Shear Forces And Bending Moments

Size: px
Start display at page:

Download "Shear Forces And Bending Moments"

Transcription

1 Shear Forces And Bending Moments 1 Introduction 2001 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig. 4-1 Examples of beams subjected to lateral loads. Beam : planar structure plane of bending : If all deflection occur in that plane.

2 4.2 Type of beams, loads, and reaction 2001 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig. 4-2 Types of beams: (a) simple beam, (b) cantilever beam, and (c) beam with an overhang

3 Simply supported beam (simple beam) : a beam with a pin support at one end and a roller support at other Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.

4 Fig. 4-3 Beam supported on a wall: (a) actual construction, and (b) representation as a roller support. Beam-to-column connection: (c) actual construction, and (d) representation as a pin support. Pole anchored to a concrete pier: (e) actual construction, and (f) representation as a fixed support Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.

5 Types of loads concentrated load : distribution load (uniformly distributed load) (uniform load), linearly varying : moment (couple) : Reactions As an example, let us determine the reactions of the simple beam AB of Fig.4-2a.

6 ? As a second example, consider the cantilever beam of Fig.4-2b.

7 As a third example : The beam with an overhang(fig.4-2c)

8 4.3 Shear forces and bending moments 2001 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig. 4-4 Shear force V and bending moment M in a beam. or or

9 Sign Conventions Fig. 4-5 Sign conventions for shear force V and bending moment M. Fig. 4-6 Deformations (highly exaggerated) of a beam element caused by (a) shear forces, and (b) bending moments Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.

10 Sign convention are called deformation sign convention because they are based upon how the material is deformed. By contrast, when writing equations of equilibrium we use static sign convention, in which forces are positive or negative according to their directions along the coordinate axes.

11 EX 4-1 A simple beam AB supports two loads, a force P and a couple, acting as shown in Fig. 4-7a. Find the shear force V and bending moment M in the beam at cross sections located as follows: (a) a small distance to the left of the midpoint of the beam, and (b) a small distance to the right of the midpoint of the beam Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig. 4-7 Example 4-1. Shear forces and bending moments in a simple beam.

12 Solution Reaction. 1) total free-body diagram (a) 2) left-hand half of beam as the free body (Figure 4-7(b)). (b) (c) 3) (Figure 4-7(c)). (d,e)

13 Example 4-2 A cantilever beam that is free at end A and fixed at end B is subjected to a distributed load of linearly varying intensity q(fig. 4-8a). The maximum intensity of the load occurs at the fixed support and is equal to q 0. Find the shear force V and bending moment M at distance x from the free end of the beam. Fig. 4-8 Example 4-2. Shear force and bending moment in a cantilever beam Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.

14 Solution (FIg 4-8(b)). The intensity of the distribution load at distance x from the end is a : (4-1) total load : : (4-2a) A( ) : V= 0, B( ) : (4-2b) (4-3a) ( ) : M= 0, ( ) : (4-3b)

15 EX 4-3 A simple beam with an overhang is supported at points A and B(Fig. 4-9a). A uniform load of intensity acts throughout the length of the beam and a concentrated load acts at a point 9ft from the left-hand support. The span length is 24ft and the length of the overhang is 6ft. Calculate the shear force V and bending moment M at cross section D located 15ft from the left-hand support Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig. 4-9 Example 4-3. Shear force and bending moment in a beam with an overhang.

16 Solution 1) Reaction at entire beam 2)(Fig 4-9(b)). (Fig 4-9(c))

17 4.4 Relationships Between Loads, Shear Force, and Bending Moment 2001 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig Element of a beam used in deriving the relationships between loads, shear forces and bending moments (all loads and stress resultants are shown in their positive directions.)

18 Distributed Load(Fig 4-10(a)), (4-4) If q=0, then and shear force is constant in that part of the beam. If q=constant, then = constant and shear force changes linearly in that part of the beam.

19 Example Fig. 4-8 Example 4-2. Shear force and bending moment in a cantilever beam Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.

20 Taking the derivative gives from (a) (4-5) =-(Area of the loading diagram between A and B)

21 Let us now consider the moment equilibrium in Fig. 4-10a. (4-6)

22 Example Again using the cantilever beam of Fig.4-8 Fig. 4-8 Example 4-2. Shear force and bending moment in a cantilever beam Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.

