GEO 428: Raster Analysis II Tuesday, October 16, 2012

Size: px
Start display at page:

Download "GEO 428: Raster Analysis II Tuesday, October 16, 2012"

Transcription

1 GEO 428: Raster Analysis II Tuesday, October 16, 2012 Input raster may require reclassification May be done by multiplying by a scalar - DEM = DEM - 25 May also require an either/or function Ex: Identify all cells in the DEM higher than 600 m. Conditional Statements If... then... else... If (DEM > 600, out = 1, else out = 0) - Is this local, focal, or something else? In GRASS New Grid = if(conditional, true, false) r.mapcalc 'Outgrid = if(dem > 600, 1, 0)' In ArcGIS/ArcGrid New Grid = CON(conditional, true, false) Outgrid = CON(DEM > 600, 1, 0) Masking Portions of a Raster Suppose we want to evaluate landslide risk for urban areas in a study Need to remove (mask) risk from all other areas How can this be done using a conditional? Answer urbrisk = if(lc == 4, sliderisk, 0) Multiple grids can be used in a statement Setting NULL GRASS: Must explicitly set null urbrisk = if(lc == 4, sliderisk, null()) ArcGIS/ ArcGRID: If no false argument is provided, output cell gets NODATA value urbrisk = CON(LC == 4, sliderisk) Complex Conditionals Elevations between m needed. Conditional looks like this: If (DEM > 600 AND < 700, out = 1, else out = 0) GRASS Approaches Nested if functions out = if(dem > 600, if(dem < 700, 1, 0), 0) Compound condition statement out = if(dem > 600 && DEM < 700, 1, 0) ArcGRID Approaches Nested CON Commands out = CON(DEM > 600, CON(DEM < 700, 1, 0), 0) Nested Conditional Statements out = CON(DEM > 600, DEM < 700, 1, 0, 0) Compound condition statement out = CON(DEM > 600 & DEM < 700, 1, 0) Key is making sure all the arguments are there!

2 Buffering Not as clear as in vector Entire cell must be in or out Two approaches Expand a class out a set number of cells r.grow (GRASS) Calculate distance from a set of cells, then classify distance based on cutoff r.grow.distance (GRASS) Buffer Examples 1. Growing or Expanding Expands around features (non-null cells) Growth radius in cells, NOT ground distance! 2. Distance / Reclass First calculate distance around features (non-null) Then use conditional to extract target distances Project Design & Management Analysis may involve many steps How to plan these steps? How to organize work? How to communicate process to others? Stages of Management Identify project objectives Develop plan for attaining them efficiently Mobilize resources Identify and get appropriate data Set aside sufficient time, etc. Execute the plan Evaluate results, repeat as necessary Plan Design Raster analysis well-suited to flow charts Raster grids are rectangles Input data / intermediate steps / final results Grids connected by arrows Identifies task flow Arrows are functions / operations A Simple Example Objective: determine all south facing locations South = degrees (GRASS!) Needed Data: DEM Tasks Calculate Aspect from DEM Reclassify Aspect so that Locations facing between equal 1 Other locations equal 0

3 Results Aspect Reclassified via: Out = if(asp > 225 & asp < 315, 1, 0) Extended Example Objective: ID Areas Suitable for Logging Criteria: Jackpine forest only Not within 500m of water Low Slopes (< 5%) Well drained soils Available Data 2.5 km x 2.5 km area 500m resolution Layer 1: Lake 1 = Lake 0 = No lake Layer 2: Forest Species 1 = Black Spruce 2 = Jackpine 3 = No forest Layer 3: Elevation (meters) Layer 4: Soil Drainage 0 = waterlogged 1 = poor 2 = good Unary Steps Buffer / Spread 1 to near lake (1.1) Then get inverse for away from lake (1.2) Reclassify 2 to loggable species (2.1) Calculate slope from 3 (3.1) Reclassify Slope to low / high (3.2) Reclassify 4 to well-drained (4.1) Binary Steps Intersect away from lake with species 1.2 overlain with 2.1 (5) Intersect (overlay) low slopes with soils 3.2 overlain with 4.1 (6) Intersect species/soils with away/slopes 5 overlain with 6 (7) Result (7) is a suitability map! Flow Diagram of Project

4 Obtaining 'away from lake' Calculate distance from lake r.grow.distance -> dist_11 Use conditional function If (lake_dist > 1, out = 1, else out = 0) Away_12 = if(dist_11 > 1, 1, 0) Alternative Approach Calculate buffer of 1 around lake r.grow -> buff_ll Then swap the 1's and 0's Use conditional statement Away_12 = if(buff_11 == 1, 1, 0) OR, do some math Away_12 = 1 buff_11 Obtaining 'loggable species' Use conditional function If (species_2 = 2, out = 1, else out = 0) Pine_21 = if(species_2 == 2, 1, 0) Obtaining 'low slope' Calculate percent slope r.slope.aspect -> Perslope_31 (in percent!) Reclassify slope map using conditional Lowslope_32 = if(perslope < 5, 1, 0) Obtaining 'well drained' Use conditional function If (drain_4 = 2, out = 1, else out = 0) Welld_41 = if(drain_4 == 2, 1, 0) Intersections To intersect two binary raster grid layers logical AND operation Multiply them together! 1 x 1 = 1 1 x 0 = 0 0 x 1 = 0 0 x 0 = 0 Intersection 1 Intersect away_12 with pine_21 Suit_5 = away_12 * pine_21 Intersection 2 Intersect lowslope_32 with welld_41 Suit_6 = lowslope_32 * welld_

