.M. Gérard, CEA (Grenoble) R. J. Warburton, Heriot Watt University (Edimburg) B. D. Gerardot, P. M. Petroff, Univ. of California (Santa Barbara) H. Kalt, E. Tsitsishvili, (Karlsruhe) K. Kavokin, V. Kalevich, V. Ustinov, Ioffe Institute (St Petersburg)

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013248 TITLE: Spin Coherence in Semiconductor Nanostructures DISTRIBUTION: Approved for public release, distribution unlimited

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Optical Manipulation of an Electron Spin in Quantum Dots

Optical Manipulation of an Electron Spin in Quantum Dots Optical Manipulation of an Electron Spin in Quantum Dots Al. L. Efros Naval Research Laoratory, Washington DC, USA Acknowledgements: DARPA/QuIST and ONR Kavli Institute for Theoretical Physics, UC Santa

More information

Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot

Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot Physics Physics Research Publications Purdue University Year 2005 Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot M. E. Ware, E. A. Stinaff, D.

More information

Spin Transport in III-V Semiconductor Structures

Spin Transport in III-V Semiconductor Structures Spin Transport in III-V Semiconductor Structures Ki Wook Kim, A. A. Kiselev, and P. H. Song Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911 We

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Spin Lifetime Measurements in MBE-Grown GaAs Epilayers

Spin Lifetime Measurements in MBE-Grown GaAs Epilayers phys. stat. sol. (b) 233, No. 3, 445 452 (2002) Spin Lifetime Measurements in MBE-Grown GaAs Epilayers J. S. Colton 1 ), T. A. Kennedy, A. S. Bracker, and D. Gammon Naval Research Laboratory, Washington

More information

Hole - Nuclear Spin Interaction in Quantum Dots

Hole - Nuclear Spin Interaction in Quantum Dots 1 Hole - Nuclear Spin Interaction in Quantum Dots B. Eble (1), C. Testelin (1), P. Desfonds (1), F. Bernardot (1), A. Balocchi (2), T. Amand (2), A. Miard (3), A. Lemaître (3), X. Marie (2) and M. Chamarro

More information

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, D. D. Awschalom* Center for Spintronics and Quantum

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

arxiv: v2 [cond-mat.mes-hall] 6 Apr 2011

arxiv: v2 [cond-mat.mes-hall] 6 Apr 2011 Electron spin relaxation as evidence of excitons in a two dimensional electron-hole plasma arxiv:1103.2474v2 [cond-mat.mes-hall] 6 Apr 2011 S. Oertel, 1 S. Kunz, 1 D. Schuh, 2 W. Wegscheider, 3 J. Hübner,

More information

Spin relaxation in low-dimensional systems

Spin relaxation in low-dimensional systems J. Phys.: Condens. Matter 11 (1999) 5929 5952. Printed in the UK PII: S0953-8984(99)01386-7 Spin relaxation in low-dimensional systems LViña Departamento de Física de Materiales C-IV-510, Universidad Autónoma

More information

Spin Dynamics in Single GaAs Nanowires

Spin Dynamics in Single GaAs Nanowires 1 Dr. Max Mustermann Referat Kommunikation & Marketing Verwaltung Spin Dynamics in Single GaAs Nanowires F. Dirnberger, S. Furthmeier, M. Forsch, A. Bayer, J. Hubmann, B. Bauer, J. Zweck, E. Reiger, C.

More information

Fundamental concepts of spintronics

Fundamental concepts of spintronics Fundamental concepts of spintronics Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 24. 8. 2008 SFB 689 :outline: what is spintronics? spin injection spin-orbit

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Table of List of contributors Preface page xi xv Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 1 Growth of III V semiconductor quantum dots C.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

doi: /PhysRevB

doi: /PhysRevB doi: 10.1103/PhysRevB.75.125322 Nuclear-spin effects in singly negatively charged InP quantum dots Bipul Pal, 1, * Sergey Yu. Verbin, 2,3, Ivan V. Ignatiev, 2,3 Michio Ikezawa, 1 and Yasuaki Masumoto 1

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

arxiv: v1 [cond-mat.mes-hall] 15 Jun 2012

arxiv: v1 [cond-mat.mes-hall] 15 Jun 2012 Optical control of the spin state of two Mn atoms in a quantum dot ariv:126.3491v1 [cond-mat.mes-hall] 15 Jun 212 L. Besombes, 1, C.L. Cao, 1, 2 S. Jamet, 1 H. Boukari, 1 and J. Fernández-Rossier 2, 3