23 from a (4-7) =(area of the shear-force diagram between A and B)

24 Concentrated Loads(Fig. 4-10(b)) Now let us consider a concentrated load P acting on the beam element(fig. 4-10(b)) From equilibrium of forces in the vertical direction, we get (4-8)

25 From equilibrium of moments about the left-hand face of the element(fig. 4-10(b)), we get At the left-hand side At the right-hand side

26 Loads in the form of couples(fig.4-10(c)) From equilibrium of moments about the left-hand side of the element gives (4-9)

27 4.5 Shear-force and bending-moment diagrams Concentrated loads Diagrams showing the variation of N,V,M are very useful. Because these diagrams quickly identify locations and values of maximum N, V, M needed for design Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig Shear-force and bending moment diagrams for a simple beam with a concentrated load.

28 with a concentrated load. 1), (4-10 a, b) ( ) (4-11a,b) ( ) (4-12a) (4-12b) (4-13) from = 0 = V

29 The maximum positive and negative bending moments in a beam may occur at the following places: A cross section where a concentrated loads is applied and the shear force changes sign A cross section where the shear force equals zero. A point of support where a vertical reaction is present A cross section where a couple is applied

30 Uniform load 2001 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig Shear-force and bending moment diagrams for a simple beam with a uniform load.

31 = = (4-14a) (4-14b) The maximum moment occurs where the shear force equals zero. (4-15)

32 Several Concentrated loads 2001 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig Shear-force and bending moment diagrams for a simple beam with several concentrated loads.

33 , ( ) (4-16a,b) ( ) (4-17a,b) (4-18a) ( ) (4-18b) ( ) (4-18b) (4-20a,b,c)

34 Ex 4-4 Draw the shear-force and bending-moment diagrams for a simple beam with a uniform load of intensity q acting over part of the span(fig. 4-14a) Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig Example 4-4. Simple beam with a uniform load over part of the span.

35 Solution 1) Reaction. (4-21a,b) 2) ( 0 < x < a ) (4-22a,b) ( ) (4-23a,b) ( ) (4-24a,b) 3) maximum bending moment from V = 0 *( ) (4-25)

36 Now we substitute -----> (4-26) Special case : If, from (4-25) and (4-26) (4-27a,b)

37 Example 4-5 Draw the shear-force and bending-moment diagrams for a cantilever beam with two concentrated loads(fig. 4-15a) 2001 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig Example 4-5. Cantilever beam with two concentrated loads

38 Solution 1) (a,b) 2) ( 0 < x < a ) (c,d) ( a < x < L ) (e,f)

39 Example 4-6 A cantilever beam supporting a uniform load of constant intensity q is shown in Fig. 4-16a. Draw the shear-force and bending-moment diagrams for this beam Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig Example 4-6. Cantilever beam with a uniform load.

40 Solution 1) (4-28a,b) 2) 3) (4-29a,b) (4-30a,b) (g) (h)

41 Example 4-7 A beam ABC with an overhang at the left-hand end is shown in Fig. 4-17a. The beam is subjected to a uniform load of intensity on the overhang AB and a counterclockwise couple acting midway between the supports at B and C. Draw the shear-force and bending-moment diagrams for this beam Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Fig Example 4-7. Beam with an overhang.

42 Solution 1) 2) The bending moment just to the left of the couple is The bending moment just to the right of the couple is The bending moment at the support C is as expected.

Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

More information

Shear Force and Bending Moment Diagrams for a Beam Steven Vukazich San Jose State University

Shear Force and Bending Moment Diagrams for a Beam Steven Vukazich San Jose State University Shear Force and Bending oment Diagrams for a Beam Steven ukazich San Jose State University General procedure for the construction of internal force diagrams 1. Find all of the eternal forces and draw the

More information

3.5 STRESS AND STRAIN IN PURE SHEAR. The next element is in a state of pure shear.

3.5 STRESS AND STRAIN IN PURE SHEAR. The next element is in a state of pure shear. 3.5 STRESS AND STRAIN IN PURE SHEAR The next element is in a state of pure shear. Fig. 3-20 Stresses acting on a stress element cut from a bar in torsion (pure shear) Stresses on inclined planes Fig. 3-21

More information

Chapter 7: Internal Forces

Chapter 7: Internal Forces Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can

More information

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323 Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

More information

Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11. Displacement Method of Analysis Slope Deflection Method Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be