5 Intersection 3 Intersect suit_5 with suit_6 Logsites_7 = suit_5 * suit_6 Final Results: 2 locations are suitable! Flow Diagram Hood River Project Study area in Oregon along Columbia River 1:250k DEM, LULC Dataset The Dalles (w) quadrangle Projected, moved to common reference system Project Identify potential sites for housing development near Hood River, OR. Objectives Low slope (less than 5%) Agricultural Land Within 2000 m. of River Input Data Flow Diagram Low Slope per_slope <- r.slope.aspect (percent) low_slope = if(per_slope < 5, 1, 0) Agriculture ag = if(lu ==2, 1, 0) Close to River River = if(lu == 5, null()) GRASS: null() = NODATA r.grow.distance (input=river, distance=rivdist) near_riv = if(rivdist < 2000, 1, 0) Results Weighting Analysis Discussion has focused on Boolean Analysis 1's and 0's Often range of Weights may be better Cells with higher weights have more influence Themes with larger weights have more influence Use Addition, not Multiplication

6 Example Habitat Suitability: Elevation > 250 m. is best Elevation between 220 and 250 is ok Elevation between 200 and 220 is poor Elevation < 200 is unacceptable Determining Weights Law, Regulation, or Physical Requirement EPA Guidelines Temperature Elevation relationship Species Range of tolerance Expert Opinion Use of multiple weighting schemes Compare results Determine how different they are Effect of Weights Elevation Range example If DEM only factor, cell values may be changed by weighting Changes influence if other raster layers also used Then grids with relatively higher weights influence outcome more Allows some themes to be more important than others Operation Change Add - don't multiply! Mixing Weights with Boolean In logging example Jackpine preferable to spruce (2, 1) Well-drained preferable to poorly drained (2, 1) Saturated soil NOT an option No Forest NOT an option How to combine? Example Boolean & Weights Create no forest / forest map Create not saturated / saturated map Bool = Forest * Not_Sat Suit = ( Species + Drain ) * Bool Weighted Logging Example Objective: Find most desirable locations for logging Use data below, same criteria as in example Forest species twice as important as drainage! Construct flow diagram include the algebra! Calculate answer Answer

7 Weighted Habitat Example Saginaw Creeper Habitat Identification Only found on north-facing slopes Likes elevations between meters Can live on agricultural land, but: 3x more likely to be in forests Data DEM Land Cover: 1:urban, 2:ag, 3:pinefor, 4:oakfor Answer Ambiguous Combinations Consider a land cover change problem Land Cover (1978) vs Land Cover (2000) Classes: 1 (forest), 2 (ag), 3 (urban) How to id those areas that have changed? 0 = no change, 1 = changed Landcover Change LCDIFF = LC78 LC2K CHANGE = if (LCDIFF == 0, 0, 1) 0 = No Change; Any other number = Change What does -1 stand for in LCDiff? LCDiff Avoiding Ambiguity Reclass one input raster so values are very different, e.g.: LC78B = LC78 * 10 DIFFB = LC78B LC2K Resulting values are non-ambiguous Also see r.cross in GRASS Summary Conditional Functions Masking (Zonal Stuff) Buffering Rasters Managing Spatial Analysis Flow Diagrams for Raster Analysis Example Applications Weighting Inputs Differently Avoiding Ambiguity in change LC78B DIFFB

Lab 7: Cell, Neighborhood, and Zonal Statistics

Lab 7: Cell, Neighborhood, and Zonal Statistics Lab 7: Cell, Neighborhood, and Zonal Statistics Exercise 1: Use the Cell Statistics function to detect change In this exercise, you will use the Spatial Analyst Cell Statistics function to compare the

More information

GIS IN ECOLOGY: ANALYZING RASTER DATA

GIS IN ECOLOGY: ANALYZING RASTER DATA GIS IN ECOLOGY: ANALYZING RASTER DATA Contents Introduction... 2 Raster Tools and Functionality... 2 Data Sources... 3 Tasks... 4 Getting Started... 4 Creating Raster Data... 5 Statistics... 8 Surface

More information

Tutorial 8 Raster Data Analysis

Tutorial 8 Raster Data Analysis Objectives Tutorial 8 Raster Data Analysis This tutorial is designed to introduce you to a basic set of raster-based analyses including: 1. Displaying Digital Elevation Model (DEM) 2. Slope calculations

More information

Exercise 6: Working with Raster Data in ArcGIS 9.3

Exercise 6: Working with Raster Data in ArcGIS 9.3 Exercise 6: Working with Raster Data in ArcGIS 9.3 Why Spatial Analyst? Grid query Grid algebra Grid statistics Summary by zone Proximity mapping Reclassification Histograms Surface analysis Slope, aspect,

More information

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault Spatial Analysis of Raster Data 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 2 4 4 4 2 4 4 2 4 4 4 2 4 4 2 4 4 3 4 4 4 2 3 + = 0 = shale 1 = limestone 2 = fault 4 = no fault 2 =Fault in shale 3 = Fault in limestone

More information

Spatial Analysis of Raster Data

Spatial Analysis of Raster Data Spatial Analysis of Raster Data 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 2 4 4 4 2 4 5 5 4 2 4 4 4 2 5 5 4 4 2 4 5 4 3 5 4 4 4 2 5 5 5 3 + = 0 = shale 1 = limestone 2 = fault 4 = no fault 2 =Fault in shale 3 =

More information

Outcrop suitability analysis of blueschists within the Dry Lakes region of the Condrey Mountain Window, North-central Klamaths, Northern California

Outcrop suitability analysis of blueschists within the Dry Lakes region of the Condrey Mountain Window, North-central Klamaths, Northern California Outcrop suitability analysis of blueschists within the Dry Lakes region of the Condrey Mountain Window, North-central Klamaths, Northern California (1) Introduction: This project proposes to assess the

More information

GIS IN ECOLOGY: ANALYZING RASTER DATA

GIS IN ECOLOGY: ANALYZING RASTER DATA GIS IN ECOLOGY: ANALYZING RASTER DATA Contents Introduction... 2 Tools and Functionality for Raster Data... 2 Data Sources... 3 Tasks... 4 Getting Started... 4 Creating Raster Data... 5 Summary Statistics...