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff, M.E. Ware, J.G. Tischler, D. Park, A. Shabaev, and A.L. Efros Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff,

More information

Magnetic control of valley pseudospin in monolayer WSe 2

Magnetic control of valley pseudospin in monolayer WSe 2 Magnetic control of valley pseudospin in monolayer WSe 2 Grant Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, Jiaqiang Yan, David G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, and Xiaodong Xu

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne Quantum Dot Lasers Ecole Polytechnique Fédérale de Lausanne Outline: Quantum-confined active regions Self-assembled quantum dots Laser applications Electronic states in semiconductors Schrödinger eq.:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

Exciton spin relaxation in resonantly excited CdTe/ZnTe self-assembled quantum dots

Exciton spin relaxation in resonantly excited CdTe/ZnTe self-assembled quantum dots Exciton spin relaxation in resonantly excited CdTe/ZnTe self-assembled quantum dots S. Mackowski, T.A. Nguyen, T. Gurung, K. Hewaparkarama, H.E. Jackson, and L.M. Smith Department of Physics, University

More information

Supplementary material: Nature Nanotechnology NNANO D

Supplementary material: Nature Nanotechnology NNANO D Supplementary material: Nature Nanotechnology NNANO-06070281D Coercivities of the Co and Ni layers in the nanowire spin valves In the tri-layered structures used in this work, it is unfortunately not possible

More information

Optical orientation and spin dynamics in semiconductors

Optical orientation and spin dynamics in semiconductors Optical orientation and spin dynamics in semiconductors Xavier MARIE Laboratoire de Physique et Chimie des Nano-Objets (INSA-CNRS-UPS), Institut National des Sciences Appliquées Toulouse, FRANCE Goslar,

More information

Enhancement of the electron spin memory by localization on donors in a quantum well

Enhancement of the electron spin memory by localization on donors in a quantum well Enhancement of the electron spin memory by localization on donors in a quantum well J. Tribollet 1), E. Aubry 1), G. Karczewski 2), B. Sermage 3), F. Bernardot 1), C. Testelin 1) and M. Chamarro 1) (1)

More information

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Charging steps are labeled by the vertical dashed lines. Intensity

More information

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots S. Spatzek, 1 A. Greilich, 1, * Sophia E. Economou, 2 S. Varwig, 1 A. Schwan, 1 D. R. Yakovlev, 1,3 D. Reuter, 4 A.

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Quantum optics with multi-level transitions in semiconductor quantum dots

Quantum optics with multi-level transitions in semiconductor quantum dots Quantum optics with multi-level transitions in semiconductor quantum dots Brian Gerardot Institute of Photonics and Quantum Sciences, SUPA Heriot-Watt University, Edinburgh, UK Confocal Quantum Coherent

More information

Optically controlled spin-polarization memory effect on Mn delta-doped heterostructures

Optically controlled spin-polarization memory effect on Mn delta-doped heterostructures Optically controlled spin-polarization memory effect on Mn delta-doped heterostructures M. A. G. Balanta 1,2,*, M. J. S. P. Brasil 1, F. Iikawa 1, Udson C. Mendes 1,3, J. A. Brum 1,Yu. A. Danilov 4, M.

More information

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS Romanian Reports in Physics, Vol. 63, No. 4, P. 1061 1069, 011 A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS H. ARABSHAHI Payame Nour University of Fariman, Department

More information

arxiv: v1 [cond-mat.mes-hall] 26 Aug 2010

arxiv: v1 [cond-mat.mes-hall] 26 Aug 2010 Direct measurement of the hole-nuclear spin interaction in single quantum dots E. A. Chekhovich 1, A. B. Krysa 2, M. S. Skolnick 1, A. I. Tartakovskii 1 1 Department of Physics and Astronomy, University

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Charge noise and spin noise in a semiconductor quantum device

Charge noise and spin noise in a semiconductor quantum device Charge noise and spin noise in a semiconductor quantum device Andreas V. Kuhlmann, 1 Julien Houel, 1 Arne Ludwig, 1, 2 Lukas Greuter, 1 Dirk Reuter, 2, 3 Andreas D. Wieck, 2 Martino Poggio, 1 and Richard