More information

Laith Batarseh. internal forces

Laith Batarseh. internal forces Next Previous 1/8/2016 Chapter seven Laith Batarseh Home End Definitions When a member is subjected to external load, an and/or moment are generated inside this member. The value of the generated internal

More information

Chapter 4.1: Shear and Moment Diagram

Chapter 4.1: Shear and Moment Diagram Chapter 4.1: Shear and Moment Diagram Chapter 5: Stresses in Beams Chapter 6: Classical Methods Beam Types Generally, beams are classified according to how the beam is supported and according to crosssection

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The Slope-Deflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student

More information

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate. 1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a two-dimensional structure and statically indeterminate reactions: Statically indeterminate structures

More information

ES230 STRENGTH OF MATERIALS

ES230 STRENGTH OF MATERIALS ES230 STRENGTH OF MATERIALS Exam 1 Study Guide. Exam 1: Wednesday, February 8 th, in-class Updated 2/5/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will

More information

By Dr. Mohammed Ramidh

By Dr. Mohammed Ramidh Engineering Materials Design Lecture.6 the design of beams By Dr. Mohammed Ramidh 6.1 INTRODUCTION Finding the shear forces and bending moments is an essential step in the design of any beam. we usually

More information

SAB2223 Mechanics of Materials and Structures

SAB2223 Mechanics of Materials and Structures S2223 Mechanics of Materials and Structures TOPIC 2 SHER FORCE ND ENDING MOMENT Lecturer: Dr. Shek Poi Ngian TOPIC 2 SHER FORCE ND ENDING MOMENT Shear Force and ending Moment Introduction Types of beams

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1 of 6 Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1. As a practical matter, determining design loads on structural members involves several

More information

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam BEM horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam INTERNL FORCES IN BEM Whether or not a beam will break, depend on the internal resistances

More information

Shear Force V: Positive shear tends to rotate the segment clockwise.

Shear Force V: Positive shear tends to rotate the segment clockwise. INTERNL FORCES IN EM efore a structural element can be designed, it is necessary to determine the internal forces that act within the element. The internal forces for a beam section will consist of a shear

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

Moment Distribution Method

Moment Distribution Method Moment Distribution Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Distribution Method. 2) Derive the Moment Distribution Method equations using mechanics

More information

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1 E2027 Structural nalysis I TYPES OF STRUUTRES H in ivil Engineering Page 1-1 E2027 Structural nalysis I SUPPORTS Pin or Hinge Support pin or hinge support is represented by the symbol H or H V V Prevented:

More information

Shear force and bending moment of beams 2.1 Beams 2.2 Classification of beams 1. Cantilever Beam Built-in encastre' Cantilever

Shear force and bending moment of beams 2.1 Beams 2.2 Classification of beams 1. Cantilever Beam Built-in encastre' Cantilever CHAPTER TWO Shear force and bending moment of beams 2.1 Beams A beam is a structural member resting on supports to carry vertical loads. Beams are generally placed horizontally; the amount and extent of

More information

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Module 3 Lecture 6 Internal Forces Today, we will see analysis of structures part

More information

Support Idealizations

Support Idealizations IVL 3121 nalysis of Statically Determinant Structures 1/12 nalysis of Statically Determinate Structures nalysis of Statically Determinate Structures The most common type of structure an engineer will analyze

More information

Types of Structures & Loads

Types of Structures & Loads Structure Analysis I Chapter 4 1 Types of Structures & Loads 1Chapter Chapter 4 Internal lloading Developed in Structural Members Internal loading at a specified Point In General The loading for coplanar

More information

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200 Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 2 Date: Time: 8:00 10:00 PM - Location: WTHR 200 Circle your lecturer s name and your class meeting time. Koslowski Zhao

More information

ENG202 Statics Lecture 16, Section 7.1

ENG202 Statics Lecture 16, Section 7.1 ENG202 Statics Lecture 16, Section 7.1 Internal Forces Developed in Structural Members - Design of any structural member requires an investigation of the loading acting within the member in order to be

More information

Deflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w

Deflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w CIVL 311 - Conjugate eam 1/5 Conjugate beam method The development of the conjugate beam method has been atributed to several strucutral engineers. any credit Heinrich üller-reslau (1851-195) with the

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS MM 210 MECHANICS OF MATERIALS 2012-2013 1 1.INTRODUCTION TO MECHANICS OF MATERIALS WHAT IS MECHANICS OF MATERIALS? Mechanics is the physical science that deals with the conditions of rest or motion of