More information

Spatio-temporal models

Spatio-temporal models Spatio-temporal models Involve a least a three dimensional representation of one or more key attribute variation in planar (X-Y) space and through time. (a 4 th dimension could also be use, like Z for

More information

BASIC SPATIAL ANALYSIS TOOLS IN A GIS. data set queries basic statistics buffering overlay reclassification

BASIC SPATIAL ANALYSIS TOOLS IN A GIS. data set queries basic statistics buffering overlay reclassification BASIC SPATIAL ANALYSIS TOOLS IN A GIS data set queries basic statistics buffering overlay reclassification GIS ANALYSIS TOOLS GIS ANALYSIS TOOLS Database tools: query and summarize (similar to spreadsheet

More information

Raster Spatial Analysis Specific Theory

Raster Spatial Analysis Specific Theory RSATheory.doc 1 Raster Spatial Analysis Specific Theory... 1 Spatial resampling... 1 Mosaic... 3 Reclassification... 4 Slicing... 4 Zonal Operations... 5 References... 5 Raster Spatial Analysis Specific

More information

Delineation of high landslide risk areas as a result of land cover, slope, and geology in San Mateo County, California

Delineation of high landslide risk areas as a result of land cover, slope, and geology in San Mateo County, California Delineation of high landslide risk areas as a result of land cover, slope, and geology in San Mateo County, California Introduction Problem Overview This project attempts to delineate the high-risk areas

More information

Raster Analysis: An Example

Raster Analysis: An Example Raster Analysis: An Example Fires (1 or 4) Slope (1-4) + Geology (1-4) Erosion Ranking (3-12) 1 Typical Raster Model Types: Suitability Modeling: Where is optimum location? Distance Modeling: What is the

More information

Locating Abandoned Mines Using Processed Lidar Data

Locating Abandoned Mines Using Processed Lidar Data Locating Abandoned Mines Using Processed Lidar Data An Exercise in Extracting Determined Value Sets Using Known Data Locations. Geog593 Christopher Rowlette Wayne Coffey Intended Purpose of Analysis Currently

More information

Midterm Exam : Answer

Midterm Exam : Answer Midterm Exam : Answer Create a double-spaced document with answers to the questions below. File Name: LASTNAME_Midterm.pdf Make sure to include your Name, UWNetID, course number, quarter and year, and

More information

A Basic Introduction to Geographic Information Systems (GIS) ~~~~~~~~~~

A Basic Introduction to Geographic Information Systems (GIS) ~~~~~~~~~~ A Basic Introduction to Geographic Information Systems (GIS) ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland, Oregon 3 September

More information

Raster Analysis: An Example

Raster Analysis: An Example Raster Analysis: An Example Fires (1 or 4) Slope (1-4) + Geology (1-4) Erosion Ranking (3-12) 11/8/2016 GEO327G/386G, UT Austin 1 Typical Raster Model Types: Suitability Modeling: Where is optimum location?

More information

GIS in Water Resources Midterm Exam Fall 2008 There are 4 questions on this exam. Please do all 4.

GIS in Water Resources Midterm Exam Fall 2008 There are 4 questions on this exam. Please do all 4. Page 1 of 8 Name: GIS in Water Resources Midterm Exam Fall 2008 There are 4 questions on this exam. Please do all 4. 1. Basic Concepts [20 points] Find the letter with the best answer for each term: 1.

More information

High Speed / Commuter Rail Suitability Analysis For Central And Southern Arizona

High Speed / Commuter Rail Suitability Analysis For Central And Southern Arizona High Speed / Commuter Rail Suitability Analysis For Central And Southern Arizona Item Type Reports (Electronic) Authors Deveney, Matthew R. Publisher The University of Arizona. Rights Copyright is held

More information

Abstract: Contents. Literature review. 2 Methodology.. 2 Applications, results and discussion.. 2 Conclusions 12. Introduction

Abstract: Contents. Literature review. 2 Methodology.. 2 Applications, results and discussion.. 2 Conclusions 12. Introduction Abstract: Landfill is one of the primary methods for municipal solid waste disposal. In order to reduce the environmental damage and to protect the public health and welfare, choosing the site for landfill

More information

COMMON GIS TECHNIQUES FOR VECTOR AND RASTER DATA PROCESSING. Ophelia Wang, Department of Geography and the Environment, University of Texas

COMMON GIS TECHNIQUES FOR VECTOR AND RASTER DATA PROCESSING. Ophelia Wang, Department of Geography and the Environment, University of Texas COMMON GIS TECHNIQUES FOR VECTOR AND RASTER DATA PROCESSING Ophelia Wang, Department of Geography and the Environment, University of Texas PART I: BASIC VECTOR TOOLS CLIP A FEATURE BASED ON THE EXTENT

More information

Geoinformation in Environmental Modelling

Geoinformation in Environmental Modelling Geoinformation in Environmental Modelling Spatial analysis and modelling: grid data ENY-C2005 Salla Multimäki 18.1.2017 Topics today About spatial analysis and modelling Various viewpoints for categorizing

More information

Protocol for Prioritizing Conservation Opportunity Areas in Centre County and Clinton County

Protocol for Prioritizing Conservation Opportunity Areas in Centre County and Clinton County Protocol for Prioritizing Conservation Opportunity Areas in Centre County and Clinton County Chesapeake Conservancy has developed this methodology to prioritize conservation opportunity areas in Centre