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

Optical Properties of Manganese-Doped Individual CdTe Quantum Dots

Optical Properties of Manganese-Doped Individual CdTe Quantum Dots Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Optical Properties of Manganese-Doped Individual CdTe Quantum Dots

More information

arxiv: v1 [cond-mat.mtrl-sci] 13 Sep 2013

arxiv: v1 [cond-mat.mtrl-sci] 13 Sep 2013 Fabrication of an InGaAs spin filter by implantation of paramagnetic centers C. T. Nguyen, A. Balocchi, D. Lagarde, T. T. Zhang, H. Carrère, S. Mazzucato, P. Barate, T. Amand, and X. Marie arxiv:1309.3434v1

More information

Physcis Today 55 N.10 p.36 October 2002

Physcis Today 55 N.10 p.36 October 2002 Feature Article Optical Studies of Single Quantum Dots Like atoms, quantum dots can be probed and manipulated with light. Unlike atoms, they can be customized. Daniel Gammon and Duncan G. Steel Atomic

More information

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada Parte III Sergio E. Ulloa Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University,

More information

Optical Orientation of Excitons in CdSe Self-Assembled Quantum Dots

Optical Orientation of Excitons in CdSe Self-Assembled Quantum Dots Optical Orientation of Excitons in CdSe Self-Assembled Quantum Dots S. Mackowski*, T. Gurung, H. E. Jackson, and L. M. Smith Department of Physics University of Cincinnati, Cincinnati OH 45221-0011, USA

More information

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia Ultrafast optical rotations of electron spins in quantum dots A. Greilich 1*, Sophia E. Economou 2, S. Spatzek 1, D. R. Yakovlev 1,3, D. Reuter 4, A. D. Wieck 4, T. L. Reinecke 2, and M. Bayer 1 1 Experimentelle

More information

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Persistent spin helix in spin-orbit coupled system Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Persistent spin helix in spin-orbit coupled system Jake Koralek, Chris Weber, Joe Orenstein

More information

Teleportation of electronic many- qubit states via single photons

Teleportation of electronic many- qubit states via single photons (*) NanoScience Technology Center and Dept. of Physics, University of Central Florida, email: mleuenbe@mail.ucf.edu, homepage: www.nanoscience.ucf.edu Teleportation of electronic many- qubit states via

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

Coherence of an Entangled Exciton-Photon State

Coherence of an Entangled Exciton-Photon State Coherence of an Entangled Exciton-Photon State A. J. Hudson,2, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll 2, P. Atkinson 2, K. Cooper 2, D. A. Ritchie 2 and A. J. Shields. Toshiba Research

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Decay of spin polarized hot carrier current in a quasi. one-dimensional spin valve structure arxiv:cond-mat/ v1 [cond-mat.mes-hall] 10 Oct 2003

Decay of spin polarized hot carrier current in a quasi. one-dimensional spin valve structure arxiv:cond-mat/ v1 [cond-mat.mes-hall] 10 Oct 2003 Decay of spin polarized hot carrier current in a quasi one-dimensional spin valve structure arxiv:cond-mat/0310245v1 [cond-mat.mes-hall] 10 Oct 2003 S. Pramanik and S. Bandyopadhyay Department of Electrical

More information

Bright and dark exciton transfer in quantum dot arrays Anna Rodina

Bright and dark exciton transfer in quantum dot arrays Anna Rodina Bright and dark exciton transfer in quantum dot arrays Anna Rodina Ioffe Institute, St. Petersburg, Russia Collaboration and publications: [1] A. N. Poddubny, A. V. Rodina, Nonradiative and radiative Förster

More information

Electrical spin-injection into semiconductors

Electrical spin-injection into semiconductors Electrical spin-injection into semiconductors L. W. Molenkamp Physikalisches Institut Universität Würzburg Am Hubland 97074 Würzburg Germany Contents Motivation The usual approach Theoretical treatment

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Electron and Nuclear Spin Interactions in the Optical Spectra of Single GaAs Quantum Dots

Electron and Nuclear Spin Interactions in the Optical Spectra of Single GaAs Quantum Dots Electron and Nuclear Spin Interactions in the Optical Spectra of Single GaAs Quantum Dots D. Gammon, Al. L. Efros, T. A. Kennedy, M. Rosen, D. S. Katzer, and D. Park Naval Research Laboratory, Washington,

More information

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) :Syllabus: 1. Introductory description 2. Elliott-Yafet spin relaxation and spin hot spots 3.