More information

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004 Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. 1. A beam is loaded as shown. The dimensions of the cross section appear in the insert. the figure. Draw a complete free body diagram showing an equivalent

More information

M.S Comprehensive Examination Analysis

M.S Comprehensive Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Unit II Shear and Bending in Beams

Unit II Shear and Bending in Beams Unit II Shear and Bending in Beams Syllabus: Beams and Bending- Types of loads, supports - Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly

More information

276 Calculus and Structures

276 Calculus and Structures 76 Calculus and Structures CHAPTER THE CONJUGATE BEA ETHOD Calculus and Structures 77 Copyright Chapter THE CONJUGATE BEA ETHOD.1 INTRODUCTION To find the deflection of a beam you must solve the equation,

More information

MECE 3321: Mechanics of Solids Chapter 6

MECE 3321: Mechanics of Solids Chapter 6 MECE 3321: Mechanics of Solids Chapter 6 Samantha Ramirez Beams Beams are long straight members that carry loads perpendicular to their longitudinal axis Beams are classified by the way they are supported

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15]

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] 2. Draw the influence line for shear to the left of B for the overhanging beam shown in Fig. Q. No. 4 [M/J-15] 3.

More information

Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and b) Recognize two-force members. In-Class

More information

Chapter 7 FORCES IN BEAMS AND CABLES

Chapter 7 FORCES IN BEAMS AND CABLES hapter 7 FORES IN BEAMS AN ABLES onsider a straight two-force member AB subjected at A and B to equal and opposite forces F and -F directed along AB. utting the member AB at and drawing the free-body B

More information

Quizzam Module 1 : Statics

Quizzam Module 1 : Statics Structural Steel Design Quizzam odule : Statics NAE Draw shear and moment diagrams for the following loading conditions. Note the reactions. Calculate the maximum amount of internal bending moment. 0 500

More information

ME C85/CE C30 Fall, Introduction to Solid Mechanics ME C85/CE C30. Final Exam. Fall, 2013

ME C85/CE C30 Fall, Introduction to Solid Mechanics ME C85/CE C30. Final Exam. Fall, 2013 Introduction to Solid Mechanics ME C85/CE C30 Fall, 2013 1. Leave an empty seat between you and the person (people) next to you. Unfortunately, there have been reports of cheating on the midterms, so we

More information

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I Engineering Mechanics Branch of science which deals with the behavior of a body with the state of rest or motion, subjected to the action of forces.

More information

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 2 3 Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from the

More information

Stress Engineering Interview Questions Part 1

Stress Engineering Interview Questions Part 1 Stress Engineering Interview Questions Part 1 Author: Surya Batchu Senior Stress Engineer Founder, STRESS EBOOK LLC. http://www.stressebook.com 1 P a g e Stress Engineering Interview Questions Part 1:

More information

Internal Internal Forces Forces

Internal Internal Forces Forces Internal Forces ENGR 221 March 19, 2003 Lecture Goals Internal Force in Structures Shear Forces Bending Moment Shear and Bending moment Diagrams Internal Forces and Bending The bending moment, M. Moment

More information

Preliminaries: Beam Deflections Virtual Work

Preliminaries: Beam Deflections Virtual Work Preliminaries: Beam eflections Virtual Work There are several methods available to calculate deformations (displacements and rotations) in beams. They include: Formulating moment equations and then integrating

More information

Calculus and Structures

Calculus and Structures Calculus and Structures CHAPTER 8 SHEAR FORCE AND BENDING MOMENTS FOR BEAMS WITH CONTINUOUS FORCES Calculus and Structures 11 Copyright Chapter 8 CONTINUOUS FORCE 8.1 INTRODUCTION The last section was

More information

QUESTION BANK ENGINEERS ACADEMY. Hinge E F A D. Theory of Structures Determinacy Indeterminacy 1

QUESTION BANK ENGINEERS ACADEMY. Hinge E F A D. Theory of Structures Determinacy Indeterminacy 1 Theory of Structures eterminacy Indeterminacy 1 QUSTION NK 1. The static indeterminacy of the structure shown below (a) (b) 6 (c) 9 (d) 12 2. etermine the degree of freedom of the following frame (a) 1

More information

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D.

Three torques act on the shaft. Determine the internal torque at points A, B, C, and D. ... 7. Three torques act on the shaft. Determine the internal torque at points,, C, and D. Given: M 1 M M 3 300 Nm 400 Nm 00 Nm Solution: Section : x = 0; T M 1 M M 3 0 T M 1 M M 3 T 100.00 Nm Section

More information

Chapter 2. Shear Force and Bending Moment. After successfully completing this chapter the students should be able to:

Chapter 2. Shear Force and Bending Moment. After successfully completing this chapter the students should be able to: Chapter Shear Force and Bending Moment This chapter begins with a discussion of beam types. It is also important for students to know and understand the reaction from the types of supports holding the

More information

Due Tuesday, September 21 st, 12:00 midnight

Due Tuesday, September 21 st, 12:00 midnight Due Tuesday, September 21 st, 12:00 midnight The first problem discusses a plane truss with inclined supports. You will need to modify the MatLab software from homework 1. The next 4 problems consider

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

MECHANICS OF MATERIALS. Analysis of Beams for Bending

MECHANICS OF MATERIALS. Analysis of Beams for Bending MECHANICS OF MATERIALS Analysis of Beams for Bending By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Define the elastic deformation of an axially

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

, and M A , R B. , and then draw the shear-force and bending-moment diagrams, labeling all critical ordinates. Solution 10.

, and M A , R B. , and then draw the shear-force and bending-moment diagrams, labeling all critical ordinates. Solution 10. SETIN 0. ethod of Superposition 63 roblem 0.- The propped cantilever beam shown in the figure supports a uniform load of intensity on the left-hand half of the beam. Find the reactions R, R, and, and then

More information

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb 06 Solutions 46060_Part1 5/27/10 3:51 P Page 334 6 11. The overhanging beam has been fabricated with a projected arm D on it. Draw the shear and moment diagrams for the beam C if it supports a load of

More information

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 5 Stress Mechanical Behavior of Materials Sec. 6.1-6.5 Jiangyu Li Jiangyu Li, orce Vectors A force,, is a vector (also called a "1 st -order tensor") The description

More information

Outline. In Situ Stresses. Soil Mechanics. Stresses in Saturated Soil. Seepage Force Capillary Force. Without seepage Upward seepage Downward seepage

Outline. In Situ Stresses. Soil Mechanics. Stresses in Saturated Soil. Seepage Force Capillary Force. Without seepage Upward seepage Downward seepage Soil Mechanics In Situ Stresses Chih-Ping Lin National Chiao Tung Univ. cplin@mail.nctu.edu.tw Outline Without seepage Upward seepage Downward seepage Seepage Force The total stress at the elevation of

More information

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1 MTE STATICS Example Problem P. Beer & Johnston, 004 by Mc Graw-Hill Companies, Inc. The structure shown consists of a beam of rectangular cross section (4in width, 8in height. (a Draw the shear and bending

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2017 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

Supplement: Statically Indeterminate Frames

Supplement: Statically Indeterminate Frames : Statically Indeterminate Frames Approximate Analysis - In this supplement, we consider another approximate method of solving statically indeterminate frames subjected to lateral loads known as the. Like

More information

OUT ON A LIMB AND HUNG OUT TO DRY :

OUT ON A LIMB AND HUNG OUT TO DRY : 27-Nov-12 17:03 1 of 2 h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/c10/c2hlchbhcmq3mjewyzewxzeuegzvcm0.enc?course=crs1404&id=ref CHAPTER 10 OUT ON A LIMB AND HUNG OUT TO DRY : A LOOK AT INTERNAL

More information

T2. VIERENDEEL STRUCTURES

T2. VIERENDEEL STRUCTURES T2. VIERENDEEL STRUCTURES AND FRAMES 1/11 T2. VIERENDEEL STRUCTURES NOTE: The Picture Window House can be designed using a Vierendeel structure, but now we consider a simpler problem to discuss the calculation

More information

UNIT-II MOVING LOADS AND INFLUENCE LINES

UNIT-II MOVING LOADS AND INFLUENCE LINES UNIT-II MOVING LOADS AND INFLUENCE LINES Influence lines for reactions in statically determinate structures influence lines for member forces in pin-jointed frames Influence lines for shear force and bending

More information

Example: 5-panel parallel-chord truss. 8 ft. 5 k 5 k 5 k 5 k. F yield = 36 ksi F tension = 21 ksi F comp. = 10 ksi. 6 ft.

Example: 5-panel parallel-chord truss. 8 ft. 5 k 5 k 5 k 5 k. F yield = 36 ksi F tension = 21 ksi F comp. = 10 ksi. 6 ft. CE 331, Spring 2004 Beam Analogy for Designing Trusses 1 / 9 We need to make several decisions in designing trusses. First, we need to choose a truss. Then we need to determine the height of the truss

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are *12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are very small,

More information

(Refer Slide Time: 2:43-03:02)

(Refer Slide Time: 2:43-03:02) Strength of Materials Prof. S. K. Bhattacharyya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 34 Combined Stresses I Welcome to the first lesson of the eighth module

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 5 Beams for Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 5 Beams for Bending MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 5 Beams for Bending Introduction esign of beams for mechanical or civil/structural applications Transverse loading in most cases for

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

More information

bending moment in the beam can be obtained by integration

bending moment in the beam can be obtained by integration q 0 L 4 B = - v(l) = CCC ( ) 30 EI Example 9-5 an overhanging beam ABC with a concentrated load P applied at the end determine the equation of deflection curve and the deflection C at the end flexural

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 13

ENGR-1100 Introduction to Engineering Analysis. Lecture 13 ENGR-1100 Introduction to Engineering Analysis Lecture 13 EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Today s Objectives: Students will be able to: a) Identify support reactions, and, b) Draw a free-body

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. In-Class

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 1 - FRAMES AND BEAMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 1 - FRAMES AND BEAMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 1 - FRAMES AND BEAMS TUTORIAL 2 - BEAMS CONTENT Be able to determine the forces acting

More information

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Introduction A structure refers to a system of connected parts used to support a load. Important examples related to civil engineering include buildings,

More information

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. READING

More information

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method The basis for the method comes from the similarity of eqn.1 &. to eqn 8. & 8. To show this similarity, we can write these eqn as shown dv dx w d θ M dx d M w dx d v M dx Here the shear V compares with

More information

CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 2. Discontinuity functions

CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 2. Discontinuity functions 1. Deflections of Beams and Shafts CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 1. Integration method. Discontinuity functions 3. Method

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

PROBLEM 5.1 SOLUTION. Reactions: Pb L Pa L. From A to B: 0 < x < a. Pb L Pb L Pb L Pbx L. From B to C: a < x < L Pa L. Pa L. L Pab At section B: M = L

PROBLEM 5.1 SOLUTION. Reactions: Pb L Pa L. From A to B: 0 < x < a. Pb L Pb L Pb L Pbx L. From B to C: a < x < L Pa L. Pa L. L Pab At section B: M = L PROBEM 5.1 For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the equations of the shear and bending-moment curves. SOUTION Reactions: From A to B: 0 < x < a

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

CHAPTER 4. Stresses in Beams

CHAPTER 4. Stresses in Beams CHAPTER 4 Stresses in Beams Problem 1. A rolled steel joint (RSJ) of -section has top and bottom flanges 150 mm 5 mm and web of size 00 mm 1 mm. t is used as a simply supported beam over a span of 4 m

More information

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY Spring 2006 Final Examination STUDENT S NAME (please print) STUDENT S SIGNATURE STUDENT NUMBER IDE 110 CLASS SECTION INSTRUCTOR S NAME Do not turn this page until instructed to start. Write your name on

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

five moments ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture ARCH 614

five moments ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture five moments Moments 1 Moments forces have the tendency to make a body rotate about an axis http://www.physics.umd.edu

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS TW21 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS MODULE NO: CIE4011 Date: Wednesday 11 th January 2017 Time:

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

More information

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions Deflection of Beams Equation of the Elastic Curve The governing second order differential equation for the elastic curve of a beam deflection is EI d d = where EI is the fleural rigidit, is the bending

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

FIXED BEAMS CONTINUOUS BEAMS

FIXED BEAMS CONTINUOUS BEAMS FIXED BEAMS CONTINUOUS BEAMS INTRODUCTION A beam carried over more than two supports is known as a continuous beam. Railway bridges are common examples of continuous beams. But the beams in railway bridges

More information

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)

More information

Plane Trusses Trusses

Plane Trusses Trusses TRUSSES Plane Trusses Trusses- It is a system of uniform bars or members (of various circular section, angle section, channel section etc.) joined together at their ends by riveting or welding and constructed

More information