More information

Introduction to ArcGIS Spatial Analyst

Introduction to ArcGIS Spatial Analyst Esri International User Conference San Diego, California Technical Workshops July 2011 Introduction to ArcGIS Spatial Analyst Steve Kopp Elizabeth Graham ArcGIS Spatial Analyst Integrated raster and vector

More information

SPATIAL MODELING GIS Analysis Winter 2016

SPATIAL MODELING GIS Analysis Winter 2016 SPATIAL MODELING GIS Analysis Winter 2016 Spatial Models Spatial Modeling attempts to represent how the world works All models are wrong, but some are useful (G.E. Box, quoted in course textbook pg. 379)

More information

Creating Watersheds from a DEM in ArcGIS 9.x

Creating Watersheds from a DEM in ArcGIS 9.x Creating Watersheds from a DEM in ArcGIS 9.x These instructions enable you to create watersheds (a.k.a. catchments or basins) using a good quality Digital Elevation Model (DEM) in ArcGIS 9.1. The modeling

More information

Basics of GIS. by Basudeb Bhatta. Computer Aided Design Centre Department of Computer Science and Engineering Jadavpur University

Basics of GIS. by Basudeb Bhatta. Computer Aided Design Centre Department of Computer Science and Engineering Jadavpur University Basics of GIS by Basudeb Bhatta Computer Aided Design Centre Department of Computer Science and Engineering Jadavpur University e-governance Training Programme Conducted by National Institute of Electronics

More information

Suitability Analysis on Second Home Areas Selection in Smithers British Columbia

Suitability Analysis on Second Home Areas Selection in Smithers British Columbia GEOG 613 Term Project Suitability Analysis on Second Home Areas Selection in Smithers British Columbia Zhengzhe He November 2005 Abstract Introduction / background Data Source Data Manipulation Spatial

More information

LANDSLIDE HAZARD ANALYSIS AND ITS EFFECT ON ENDANGERED SPECIES HABITATS, GRAND COUNTY, UTAH

LANDSLIDE HAZARD ANALYSIS AND ITS EFFECT ON ENDANGERED SPECIES HABITATS, GRAND COUNTY, UTAH 12/5/2016 LANDSLIDE HAZARD ANALYSIS AND ITS EFFECT ON ENDANGERED SPECIES HABITATS, GRAND COUNTY, UTAH GIS Final Project Ashlyn Murphy Fall 2016 1. Introduction and Problem A well-known geologic hazard

More information

Summary Description Municipality of Anchorage. Anchorage Coastal Resource Atlas Project

Summary Description Municipality of Anchorage. Anchorage Coastal Resource Atlas Project Summary Description Municipality of Anchorage Anchorage Coastal Resource Atlas Project By: Thede Tobish, MOA Planner; and Charlie Barnwell, MOA GIS Manager Introduction Local governments often struggle

More information

Creating Watersheds from a DEM

Creating Watersheds from a DEM Creating Watersheds from a DEM These instructions enable you to create watersheds of specified area using a good quality Digital Elevation Model (DEM) in ArcGIS 8.1. The modeling is performed in ArcMap

More information

Spatial Analyst: Multiple Criteria Evaluation Material adapted from FOR 4114 developed by Forestry Associate Professor Steve Prisley

Spatial Analyst: Multiple Criteria Evaluation Material adapted from FOR 4114 developed by Forestry Associate Professor Steve Prisley Spatial Analyst: Multiple Criteria Evaluation Material adapted from FOR 4114 developed by Forestry Associate Professor Steve Prisley Section 1: Data In this exercise we will be working with several types

More information

4. GIS Implementation of the TxDOT Hydrology Extensions

4. GIS Implementation of the TxDOT Hydrology Extensions 4. GIS Implementation of the TxDOT Hydrology Extensions A Geographic Information System (GIS) is a computer-assisted system for the capture, storage, retrieval, analysis and display of spatial data. It

More information

Introduction to GIS I

Introduction to GIS I Introduction to GIS Introduction How to answer geographical questions such as follows: What is the population of a particular city? What are the characteristics of the soils in a particular land parcel?

More information

SF House Site Suitability

SF House Site Suitability SF House Site Suitability Rick Waterman Geog621-13 12/9/04 For my final project I chose to create a site suitability model for a house in San Francisco. Being a new resident to San Francisco, I was interested

More information

Dr.Weerakaset Suanpaga (D.Eng RS&GIS)

Dr.Weerakaset Suanpaga (D.Eng RS&GIS) The Analysis of Discrete Entities i in Space Dr.Weerakaset Suanpaga (D.Eng RS&GIS) Aim of GIS? To create spatial and non-spatial database? Not just this, but also To facilitate query, retrieval and analysis

More information

Spatial Analyst. By Sumita Rai

Spatial Analyst. By Sumita Rai ArcGIS Extentions Spatial Analyst By Sumita Rai Overview What does GIS do? How does GIS work data models Extension to GIS Spatial Analyst Spatial Analyst Tasks & Tools Surface Analysis Surface Creation

More information

MERGING (MERGE / MOSAIC) GEOSPATIAL DATA

MERGING (MERGE / MOSAIC) GEOSPATIAL DATA This help guide describes how to merge two or more feature classes (vector) or rasters into one single feature class or raster dataset. The Merge Tool The Merge Tool combines input features from input

More information

Report. Developing a course component on disaster management

Report. Developing a course component on disaster management Report Developing a course component on disaster management By Chira Prangkio Tawee Chaipimonplin Department of Geography, Faculty of Social Sciences, Chiang Mai University Thailand Presented at Indian

More information

Evaluation of gvsig and SEXTANTE Tools for Hydrological Analysis

Evaluation of gvsig and SEXTANTE Tools for Hydrological Analysis Evaluation of gvsig and SEXTANTE Tools for Hydrological Analysis 6th gvsig Conference, Valencia, SPAIN Prof. Dr-Ing Dietrich Schrödera Mudogah Hildahb and Franz Davidb Stuttgart University of Applied Sciences

More information

Potential Restorable Wetlands (PRWs):

Potential Restorable Wetlands (PRWs): ASWM Webinar Sept. 17, 2014 Potential Restorable Wetlands (PRWs): Working definition: wetland hydrology and soils minus presently mapped wetlands for the re-establishment of wetlands Hydric Soil Query

More information

GEOG4017 Geographical Information Systems Lab 8 Spatial Analysis and Digital Terrain Modeling

GEOG4017 Geographical Information Systems Lab 8 Spatial Analysis and Digital Terrain Modeling DEPARTMENT OF GEOGRAPHY HONG KONG BAPTIST UNIVERSITY Prof. Q. Zhou GEOG4017 Geographical Information Systems Lab 8 Spatial Analysis and Digital Terrain Modeling Objectives The exercise is designed to familiarize

More information

One of the many strengths of a GIS is that you can stack several data layers on top of each other for visualization or analysis. For example, if you

One of the many strengths of a GIS is that you can stack several data layers on top of each other for visualization or analysis. For example, if you One of the many strengths of a GIS is that you can stack several data layers on top of each other for visualization or analysis. For example, if you overlay a map of the habitat for an endangered species

More information

Land Cover Data Processing Land cover data source Description and documentation Download Use Use

Land Cover Data Processing Land cover data source Description and documentation Download Use Use Land Cover Data Processing This document provides a step by step procedure on how to build the land cover data required by EnSim. The steps provided here my be long and there may be short cuts (like using

More information

How to Create Stream Networks using DEM and TauDEM

How to Create Stream Networks using DEM and TauDEM How to Create Stream Networks using DEM and TauDEM Take note: These procedures do not describe all steps. Knowledge of ArcGIS, DEMs, and TauDEM is required. TauDEM software ( http://hydrology.neng.usu.edu/taudem/

More information

5/3/2018 Susceptibility analysis of landslide due to earthquake due in Gorkha (25th April 2015) Animesh Bahadur Pradhan GIS IN WATER RESOURCES CE 547

5/3/2018 Susceptibility analysis of landslide due to earthquake due in Gorkha (25th April 2015) Animesh Bahadur Pradhan GIS IN WATER RESOURCES CE 547 Susceptibility 5/3/2018 analysis of landslide due to earthquake due in Gorkha (25th April 2015) Animesh Bahadur Pradhan GIS IN WATER RESOURCES CE 547 Contents 1. Acknowledgement:... 2 2. Motivation and

More information

Chapter 6. Fundamentals of GIS-Based Data Analysis for Decision Support. Table 6.1. Spatial Data Transformations by Geospatial Data Types

Chapter 6. Fundamentals of GIS-Based Data Analysis for Decision Support. Table 6.1. Spatial Data Transformations by Geospatial Data Types Chapter 6 Fundamentals of GIS-Based Data Analysis for Decision Support FROM: Points Lines Polygons Fields Table 6.1. Spatial Data Transformations by Geospatial Data Types TO: Points Lines Polygons Fields

More information

Laboratory Exercise X Most Dangerous Places to Live in the United States Based on Natural Disasters

Laboratory Exercise X Most Dangerous Places to Live in the United States Based on Natural Disasters Brigham Young University BYU ScholarsArchive Engineering Applications of GIS - Laboratory Exercises Civil and Environmental Engineering 2016 Laboratory Exercise X Most Dangerous Places to Live in the United

More information

Laboratory Exercise - Temple-View Least- Cost Mountain Bike Trail

Laboratory Exercise - Temple-View Least- Cost Mountain Bike Trail Brigham Young University BYU ScholarsArchive Engineering Applications of GIS - Laboratory Exercises Civil and Environmental Engineering 2017 Laboratory Exercise - Temple-View Least- Cost Mountain Bike

More information

Working with Digital Elevation Models in ArcGIS 8.3

Working with Digital Elevation Models in ArcGIS 8.3 Working with Digital Elevation Models in ArcGIS 8.3 The homework that you need to turn in is found at the end of this document. This lab continues your introduction to using the Spatial Analyst Extension

More information

Effects of Rising Sea Levels on Coral Reef and Mangrove Distributions along the Great Barrier Reef in Australia

Effects of Rising Sea Levels on Coral Reef and Mangrove Distributions along the Great Barrier Reef in Australia Effects of Rising Sea Levels on Coral Reef and Mangrove Distributions along the Great Barrier Reef in Australia Sarah Barfield Graduate Student Department of Integrative Biology University of Texas, Austin

More information

Handling Raster Data for Hydrologic Applications

Handling Raster Data for Hydrologic Applications Handling Raster Data for Hydrologic Applications Prepared by Venkatesh Merwade Lyles School of Civil Engineering, Purdue University vmerwade@purdue.edu January 2018 Objective The objective of this exercise

More information

The Geodatabase Working with Spatial Analyst. Calculating Elevation and Slope Values for Forested Roads, Streams, and Stands.

The Geodatabase Working with Spatial Analyst. Calculating Elevation and Slope Values for Forested Roads, Streams, and Stands. GIS LAB 7 The Geodatabase Working with Spatial Analyst. Calculating Elevation and Slope Values for Forested Roads, Streams, and Stands. This lab will ask you to work with the Spatial Analyst extension.