More information

Quantum beat spectroscopy as a probe of angular momentum polarization in chemical processes. Mark Brouard

Quantum beat spectroscopy as a probe of angular momentum polarization in chemical processes. Mark Brouard Quantum beat spectroscopy as a probe of angular momentum polarization in chemical processes. Mark Brouard The Department of Chemistry Oxford University Gas Kinetics Meeting, Leeds, September 2007 The Pilling

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL,

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL, This is the viewgraph with the recorded talk at the 26th International Conference on Physics of Semiconductor (ICPS26, Edinburgh, 22). By clicking the upper-left button in each page, you can hear the talk

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

Spin selective Purcell effect in a quantum dot microcavity system

Spin selective Purcell effect in a quantum dot microcavity system Spin selective urcell effect in a quantum dot microcavity system Qijun Ren, 1 Jian Lu, 1, H. H. Tan, 2 Shan Wu, 3 Liaoxin Sun, 1 Weihang Zhou, 1 Wei ie, 1 Zheng Sun, 1 Yongyuan Zhu, 3 C. Jagadish, 2 S.

More information

Spin injection. concept and technology

Spin injection. concept and technology Spin injection concept and technology Ron Jansen ャンセンロン Spintronics Research Center National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan Spin injection Transfer of spin

More information

THREE-dimensional electronic confinement in semiconductor

THREE-dimensional electronic confinement in semiconductor IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 43, NO. 3, MARCH 2007 287 Differential Gain and Gain Compression in Quantum-Dot Lasers Andrea Fiore and Alexander Markus Abstract The dynamics of optical gain

More information

Spin scattering in nonmagnetic semiconductors

Spin scattering in nonmagnetic semiconductors Spin scattering in nonmagnetic semiconductors Spin state Wave function: ψ Spin densit matri: ρ ψ OR, s ϕ, ϕ, ρ ρ, s ψ, s ρ ρ In general, it should be ρ, ; s, s Use Wigner s function to get ρ K, R; s, s

More information

Image courtesy of Keith Schwab http://www.lbl.gov/science-articles/archive/afrd Articles/Archive/AFRD-quantum-logic.html http://www.wmi.badw.de/sfb631/tps/dqd2.gif http://qist.lanl.gov/qcomp_map.shtml

More information

Optically induced Hall effect in semiconductors

Optically induced Hall effect in semiconductors Optically induced Hall effect in semiconductors M. Idrish Miah 1,2 and E. MacA. Gray 1 1 Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111, Australia. 2 Department

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Valley Zeeman Effect of free and bound excitons in WSe2

Valley Zeeman Effect of free and bound excitons in WSe2 Valley Zeeman Effect of free and bound excitons in WSe2 Ajit Srivastava Quantum Photonics Group ETH Zurich, Switzerland 24.01.2014 TMD Research Motivation Optical control of spins & pseudo-spins 2D optical

More information

Columnar quantum dots (QD) in polarization insensitive SOA and non-radiative Auger processes in QD: a theoretical study

Columnar quantum dots (QD) in polarization insensitive SOA and non-radiative Auger processes in QD: a theoretical study olumnar quantum dots (QD) in polarization insensitive SOA and non-radiative Auger processes in QD: a theoretical study J. Even, L. Pedesseau, F. Doré, S. Boyer-Richard, UMR FOTON 68 NRS, INSA de Rennes,

More information

The story so far: Today:

The story so far: Today: The story so far: Devices based on ferromagnetism have found tremendous utility in technology. Ferromagnetism at the nm scale is increasingly important, and physical effects (e.g. superparamagnetism) not

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Springer Series in Solid-State Sciences 115 Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Bearbeitet von Jagdeep Shah erweitert 1999. Buch. xvi, 522 S. Hardcover ISBN 978 3

More information

Entangled photon pairs from radiative cascades in semiconductor quantum dots

Entangled photon pairs from radiative cascades in semiconductor quantum dots Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI Original phys. stat. sol. (b, 1 5 (26 / DOI 1.12/pssb.267152 Entangled

More information