# Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Save this PDF as:

Size: px
Start display at page:

Download "Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method"

## Transcription

1 Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method

2 Lesson 8 The Force Method of Analysis: Beams

3 Instructional Objectives After reading this chapter the student will be able to 1. Solve statically indeterminate beams of degree more than one. 2. To solve the problem in matrix notation. 3. To compute reactions at all the supports. 4. To compute internal resisting bending moment at any section of the continuous beam. 8.1 Introduction In the last lesson, a general introduction to the force method of analysis is given. Only, beams, which are statically indeterminate to first degree, were considered. If the structure is statically indeterminate to a degree more than one, then the approach presented in the previous example needs to be organized properly. In the present lesson, a general procedure for analyzing statically indeterminate beams is discussed. 8.2 Formalization of Procedure Towards this end, consider a two-span continuous beam as shown in Fig. 8.1a. The flexural rigidity of this continuous beam is assumed to be constant and is taken as EI. Since, the beam is statically indeterminate to second degree, it is required to identify two redundant reaction components, which need be released to make the beam statically determinate.

4

6 It is observed that, in the actual structure, the deflections at joints B and C is zero. Now the total deflections at B and C of the primary structure due to applied external loading and redundants and R is, R1 2 The equation (8.4a) represents the total displacement at B and is obtained by superposition of three terms: 1) Deflection at B due to actual load acting on the statically determinate structure, 2) Displacement at B due to the redundant reaction R 1 acting in the positive direction at B (point 1) and 3) Displacement at B due to the redundant reaction R 2 acting in the positive direction at C. The second equation (8.4b) similarly represents the total deflection at C. From the physics of the problem, the compatibility condition can be written as, The equation (8.5a) and (8.5b) may be written in matrix notation as follows, In which, Solving the above set of algebraic equations, one could obtain the values of redundants, and R. R1 2

7 In the above equation the vectors { Δ L } contains the displacement values of the primary structure at point 1 and 2, [ A ] is the flexibility matrix and { R} is column vector of redundants required to be evaluated. In equation (8.7) the inverse of the flexibility matrix is denoted by [ A ] 1. In the above example, the structure is indeterminate to second degree and the size of flexibility matrix is 2 2. In general, if the structure is redundant to a degree n, then the flexibility matrix is of the order n n. To demonstrate the procedure to evaluate deflection, consider the problem given in Fig. 8.1a, with loading as given below ( L ) 1 Now, the deflection Δ and ( Δ L ) 2 of the released structure can be evaluated from the equations (8.1a) and (8.1b) respectively. Then, The negative sign indicates that both deflections are downwards. Hence the vector { Δ L } is given by The flexibility matrix is determined from referring to figures 8.1c and 8.1d. Thus, when the unit load corresponding to R is acting at B, the deflections are, 1 Similarly when the unit load is acting at C, The flexibility matrix can be written as,

8 The inverse of the flexibility matrix can be evaluated by any of the standard method. Thus, Now using equation (8.7) the redundants are evaluated. Thus, Once the redundants are evaluated, the other reaction components can be evaluated by static equations of equilibrium. Example 8.1 Calculate the support reactions in the continuous beam ABC shown in Fig. 8.2a. Assume EI to be constant throughout. due to loading as

9 B ( ) ( ) Select two reactions viz, at R 1 and C R 2 as redundants, since the given beam is statically indeterminate to second degree. In this case the primary structure is a cantilever beam AC. The primary structure with a given loading is shown in Fig. 8.2b. In the present case, the deflections ( Δ L ) 1, and ( L ) 2 Δ of the released structure at B and C can be readily calculated by moment-area method. Thus, For the present problem the flexibility matrix is, In the actual problem the displacements at B andc are zero. Thus the compatibility conditions for the problem may be written as, Substituting the value of E and I in the above equation, Using equations of static equilibrium,

10 Example 8.2 A clamped beam AB of constant flexural rigidity is shown in Fig. 8.3a. The beam is subjected to a uniform distributed load of w kn/m and a central concentrated moment M = wl force method. 2 kn.m. Draw shear force and bending moment diagrams by ( R 1 ) ( ) Select vertical reaction and the support moment R2 at B as the redundants. The primary structure in this case is a cantilever beam which could be obtained by releasing the redundants R1 and R2. The R1 is assumed to be positive in the upward direction and R 2 is assumed to be positive in the counterclockwise direction. Now, calculate deflection at B due to only applied loading. Let be the transverse deflection at Δ be the slope at B ( Δ L ) 1 B and ( L ) 2 due to external loading. The positive directions of the selected redundants are shown in Fig. 8.3b.