More information

GIS CONCEPTS ARCGIS METHODS AND. 2 nd Edition, July David M. Theobald, Ph.D. Natural Resource Ecology Laboratory Colorado State University

GIS CONCEPTS ARCGIS METHODS AND. 2 nd Edition, July David M. Theobald, Ph.D. Natural Resource Ecology Laboratory Colorado State University GIS CONCEPTS AND ARCGIS METHODS 2 nd Edition, July 2005 David M. Theobald, Ph.D. Natural Resource Ecology Laboratory Colorado State University Copyright Copyright 2005 by David M. Theobald. All rights

More information

Midterm Exam. 2) What are three important things to keep in mind when selecting colors for a map? (5)

Midterm Exam. 2) What are three important things to keep in mind when selecting colors for a map? (5) Midterm Exam File Name: LASTNAME_Midterm.pdf Make sure to include your Name, UWNetID, course number, and quarter and year, on the document (points will be deducted if you have not identified your work).

More information

Identifying Wildfire Risk Areas in Western Washington State

Identifying Wildfire Risk Areas in Western Washington State Identifying Wildfire Risk Areas in Western Washington State Matthew Seto University of Washington Tacoma GIS Certification Program URISA 2015 Undergraduate Geospatial Skills Competition Introduction 2014

More information

A landscape characterization method for the Uusimaa region + identification of potential use for GIS

A landscape characterization method for the Uusimaa region + identification of potential use for GIS A landscape characterization method for the Uusimaa region + identification of potential use for GIS Methodology: Updating the Finnish method The key finding The scope of characterization methods are limited

More information

envision Technical Report Archaeological Prediction Maps Kapiti Coast

envision Technical Report Archaeological Prediction Maps Kapiti Coast envision Technical Report Archaeological Prediction Maps Kapiti Coast Elise Smith September 2012 Contents HYPOTHESIS:... 3 Technical challenges... 3 Alternative methods of analysis considered:... 3 Approach

More information

Raster Analysis; A Yellowstone Example 3/29/2018

Raster Analysis; A Yellowstone Example 3/29/2018 Fires (1 or 4) Typical Raster Model Types: Raster Analysis: An Example Suitability Modeling: Where is optimum location? Distance Modeling: What is the most efficient path from A to B? + Slope (1-4) Geology

More information

Remote Sensing and Geospatial Application for Wetlands Mapping, Assessment, and Mitigation

Remote Sensing and Geospatial Application for Wetlands Mapping, Assessment, and Mitigation Remote Sensing and Geospatial Application for Wetlands Mapping, Assessment, and Mitigation Hydrology Soils MSU Seminar Series Remote Sensing and Geospatial Applications September 4, 2002 Vegetation NEPA

More information

Course overview. Grading and Evaluation. Final project. Where and When? Welcome to REM402 Applied Spatial Analysis in Natural Resources.

Course overview. Grading and Evaluation. Final project. Where and When? Welcome to REM402 Applied Spatial Analysis in Natural Resources. Welcome to REM402 Applied Spatial Analysis in Natural Resources Eva Strand, University of Idaho Map of the Pacific Northwest from http://www.or.blm.gov/gis/ Where and When? Lectures Monday & Wednesday

More information

Raster Analysis; A Yellowstone Example 10/24/2013. M. Helper GEO327G/386G, UT Austin 2. M. Helper GEO327G/386G, UT Austin 4

Raster Analysis; A Yellowstone Example 10/24/2013. M. Helper GEO327G/386G, UT Austin 2. M. Helper GEO327G/386G, UT Austin 4 + Fires (1 or 4) Slope (1-4) Geology (1-4) Erosion Ranking (3-12) Raster Analysis: An Example Typical Raster Model Types: Suitability Modeling: Where is optimum location? Distance Modeling: What is the

More information

Fire Susceptibility Analysis Carson National Forest New Mexico. Can a geographic information system (GIS) be used to analyze the susceptibility of

Fire Susceptibility Analysis Carson National Forest New Mexico. Can a geographic information system (GIS) be used to analyze the susceptibility of 1 David Werth Fire Susceptibility Analysis Carson National Forest New Mexico Can a geographic information system (GIS) be used to analyze the susceptibility of Carson National Forest, New Mexico to forest

More information

Southern California Earthquake Center

Southern California Earthquake Center Southern California Earthquake Center By: Mark Slothower Geog 406 Final Report Dr. Sun Table of Contents Introduction Page 3 Hypothesis and research questions Page 3 Methods and flowchart Page 4 Data Page

More information

Assessing the Regional Vulnerability of Large Scale Mining in Ghana: An Application of Multi Criteria Analysis

Assessing the Regional Vulnerability of Large Scale Mining in Ghana: An Application of Multi Criteria Analysis Assessing the Regional Vulnerability of Large Scale Mining in Ghana: An Application of Multi Criteria Analysis Mukesh Subedee, GISDE 14 Arun Poojary, ES&P 13 Clark University April 29, 2013 Ghana: A case

More information

Python Raster Analysis. Kevin M. Johnston Nawajish Noman

Python Raster Analysis. Kevin M. Johnston Nawajish Noman Python Raster Analysis Kevin M. Johnston Nawajish Noman Outline Managing rasters and performing analysis with Map Algebra How to access the analysis capability - Demonstration Complex expressions and optimization

More information

Site Selection Study for Radioactive Waste Repository: Study Area of Negeri Sembilan

Site Selection Study for Radioactive Waste Repository: Study Area of Negeri Sembilan 1 ID No. 120 Site Selection Study for Radioactive Waste Repository: Study Area of Negeri Sembilan Che Kamaruddin, A. H. 1, Tahar, K. N. 2, Wan Mohamad, W. M. N. 2 1 Malaysian Nuclear Agency (MNA), Selangor,

More information

Landslide Susceptibility Model of Tualatin Mountains, Portland Oregon. By Tim Cassese and Colby Lawrence December 10, 2015

Landslide Susceptibility Model of Tualatin Mountains, Portland Oregon. By Tim Cassese and Colby Lawrence December 10, 2015 Landslide Susceptibility Model of Tualatin Mountains, Portland Oregon By Tim Cassese and Colby Lawrence December 10, 2015 Landslide Closes Highway 30 at St. John's Bridge Introduction: Study Area: Tualatin

More information

Geo 327G Semester Project. Landslide Suitability Assessment of Olympic National Park, WA. Fall Shane Lewis

Geo 327G Semester Project. Landslide Suitability Assessment of Olympic National Park, WA. Fall Shane Lewis Geo 327G Semester Project Landslide Suitability Assessment of Olympic National Park, WA Fall 2011 Shane Lewis 1 I. Problem Landslides cause millions of dollars of damage nationally every year, and are

More information

Geog 469 GIS Workshop. Data Analysis

Geog 469 GIS Workshop. Data Analysis Geog 469 GIS Workshop Data Analysis Outline 1. What kinds of need-to-know questions can be addressed using GIS data analysis? 2. What is a typology of GIS operations? 3. What kinds of operations are useful

More information

Using ArcGIS for Hydrology and Watershed Analysis:

Using ArcGIS for Hydrology and Watershed Analysis: Using ArcGIS 10.2.2 for Hydrology and Watershed Analysis: A guide for running hydrologic analysis using elevation and a suite of ArcGIS tools Anna Nakae Feb. 10, 2015 Introduction Hydrology and watershed

More information

Lesson 9 and 10: Final Project. by Diana Jo Lau

Lesson 9 and 10: Final Project. by Diana Jo Lau Lesson 9 and 10: Final Project by Diana Jo Lau Introduction Acme Conservation Unlimited conducted a site selection analysis of conservation areas meeting specific criteria. The results of our analysis

More information

Supplementary Information B

Supplementary Information B 1 Supplementary Information B 2 3 IDW-Plus Tutorial 4 5 Erin E. Peterson 1 and Alan R. Pearse 2 6 1 Corresponding Author: Erin.Peterson@qut.edu.au; Principal Research Fellow, ARC Centre for Excellence

More information

ArcGIS Data Reviewer: Quality Assessment for Elevation Raster Datasets. Roslyn Dunn

ArcGIS Data Reviewer: Quality Assessment for Elevation Raster Datasets. Roslyn Dunn ArcGIS Data Reviewer: Quality Assessment for Elevation Raster Datasets Roslyn Dunn What is ArcGIS Data Reviewer? Data Quality Management for ArcGIS Provides - Rule-based validation - Interactive tools

More information

Learning Computer-Assisted Map Analysis

Learning Computer-Assisted Map Analysis Learning Computer-Assisted Map Analysis by Joseph K. Berry* Old-fashioned math and statistics can go a long way toward helping us understand GIS Note: This paper was first published as part of a three-part

More information

IDW-Plus Tutorial. Erin E. Peterson

IDW-Plus Tutorial. Erin E. Peterson IDW-Plus Tutorial Erin E. Peterson ARC Centre for Excellence in Mathematical & Statistical Frontiers and the Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia,

More information

Display data in a map-like format so that geographic patterns and interrelationships are visible

Display data in a map-like format so that geographic patterns and interrelationships are visible Vilmaliz Rodríguez Guzmán M.S. Student, Department of Geology University of Puerto Rico at Mayagüez Remote Sensing and Geographic Information Systems (GIS) Reference: James B. Campbell. Introduction to

More information

Overview key concepts and terms (based on the textbook Chang 2006 and the practical manual)

Overview key concepts and terms (based on the textbook Chang 2006 and the practical manual) Introduction Geo-information Science (GRS-10306) Overview key concepts and terms (based on the textbook 2006 and the practical manual) Introduction Chapter 1 Geographic information system (GIS) Geographically

More information

GRASS COVER CHANGE MODEL BASED ON CELLULAR AUTOMATA

GRASS COVER CHANGE MODEL BASED ON CELLULAR AUTOMATA GRASS COVER CHANGE MODEL BASED ON CELLULAR AUTOMATA Shuai Zhang *, Jingyin Zhao, Linyi Li Digital Agricultural Engineering Technological Research Center, Shanghai Academy of Agricultural Sciences, Shanghai,

More information

Using the Stock Hydrology Tools in ArcGIS

Using the Stock Hydrology Tools in ArcGIS Using the Stock Hydrology Tools in ArcGIS This lab exercise contains a homework assignment, detailed at the bottom, which is due Wednesday, October 6th. Several hydrology tools are part of the basic ArcGIS

More information

Multifunctional theory in agricultural land use planning case study

Multifunctional theory in agricultural land use planning case study Multifunctional theory in agricultural land use planning case study Introduction István Ferencsik (PhD) VÁTI Research Department, iferencsik@vati.hu By the end of 20 th century demands and expectations

More information

Natalie Cabrera GSP 370 Assignment 5.5 March 1, 2018

Natalie Cabrera GSP 370 Assignment 5.5 March 1, 2018 Network Analysis: Modeling Overland Paths Using a Least-cost Path Model to Track Migrations of the Wolpertinger of Bavarian Folklore in Redwood National Park, Northern California Natalie Cabrera GSP 370

More information

Using GIS to Detect Changes in Land Use Land Cover for Electrical Transmission Line Sitting and Expansion Planning in Winona County, Minnesota, USA

Using GIS to Detect Changes in Land Use Land Cover for Electrical Transmission Line Sitting and Expansion Planning in Winona County, Minnesota, USA Using GIS to Detect Changes in Use Cover for Electrical Transmission Line Sitting and Expansion Planning in Winona County, Minnesota, USA Charles U. Uzoukwu Department of Resource Analysis, Saint Mary

More information

Development of statewide 30 meter winter sage grouse habitat models for Utah

Development of statewide 30 meter winter sage grouse habitat models for Utah Development of statewide 30 meter winter sage grouse habitat models for Utah Ben Crabb, Remote Sensing and Geographic Information System Laboratory, Department of Wildland Resources, Utah State University