11

12 ( Δ ) 1 ( Δ L ) 2 The deflection L and of the released structure can be evaluated from unit load method. Thus, The negative sign indicates that ( L ) 1 clockwise. Hence the vector { L} Δ is given by ( Δ L ) 2 Δ is downwards and rotation is The flexibility matrix is evaluated by first applying unit load along redundant and determining the deflections a11 and a21 corresponding to redundants R1 and respectively (see Fig. 8.3d). Thus, R 2 R 1 Similarly, applying unit load in the direction of redundant flexibility coefficients and a as shown in Fig. 8.3c. a12 22 R 2, one could evaluate Now the flexibility matrix is formulated as, The inverse of flexibility matrix is formulated as,

13 The redundants are evaluated from equation (8.7). Hence, The other two reactions ( R3 and R4 ) can be evaluated by equations of statics. Thus, The bending moment and shear force diagrams are shown in Fig. 8.3g and Fig.8.3h respectively. Summary In this lesson, statically indeterminate beams of degree more than one is solved systematically using flexibility matrix method. Towards this end matrix notation is adopted. Few illustrative examples are solved to illustrate the procedure. After analyzing the continuous beam, reactions are calculated and bending moment diagrams are drawn.

### Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The Slope-Deflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student

### Lecture 11: The Stiffness Method. Introduction

Introduction Although the mathematical formulation of the flexibility and stiffness methods are similar, the physical concepts involved are different. We found that in the flexibility method, the unknowns

### Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

### Preliminaries: Beam Deflections Virtual Work

Preliminaries: Beam eflections Virtual Work There are several methods available to calculate deformations (displacements and rotations) in beams. They include: Formulating moment equations and then integrating

### The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three- Hence, only

### Chapter 4.1: Shear and Moment Diagram

Chapter 4.1: Shear and Moment Diagram Chapter 5: Stresses in Beams Chapter 6: Classical Methods Beam Types Generally, beams are classified according to how the beam is supported and according to crosssection

### MODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD

ODULE 3 ANALYI O TATICALLY INDETERINATE TRUCTURE BY THE DIPLACEENT ETHOD LEON 19 THE OENT- DITRIBUTION ETHOD: TATICALLY INDETERINATE BEA WITH UPPORT ETTLEENT Instructional Objectives After reading this

### Lecture 6: The Flexibility Method - Beams. Flexibility Method

lexibility Method In 1864 James Clerk Maxwell published the first consistent treatment of the flexibility method for indeterminate structures. His method was based on considering deflections, but the presentation

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

### BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

BEM horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam INTERNL FORCES IN BEM Whether or not a beam will break, depend on the internal resistances

### UNIT IV FLEXIBILTY AND STIFFNESS METHOD

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

### Continuous Beams - Flexibility Method

ontinuous eams - Flexibility Method Qu. Sketch the M diagram for the beam shown in Fig.. Take E = 200kN/mm 2. 50kN 60kN-m = = 0kN/m D I = 60 50 40 x 0 6 mm 4 Fig. 60.0 23.5 D 25.7 6.9 M diagram in kn-m

### Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 3 1.1 General... 3 1. Background... 4 1.3 Discontinuity Functions...

### Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 General... 4 1. Background... 5 1.3 Discontinuity Functions...

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Version CE IIT, Kharagpur Lesson The ultistory Frames with Sidesway Version CE IIT, Kharagpur Instructional Objectives

### Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

### Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

### Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 10 The Force Method of Analysis: Trusses Instructional Objectives After reading this chapter the student will

### UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

### Chapter 8 Supplement: Deflection in Beams Double Integration Method

Chapter 8 Supplement: Deflection in Beams Double Integration Method 8.5 Beam Deflection Double Integration Method In this supplement, we describe the methods for determining the equation of the deflection

### Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

### Chapter 2 Basis for Indeterminate Structures

Chapter - Basis for the Analysis of Indeterminate Structures.1 Introduction... 3.1.1 Background... 3.1. Basis of Structural Analysis... 4. Small Displacements... 6..1 Introduction... 6.. Derivation...

### Moment Distribution Method

Moment Distribution Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Distribution Method. 2) Derive the Moment Distribution Method equations using mechanics

### Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 8 The Force Method of Anlysis: Bems Version CE IIT, Khrgpur Instructionl Objectives After reding

### If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a two-dimensional structure and statically indeterminate reactions: Statically indeterminate structures

### 6/6/2008. Qualitative Influence Lines for Statically Indeterminate Structures: Muller-Breslau s Principle

Qualitative Influence Lines for Statically Indeterminate Structures: Muller-Breslau s Principle The influence line for a force (or moment) response function is given by the deflected shape of the released

### Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

*12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are very small,

### Shear force and bending moment of beams 2.1 Beams 2.2 Classification of beams 1. Cantilever Beam Built-in encastre' Cantilever

CHAPTER TWO Shear force and bending moment of beams 2.1 Beams A beam is a structural member resting on supports to carry vertical loads. Beams are generally placed horizontally; the amount and extent of

### Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions

Deflection of Beams Equation of the Elastic Curve The governing second order differential equation for the elastic curve of a beam deflection is EI d d = where EI is the fleural rigidit, is the bending

### Example 17.3 Analyse the rigid frame shown in Fig a. Moment of inertia of all the members are shown in the figure. Draw bending moment diagram.

Example 17.3 Analyse the rigid frame shown in ig. 17.5 a. oment of inertia of all the members are shown in the figure. Draw bending moment diagram. Under the action of external forces, the frame gets deformed

### MAHALAKSHMI ENGINEERING COLLEGE

CE840-STRENGTH OF TERIS - II PGE 1 HKSHI ENGINEERING COEGE TIRUCHIRPI - 611. QUESTION WITH NSWERS DEPRTENT : CIVI SEESTER: IV SU.CODE/ NE: CE 840 / Strength of aterials -II UNIT INDETERINTE ES 1. Define

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

### Structural Analysis III Moment Distribution

Structural Analysis III oment Distribution 2008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over... 10 2.2 Fixed End oments...

### Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

Module Analysis of Statically Indeterminate Structures by the Direct Stiffness Method Version CE IIT, Kharagur Lesson 9 The Direct Stiffness Method: Beams (Continued) Version CE IIT, Kharagur Instructional

### Lecture 8: Flexibility Method. Example

ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

### STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame

STRUCTURA ANAYSIS BFC 21403 Statically Indeterminate Beam & Frame Introduction Analysis for indeterminate structure of beam and frame: 1. Slope-deflection method 2. Moment distribution method Displacement

### UNIT-V MOMENT DISTRIBUTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD Distribution and carryover of moments Stiffness and carry over factors Analysis of continuous beams Plane rigid frames with and without sway Neylor s simplification. Hardy

### Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

### Structural Analysis III Moment Distribution

Structural Analysis III oment Distribution 2009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over Factor... 10 2.2 Fixed-End

### 3.4 Analysis for lateral loads

3.4 Analysis for lateral loads 3.4.1 Braced frames In this section, simple hand methods for the analysis of statically determinate or certain low-redundant braced structures is reviewed. Member Force Analysis

### FIXED BEAMS CONTINUOUS BEAMS

FIXED BEAMS CONTINUOUS BEAMS INTRODUCTION A beam carried over more than two supports is known as a continuous beam. Railway bridges are common examples of continuous beams. But the beams in railway bridges

### BEAM DEFLECTION THE ELASTIC CURVE

BEAM DEFLECTION Samantha Ramirez THE ELASTIC CURVE The deflection diagram of the longitudinal axis that passes through the centroid of each cross-sectional area of a beam. Supports that apply a moment

### UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15]

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] 2. Draw the influence line for shear to the left of B for the overhanging beam shown in Fig. Q. No. 4 [M/J-15] 3.