More information

Final GIS Project Paper

Final GIS Project Paper Final GIS Project Paper Libby Mahaffy Spring 2010 Overview of the project For the final project in GIS I plan to do a site suitability analysis for the development of ecovillages in Marquette County, an

More information

GIS BASED ANALYSIS ON ENVIRONMENTAL SENSITIVE AREAS AND IDENTIFICATION OF THE POTENTIAL DISASTER HAZARDOUS LOCATIONS IN SOUTHERN SRI LANKA

GIS BASED ANALYSIS ON ENVIRONMENTAL SENSITIVE AREAS AND IDENTIFICATION OF THE POTENTIAL DISASTER HAZARDOUS LOCATIONS IN SOUTHERN SRI LANKA International Journal of Civil & Environmental Engineering IJCEE Vol: 9 No: 9-311 - GIS BASED ANALYSIS ON ENVIRONMENTAL SENSITIVE AREAS AND IDENTIFICATION OF THE POTENTIAL DISASTER HAZARDOUS LOCATIONS

More information

Site Suitability Analysis for Urban Development: A Review

Site Suitability Analysis for Urban Development: A Review Site Suitability Analysis for Urban Development: A Review Santanu Kumar Misra Associate Professor (Dept. of CSE) Sikkim Manipal Institute of Technology Majitar, Sikkim misra_santanu@rediffmail.com Shrijana

More information

Sea Level Scare in South Carolina. by William Witmer GEO 327G 5 December 2016

Sea Level Scare in South Carolina. by William Witmer GEO 327G 5 December 2016 Sea Level Scare in South Carolina by William Witmer GEO 327G 5 December 2016 Problem Hilton Head Island in South Carolina attracts 2.5 million tourists every year. This popular locale features endangered

More information

Open ArcToolbox Spatial Analyst Tools Hydrology. This should display the tools shown at the right:

Open ArcToolbox Spatial Analyst Tools Hydrology. This should display the tools shown at the right: Project 2: Watershed Functions Save and close your project, above, if you haven t done so already. Then, open a new project, and add the driftless DEM. We ll be using ArcToolbox for this new project, but

More information

Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment

Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment Polish J. of Environ. Stud. Vol. 19, No. 5 (2010), 881-886 Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment Nuket Benzer* Landscape Architecture

More information

Sampling The World. presented by: Tim Haithcoat University of Missouri Columbia

Sampling The World. presented by: Tim Haithcoat University of Missouri Columbia Sampling The World presented by: Tim Haithcoat University of Missouri Columbia Compiled with materials from: Charles Parson, Bemidji State University and Timothy Nyerges, University of Washington Introduction

More information

Classification of Erosion Susceptibility

Classification of Erosion Susceptibility GEO327G: GIS & GPS Applications in Earth Sciences Classification of Erosion Susceptibility Denali National Park, Alaska Zehao Xue 12 3 2015 2 TABLE OF CONTENTS 1 Abstract... 3 2 Introduction... 3 2.1 Universal

More information

Eagle Creek Post Fire Erosion Hazard Analysis Using the WEPP Model. John Rogers & Lauren McKinney

Eagle Creek Post Fire Erosion Hazard Analysis Using the WEPP Model. John Rogers & Lauren McKinney Eagle Creek Post Fire Erosion Hazard Analysis Using the WEPP Model John Rogers & Lauren McKinney Columbia River Gorge at Risk: Using LiDAR and GIS-based predictive modeling for regional-scale erosion susceptibility

More information

Watershed Analysis of the Blue Ridge Mountains in Northwestern Virginia

Watershed Analysis of the Blue Ridge Mountains in Northwestern Virginia Watershed Analysis of the Blue Ridge Mountains in Northwestern Virginia Mason Fredericks December 6, 2018 Purpose The Blue Ridge Mountain range is one of the most popular mountain ranges in the United

More information

Geospatial Analysis and Optimization Techniques to Select Site for New Business: The Case Study of Washtenaw County, Michigan, USA

Geospatial Analysis and Optimization Techniques to Select Site for New Business: The Case Study of Washtenaw County, Michigan, USA International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=journalofbasicandapplied ---------------------------------------------------------------------------------------------------------------------------

More information

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 7, No 1, 2016

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 7, No 1, 2016 INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 7, No 1, 2016 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4380 Land suitability study

More information

Introduction. Project Summary In 2014 multiple local Otsego county agencies, Otsego County Soil and Water

Introduction. Project Summary In 2014 multiple local Otsego county agencies, Otsego County Soil and Water Introduction Project Summary In 2014 multiple local Otsego county agencies, Otsego County Soil and Water Conservation District (SWCD), the Otsego County Planning Department (OPD), and the Otsego County

More information

Applying Hazard Maps to Urban Planning

Applying Hazard Maps to Urban Planning Applying Hazard Maps to Urban Planning September 10th, 2014 SAKAI Yuko Disaster Management Expert JICA Study Team for the Metro Cebu Roadmap Study on the Sustainable Urban Development 1 Contents 1. Outline

More information

Alaska, USA. Sam Robbins

Alaska, USA. Sam Robbins Using ArcGIS to determine erosion susceptibility within Denali National Park, Alaska, USA Sam Robbins Introduction Denali National Park is six million acres of wild land with only one road and one road

More information

Development and Land Use Change in the Central Potomac River Watershed. Rebecca Posa. GIS for Water Resources, Fall 2014 University of Texas

Development and Land Use Change in the Central Potomac River Watershed. Rebecca Posa. GIS for Water Resources, Fall 2014 University of Texas Development and Land Use Change in the Central Potomac River Watershed Rebecca Posa GIS for Water Resources, Fall 2014 University of Texas December 5, 2014 Table of Contents I. Introduction and Motivation..4

More information