### Methods of Analysis. Force or Flexibility Method

INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

### CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

### Shear Force V: Positive shear tends to rotate the segment clockwise.

INTERNL FORCES IN EM efore a structural element can be designed, it is necessary to determine the internal forces that act within the element. The internal forces for a beam section will consist of a shear

### Beams. Beams are structural members that offer resistance to bending due to applied load

Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

### SLOPE-DEFLECTION METHOD

SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are

### Part IB Paper 2: Structures. Examples Paper 2/3 Elastic structural analysis

ISSUEB 011 15 NOV 2013 1 Engineering Tripos Part IB SECOND YEAR Part IB Paper 2: Structures Examples Paper 2/3 Elastic structural analysis Straightforward questions are marked by t; Tripos standard questions

### Laith Batarseh. internal forces

Next Previous 1/8/2016 Chapter seven Laith Batarseh Home End Definitions When a member is subjected to external load, an and/or moment are generated inside this member. The value of the generated internal

[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

### Moment Area Method. 1) Read

Moment Area Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Area method. 2) Derive the Moment Area method theorems using mechanics and mathematics.

### dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force

Beams SFD and BMD Shear and Moment Relationships w dv dx Slope of the shear diagram = - Value of applied loading V dm dx Slope of the moment curve = Shear Force Both equations not applicable at the point

### Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module No. # 5.1 Lecture No. # 27 Matrix Analysis of Beams and Grids Good morning,

### Chapter 7: Internal Forces

Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can

### 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

The basis for the method comes from the similarity of eqn.1 &. to eqn 8. & 8. To show this similarity, we can write these eqn as shown dv dx w d θ M dx d M w dx d v M dx Here the shear V compares with

### MAHALAKSHMI ENGINEERING COLLEGE

AHAAKSHI ENGINEERING COEGE TIRUCHIRAPAI - 611. QUESTION WITH ANSWERS DEPARTENT : CIVI SEESTER: V SU.CODE/ NAE: CE 5 / Strength of aterials UNIT INDETERINATE EAS 1. Define statically indeterminate beams.

### Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

### M.S Comprehensive Examination Analysis

UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive

### Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

### (Refer Slide Time: 2:43-03:02)

Strength of Materials Prof. S. K. Bhattacharyya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 34 Combined Stresses I Welcome to the first lesson of the eighth module

### Deflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w

CIVL 311 - Conjugate eam 1/5 Conjugate beam method The development of the conjugate beam method has been atributed to several strucutral engineers. any credit Heinrich üller-reslau (1851-195) with the

### Structural Continuity

Architecture 324 Structures II Structural Continuity Continuity in Beams Deflection Method Slope Method Three-Moment Theorem Millennium Bridge, London Foster and Partners + Arup Photo by Ryan Donaghy University

### - Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes.

4. Shear and Moment functions - Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the aes. - The design of such members requires a detailed knowledge of the

### Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200

Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 2 Date: Time: 8:00 10:00 PM - Location: WTHR 200 Circle your lecturer s name and your class meeting time. Koslowski Zhao

### Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module No. # 5.4 Lecture No. # 30 Matrix Analysis of Beams and Grids (Refer Slide

### P.E. Civil Exam Review:

P.E. Civil Exam Review: Structural Analysis J.P. Mohsen Email: jpm@louisville.edu Structures Determinate Indeterminate STATICALLY DETERMINATE STATICALLY INDETERMINATE Stability and Determinacy of Trusses

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

### Chapter 2. Shear Force and Bending Moment. After successfully completing this chapter the students should be able to:

Chapter Shear Force and Bending Moment This chapter begins with a discussion of beam types. It is also important for students to know and understand the reaction from the types of supports holding the

### Structural Analysis. For. Civil Engineering.

Structural Analysis For Civil Engineering By www.thegateacademy.com ` Syllabus for Structural Analysis Syllabus Statically Determinate and Indeterminate Structures by Force/ Energy Methods; Method of Superposition;

### QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I Unit 5 MOMENT DISTRIBUTION METHOD PART A (2 marks) 1. Differentiate between distribution factors and carry

### FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

### Strength of Materials Prof. S.K.Bhattacharya Dept. of Civil Engineering, I.I.T., Kharagpur Lecture No.26 Stresses in Beams-I

Strength of Materials Prof. S.K.Bhattacharya Dept. of Civil Engineering, I.I.T., Kharagpur Lecture No.26 Stresses in Beams-I Welcome to the first lesson of the 6th module which is on Stresses in Beams

### Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas

Review Lecture AE1108-II: Aerospace Mechanics of Materials Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Aerospace Structures & Materials Faculty of Aerospace Engineering Analysis of an Engineering System

### Procedure for drawing shear force and bending moment diagram:

Procedure for drawing shear force and bending moment diagram: Preamble: The advantage of plotting a variation of shear force F and bending moment M in a beam as a function of x' measured from one end of

### BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

### Equilibrium of a Rigid Body. Chapter 5

Equilibrium of a Rigid Body Chapter 5 Overview Rigid Body Equilibrium Free Body Diagrams Equations of Equilibrium 2 and 3-Force Members Statical Determinacy CONDITIONS FOR RIGID-BODY EQUILIBRIUM Recall

### Experimental Lab. Principles of Superposition

Experimental Lab Principles of Superposition Objective: The objective of this lab is to demonstrate and validate the principle of superposition using both an experimental lab and theory. For this lab you

### Lecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction

Introduction In this class we will focus on the structural analysis of framed structures. We will learn about the flexibility method first, and then learn how to use the primary analytical tools associated

### Investigation of Slopes and Deflections of a Stepped Beam Using a Global Formula for

Investigation of Slopes and Deflections of a Stepped Beam Using a Global Formula for An Undergraduate Honors College Thesis in the Departmanet of Mechnical Engineering College of Engineering University

### Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

### structural analysis Excessive beam deflection can be seen as a mode of failure.

Structure Analysis I Chapter 8 Deflections Introduction Calculation of deflections is an important part of structural analysis Excessive beam deflection can be seen as a mode of failure. Extensive glass

### UNIT I ENERGY PRINCIPLES

UNIT I ENERGY PRINCIPLES Strain energy and strain energy density- strain energy in traction, shear in flexure and torsion- Castigliano s theorem Principle of virtual work application of energy theorems

### bending moment in the beam can be obtained by integration

q 0 L 4 B = - v(l) = CCC ( ) 30 EI Example 9-5 an overhanging beam ABC with a concentrated load P applied at the end determine the equation of deflection curve and the deflection C at the end flexural

### Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

### 2 marks Questions and Answers

1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

### MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

### CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 2. Discontinuity functions

1. Deflections of Beams and Shafts CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 1. Integration method. Discontinuity functions 3. Method

### Module 1. Energy Methods in Structural Analysis

Module 1 Energy Methods in Structural Analysis esson 5 Virtual Work Instructional Objecties After studying this lesson, the student will be able to: 1. Define Virtual Work.. Differentiate between external

### Side Note (Needed for Deflection Calculations): Shear and Moment Diagrams Using Area Method

Side Note (Needed for Deflection Calculations): Shear and Moment Diagrams Using Area Method How do we draw the moment and shear diagram for an arbitrarily loaded beam? Is there a easier and faster way

### Ph.D. Preliminary Examination Analysis

UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2017 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

### Structural Analysis III The Moment Area Method Mohr s Theorems

Structural Analysis III The Moment Area Method Mohr s Theorems 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Purpose... 4. Theory... 6.1 asis... 6. Mohr s First Theorem (Mohr I)... 8.3 Mohr

### 8.3 Shear and Bending-Moment Diagrams Constructed by Areas

8.3 Shear and ending-moment Diagrams Constructed by reas 8.3 Shear and ending-moment Diagrams Constructed by reas Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving