# Chapter 7: Bending and Shear in Simple Beams

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis. These transverse loads cause the beam to bend in the plane of the applied loads. Internal bending stresses and shear stresses are developed in the material as it resists these loads. Axial forces (and axial stresses) may also be present in the beam when the applied loads are not perpendicular to the axis. Beams are a common type of structural member. Beams are used in the roofs and floors of buildings. Beams are used for bridges and other structural applications. Beams are usually long, straight, prismatic (i.e. symmetrical) bars. Not all beams need to be horizontal; they may be vertical or on a slant. Designing a beam consists essentially in selecting the cross section that will provide the most effective resistance to shear and bending produced by the applied loads. 7.1 Classification of Beams and Loads Beams are often classified according to their support conditions. Following are six major beam types. The span L is the distance between supports. Statically Determinate Simply supported Overhanging Cantilever 7.1

2 Statically Indeterminate SI 1 SI 1 SI 3 Continuous Fixed at one end, Fixed-Fixed simply supported at the other end Type of Connections Actual support and connections for beams are idealized as rollers, hinges (pins), or fixed. Following are examples of common support/connection conditions. 1. Roller supports This reaction is equivalent to a force with a known line of action (direction). Depiction Reaction There is only one unknown involved with this support (i.e. the magnitude of the reaction). This reaction prevents translation of the free body in one direction. This reaction does not prevent the body from rotating about the connection. Examples of this type of support include the following. A beam supported by a neoprene pad. A beam supported by a concrete or steel cylinder (i.e. a rocker). 7.2

3 2. Pin support This reaction is equivalent to a force with an unknown line of action. Depiction Reactions There are two unknowns involved with this support. The magnitude and direction of the reactive force is unknown. Normally, we will work with the components of the unknown reactive force, thus fixing the directions; the magnitudes of the two components become the unknowns. This reaction prevents translation of the free body in all directions. This reaction does not prevent the body from rotating about the connection. Examples of this type of support include the following. A timber beam/timber column connection with T-plate. A steel beam connected to a steel girder with a clip angle. A pin-connected column base. A gusset plate on a truss. A ball and socket joint. 3. Fixed support This reaction is equivalent to a force (with an unknown line of action) and a couple. Depiction Reactions 7.3

4 Reactions of this group involve three unknowns, consisting of the two components of the force and the moment of the couple. This reaction is caused by fixed supports which oppose any motion of the free body and thus constrain it completely, preventing both translation and rotation. Examples of this type of support include A reinforced concrete floor/wall connection. A steel strap welded to a gusset plate. A timber pole embedded in a concrete base. A beam/column moment connection. When the sense (direction) of an unknown force or couple is not known, no attempt should be made to determine the correct direction. The sense of the force or couple should be arbitrarily assumed. The sign of the answer that is obtained will indicate whether the assumption is correct or not. Types of Loads There are four fundamental types of loads that can act on a beam. Concentrated load (ex. beam-to-girder loads, column loads) Uniformly distributed load (ex. joists to beam, built-up roof, snow load, dead load, live load) Non-uniformly distributed load (ex. soil or water pressure behind a retaining wall) 7.4

5 Pure moment (ex. starting torque on machinery) 7.2 Shear and Bending Moment When a beam is subjected to applied loads, the beam must resist these loads to remain in equilibrium. To resist the applied loads, an internal force system is developed within the beam. Stresses and deflections in beams are the result of these internal forces (axial forces, shear forces, and moments). It is convenient to map these internal actions (forces and moments). Diagrams are drawn to provide a complete picture of the magnitudes and directions of the forces and moments that act along the length of the beam. These diagrams are referred to as load (P), shear (V), and moment (M) diagrams. Shear and moment diagrams can be drawn in three ways. By calculating values of shear and moment at various sections along the beam and plotting enough points to obtain a smooth curve. This procedure is timeconsuming. By writing equations for the values of shear and moment. By drawing the diagrams directly, understanding the relationship between load, shear force and moment. The two latter methods will be developed in the following sections of this chapter. Consider the simply-supported beam with the concentrated load. The internal forces in member AB are not limited to producing axial tension or compression (as in the case of straight two-force members). The internal forces also produce shear and bending. 7.5

6 We can take a cut at any point along the length of the member to find the three internal actions. If the entire beam is in equilibrium, then any portion of the beam is in equilibrium by the three internal actions. P axial force V shear force M bending moment A sign convention is necessary for shear and moment diagrams if the results obtained from their use are to be interpreted properly. Sign conventions Axial load Shear force Bending moment The bending moment in a horizontal beam is positive at sections for which the top fibers of the beam are in compression and the bottom fibers are in tension. 7.6

7 It is important to note that the sign convention used for shear and moment diagrams is different from the conventions used in writing the equations of equilibrium. When using the equations of equilibrium, forces directed up or to the right are positive; counterclockwise moments are positive and clockwise moments are negative. The new sign conventions are used only for showing the directions of the internal actions on free-body diagrams and for plotting the shear and moment diagrams. 7.7

8 Example Problems Values of Shear and Moment at Specific Locations on a Beam Given: The beam loaded as shown. Find: V and x = 0 +, 2, 4 -, 4 +, 6, 8 -, 8 +, 10, and 12 - Solution First, find the reactions at the supports. M B = 0 = - 12 A y + 12 (8) + 6 (4) 12 A y = = 120 A y = k A y = 10.0 k M A = 0 = 12 B y - 12 (4) 6 (8) 12 B y = = 96 B y = k B y = 8.0 k x = 0 + F y = 0 = 10 V M cut = 0 = - 10 (0) + M V = 10 k M = 0 k-ft x = 2 F y = 0 = 10 V M cut = 0 = - 10 (2) + M V = 10 k M = 20.0 k-ft x = 4 - F y = 0 = 10 V M cut = 0 = - 10 (4) + M V = 10 k M = 40.0 k-ft 7.8

9 x = 4 + F y = 0 = V V = - 2 k M cut = 0 = - 10 (4) + 12 (0) + M M = 40.0 k-ft x = 6 F y = 0 = V V = - 2 k M cut = 0 = - 10 (6) + 12 (2) + M M = = 36.0 k-ft x = 8 - F y = 0 = V V = - 2 k M cut = 0 = - 10 (8) + 12 (4) + M M = = 32.0 k-ft x = 8 + F y = 0 = V V = - 8 k M cut = 0 = - 10 (8) + 12 (4) + 6 (0) + M M = = 32.0 k-ft x = 10 F y = 0 = V V = - 8 k M cut = 0 = - 10 (10) + 12 (6) + 6 (2) + M M = = 16.0 k-ft x = 12 - F y = 0 = V V = - 8 k M cut = 0 = - 10 (12) + 12 (8) + 6 (4) + M M = = 0 k-ft 7.9

10 To simplify the calculations, use a free body diagram from the right side. x = 10 F y = 0 = V + 8 V = - 8 k M cut = 0 = - M + 8 (2) x = 12 - F y = 0 = V + 8 M cut = 0 = - M + 8 (0) V = - 8 k M = 16.0 k-ft M = 0 k-ft Note: The moment is zero at the supports of simply supported beams. 7.10

11 Example Given: The beam loaded as shown. Find: V and x = 0 +, 3, 6 -, 6 +, 7.5, and 9 - Solution First, find the reactions at the supports. M B = 0 = - 9 A y + ½ (6) 6 [3 + (2/3) 6] + ½ (3) 6 [3 + (1/3) 6] 9 A y = 18 (7) + 9 (5) = = 171 A y = A y = 19.0 k M A = 0 = 9 B y ½ (6) 6 (1/3) 6 ½ (3) 6 (2/3) 6 9 B y = 18 (2) + 9 (4) = = 72 B y = B y = 8.0 k x = 0 + F y = 0 = 19 V M cut = 0 = - 19 (0) + M V = 19 k M = 0 k-ft x = 3 F y = 0 = 19 ½ (6) 3 ½ (4.5) 3 V V = = 3.25 k M cut = 0 = - 19 (3) + ½ (6) 3 (2/3) 3 + ½ (4.5) 3 (1/3) 3 + M M = = k-ft x = 6 - F y = 0 = 19 ½ (6) 6 - ½ (3) 6 V V = = k M cut = 0 = - 19 (6) + ½ (6) 6 (2/3) 6 + ½ (3) 6 (1/3) 6 + M M = = 24.0 k-ft 7.11

12 x = 6 + F y = 0 = V + 8 M cut = 0 = - M + 8 (3) V = k M = 24.0 k-ft x = 7.5 F y = 0 = V + 8 V = k M cut = 0 = - M + 8 (1.5) M = 12.0 k-ft x = 9 - F y = 0 = V + 8 M cut = 0 = - M + 8 (0) V = k M = 0 k-ft 7.12

13 7.3 Equilibrium Method for Shear and Moment Diagrams One basic method used in constructing shear (V) and moment (M) diagrams is referred to as the equilibrium method. Specific values of V and M are determined from the equations of equilibrium. Procedure Determine how many sets of equations are needed to define shear and moment across the length of the beam. If the load is uniformly distributed or varies according to a known equation along the entire beam, a single equation can be written for shear (V) or moment (M). Generally, it is necessary to divide the beam into intervals bounded by abrupt changes in the loading (e.g. the end or beginning of a distributed load, a concentrated load or couple). A free-body diagram is drawn representing the section of the beam of interest. An origin is usually selected at the left end of the beam for reference. Equations for V and M are determined from free-body diagrams of portions of the beam. 7.13

14 Example Problems - Equilibrium Method for Shear and Moment Diagrams Given: Beam loaded as shown. Find: Write the V and M equations and draw the V and M diagrams. Solution One set of equations is required. First, solve for the reactions at the supports. M B = 0 = - A y L + w L (L/2) A y L = w L 2 /2 A y = + w L/2 A y = w L/2 M A = 0 = + B y L - w L (L/2) B y L = w L 2 /2 B y = + w L/2 B y = w L/2 Note: The beam is symmetrical and symmetrically loaded; thus, the reactions are symmetrical as well. Each reaction is equal to half of the total applied load (i.e. w L/2). 0 < x < L F y = 0 = wl/2 wx - V V = w (L/2 x) M cut = 0 = - (wl/2) x + wx (x/2) + M M = - wx 2 /2 + wlx/2 M = (wx/2) (L x) 7.14

15 Example Given: Beam loaded as shown. Find: Write the V and M equations and draw the V and M diagrams. Solution Two sets of equations are required. First, solve for the reactions at the supports. M B = 0 = - A y L + P (L/2) A y = P/2 M A = 0 = B y L - P (L/2) B y = P/2 Note: The beam is symmetrical and symmetrically loaded; thus, the reactions are symmetrical as well. Each reaction is equal to half of the total applied load (i.e. P/2). 0 < x < L/2 F y = 0 = P/2 V V = P/2 M cut = 0 = - (P/2) x + M M = Px/2 L/2 < x < L F y = 0 = P/2 P - V V = - P/2 M cut = 0 = - (P/2) x + P (x L/2) + M M = Px/2 Px + PL/2 M = P/2 (L x) 7.15

16 Problem 7.8 (p. 360) Given: Beam loaded as shown. Find: Write the V and M equations and draw the V and M diagrams. Solution Two sets of equations required. First, solve for the reactions at the supports. M B = 0 = - 6 A y + ½ (240) 3 [3 + (1/3) 3] + ½ (240) 3 (2/3) 3 6 A y = 360 (4) (2) 6 A y = = 2160 A y = k A y = 360 k M A = 0 = + 6 B y + ½ (240) 3 [(2/3) 3] + ½ (240) (3) [3 + (1/3) 3] 6 B y = 360 (2) (4) = = 2160 B y = k B y = 360 k Note: The beam is symmetrical and symmetrically loaded; thus, the reactions are symmetrical as well. Each reaction is equal to half of the total applied load. - Total load = ½ x 240 x 6 = 720 kips - Each reaction = ½ x 720 = 360 kips 0 < x < 3 Since the intensity of the distributed load varies, an equation is needed to define the intensity of the distributed load (p) as a function of position x along the beam. 7.16

17 Using the general equation of a line: p = m x + c Determine the slope m. m = (240 0)/3 = 80 So, p = 80 x + c Next, determine the y-intercept value c. Known points on the line include: when x = 0, p = 0 and when x = 3, p = 240. Substituting the second condition into the equation p = 80 x + c: 240 = 80 (3) + c c = = 0 Thus, p = 80 x + 0, and p = 80 x Now write the equations for shear and moment. F y = 0 = 360 V ½ p x 0 = 360 V ½ (80x) x V = x 2 M cut = 0 = - 360x + M + ½ p x (x/3) 0 = -360x + M + ½ (80x) x (x/3) M = +360x 40/3 x 3 M = 360x x 3 3 < x < 6 Since the intensity of the distributed load varies, an equation is needed to define the intensity of the distributed load (p) as a function of position x along the beam. Using the general equation of a line: p = m x + c Determine the slope m. m = (0-240)/3 = - 80 So, p = - 80 x + c Next, determine the y-intercept value c. Known points on the line include: when x = 3, p = 240 and when x = 6, p = 0. Substituting the first condition into the equation p = 80 x + c: 240 = - 80 (3) + c c = = 480 Thus, p = - 80 x + 480, and p = x 7.17

18 Now write the equations for shear and moment. F y = 0 = V ½ p (6 - x) 0 = V ½ ( x) (6 - x) V = ( x) (6 - x) V = x 240 x + 40 x 2 V = 40 x x M cut = 0 = 360 (6 - x) M - ½ p (6 - x) (1/3) (6 - x) 0 = 360 (6 - x) M - ½ ( x) (6 - x) (1/3) (6 - x) M = 360 (6 - x) (1/6) ( x) (6 - x) (6 - x) M = 360 (6 - x) (1/6) ( x) (36 12 x + x 2 ) M = x (1/6) (17, x x 2 80 x 3 ) M = x x 240 x 2 + (80/6) x 3 M = x x x

19 7.4 Relationship Between Load, Transverse Shear, and Bending Moment The methods presented previously for drawing shear and bending moment diagrams become increasingly cumbersome as the loading becomes more complex. The construction of shear and bending moment diagrams can be simplified by understanding the relationships that exist between the load, shear force, and bending moment. Relationships between Load and Shear Force F y = 0 = V (V + V) w x, where w = w(x) and is constant for small x. V = w x V/ x = - w In calculus, as x 0, the above expression takes the following form. dv / dx = - w The equation shows that the slope of the shear diagram is equal to the intensity of the loading at that point, times minus one. If we integrate this expression between two points dv = - w dx dv = - w dx V 1 V 2 = - w(x) dx The equation shows that the change in shear between two points is equal to the area under the load diagram, times minus one. These equations are not valid under a concentrated load. The shear diagram makes a jump at the point of a concentrated load. 7.19

20 Relationships between Shear Force and Bending Moment From the free body diagram, M R = 0 = - M V x + w ( x) 2 /2 + M + M M = V x ½ w ( x) 2 M = V x M / x = V In calculus, as x 0, the above expression takes the following form. dm/dx = V The equation shows that the value of the slope on the bending moment diagram is equal to the height of the shear diagram at that point. When the shear force is zero, the slope on the bending moment diagram is zero. Zero slope on the moment diagram corresponds to a point of a maximum bending moment (either the absolute maximum or a local maximum). If we integrate this expression between two points dm = V dx dm = V dx M 1 M 2 = V(x) dx The equation shows that the change in bending moment between two points is equal to the area under the shear diagram. These equations are not valid under a concentrated couple. The bending moment diagram makes a jump at the point of a concentrated couple. 7.20

21 7.5 Semigraphical Method for Load, Shear and Moment Diagrams The method presented in the previous section is referred to as the semigraphical method. These expressions can be used to draw the shear and moment diagrams. These expressions can be used to compute values of shear and moment at various points along the beam. Before proceeding, let s review basic curves and curve relationships. Zero degree curve The line is horizontal (or has a constant height). May represent the area under a uniformly distributed load. May represent the rectangular area of the shear diagram. Area = a x 1 st degree curve The line is straight with a constant slope. May represent the area under a triangular loading. May represent the triangular area of the shear diagram. Area = ½ b x 2 nd degree curve The line takes the form of a parabola. May represent the area of a shear diagram. Area = cx/3 7.21

22 General considerations for drawing V and M diagrams. For a simply supported beam, the shear at the ends must equal the end reactions. For a simply supported beam, the moment at the ends must be zero. Shear and moment are both zero at the free end of a beam. For a fixed support, the reactions at the support are equal to the shear and moment values at the support. A concentrated load produces a jump in the shear diagram of the same magnitude and direction as the concentrated load. A concentrated couple produces a jump in the moment diagram of the same magnitude as the concentrated couple. The direction of the jump should be determined by analysis. At points where shear is zero, moment is a maximum. 7.22

23 Example Problems - Shear and Moment Diagrams by the Semigraphical Method Given: The beam loaded as shown. Find: Draw the shear and moment diagrams. For the shear diagram 0 < x < L Area under the load diagram = + w L V = - Area = - w L At the right end of the beam V 2 = V 1 + V = w L/2 w L = - wl/2 For the moment diagram 0 < x < L/2 Area under the shear diagram = + ½ (½ w L) (L/2) = w L 2 /8 M = Area = + w L 2 /8 At mid-span M 2 = M 1 + M = 0 + w L 2 /8 = w L 2 /8 Note: At x = L/2, V = 0, and dm/dx = 0 (there is a horizontal tangent on the moment diagram). 7.23

24 Example Given: The beam loaded as shown. Find: Draw the shear and moment diagrams. 7.24

25 Example Given: The beam loaded as shown. Find: Draw the shear and moment diagrams. 7.25

26 Example Given: The beam loaded as shown. Find: Draw the shear and moment diagrams. Find the reactions at the supports. M D = 0 = - 18 A y + ½ (4) 12 [6 + (1/3) 12] + 20 (3) A y = 24 (10) + 20 (3) A y = = 180 A y = k A y = 10 k M A = 0 = - ½ (4) 12 (8) 20 (15) D y 18 D y = = 612 D y = k D y = 34.0 k In order to draw the first part of the moment diagram, the location for the point of maximum moment (i.e. V = 0 kips) needs to be determined so that the area under the shear diagram may be calculated. Write an equation for shear between x = 0 and x = 12. F y = 0 = 10 ½ (x) (x/3) V V = 10 x 2 /6 Let V = 0, thus 0 = 10 x 2 /6 x 2 = 60.0 x = 7.75 The change in moment from x = 0 to x = 7.75 is equal to the area under the shear diagram. Δ M = (2/3) 10 (7.75 ) = 51.7 kip-ft 7.26

27 Determine the value of moment at x = 12 and plot this value on the moment diagram. - The area under the portion shear diagram between x = 7.75 and x = 12 cannot be calculated using standard formulas since there is no horizontal tangent at x = 7.75 or at x = Take a cut at x = 12, draw the free body diagram, and write the equilibrium equation to determine the value of moment. - Then plot this value on the moment diagram. M cut = 0 = M B 10 (12) + ½ (12) 4 (1/3)(12) M B = = 24.0 kip-ft The concentrated couple at point C causes the moment diagram to jump up by 120 kip-ft (from 18 kip-ft to kip-ft). Since the applied moment is acting clockwise, the internal resisting moment increases, thus the jump up on the moment diagram. 7.27

28 Problem 7.8 (p. 360) Note: This problem was previously worked by writing the equations for shear and moment. Given: Beam loaded as shown. Find: Draw the shear and moment diagrams. 7.28

29 Problem 7.13 (p. 362) Given: The beam loaded as shown. Find: Draw the shear and moment diagrams. Solution Find the reactions at the supports. FBD: Member CD M C = 0 = 8 D y 4 (8) 4 D y = + 16 k D y = 16 k M D = 0 = - 8 C y + 4 (8) 4 C y = + 16 k C y = 16 k FBD: Member ABC M A = 0 = 16 B y 4 (20) (20) B y = + 70 k B y = 70 k M B = 0 = - 16 A y + 4 (20) 6 16 (4) A y = + 26 k A y = 26 k Note: Horizontal reactions are statically indeterminate, but are not needed to draw the shear and moment diagrams. Calculation of areas under the load diagram A to B: Area = + 16 (4) = + 64 B to C: Area = + 4 (4) = + 16 C to D: Area = + 4 (8) = + 32 Calculation of areas under the shear diagram. A 1 = ½ (26) 6.5 = 84.5 A 2 = ½ (- 38) 9.5 = A 3 = ½ ( ) 4 = 96.0 A 4 = ½ (16) 4 = 32.0 A 5 = ½ (- 16) 4 =

### Chapter 7 FORCES IN BEAMS AND CABLES

hapter 7 FORES IN BEAMS AN ABLES onsider a straight two-force member AB subjected at A and B to equal and opposite forces F and -F directed along AB. utting the member AB at and drawing the free-body B

### Beams. Beams are structural members that offer resistance to bending due to applied load

Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

### CHAPTER -6- BENDING Part -1-

Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

### dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force

Beams SFD and BMD Shear and Moment Relationships w dv dx Slope of the shear diagram = - Value of applied loading V dm dx Slope of the moment curve = Shear Force Both equations not applicable at the point

### MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

### 7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

### UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

### FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

### Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

### 3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

### Deflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w

CIVL 311 - Conjugate eam 1/5 Conjugate beam method The development of the conjugate beam method has been atributed to several strucutral engineers. any credit Heinrich üller-reslau (1851-195) with the

### Lecture 8: Flexibility Method. Example

ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

### Unit II Shear and Bending in Beams

Unit II Shear and Bending in Beams Syllabus: Beams and Bending- Types of loads, supports - Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly

### 276 Calculus and Structures

76 Calculus and Structures CHAPTER THE CONJUGATE BEA ETHOD Calculus and Structures 77 Copyright Chapter THE CONJUGATE BEA ETHOD.1 INTRODUCTION To find the deflection of a beam you must solve the equation,

### Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

### Problem 1: Calculating deflection by integration uniform load. Problem 2: Calculating deflection by integration - triangular load pattern

Problem 1: Calculating deflection by integration uniform load Problem 2: Calculating deflection by integration - triangular load pattern Problem 3: Deflections - by differential equations, concentrated

### 8.1 Internal Forces in Structural Members

8.1 Internal Forces in Structural Members 8.1 Internal Forces in Structural Members xample 1, page 1 of 4 1. etermine the normal force, shear force, and moment at sections passing through a) and b). 4

### PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

### Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

### 7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

### Structural Analysis III The Moment Area Method Mohr s Theorems

Structural Analysis III The Moment Area Method Mohr s Theorems 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Purpose... 4. Theory... 6.1 asis... 6. Mohr s First Theorem (Mohr I)... 8.3 Mohr

### Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

### Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

### MECHANICS OF MATERIALS

CHAPTER 6 MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Shearing Stresses in Beams and Thin- Walled Members

### Theory and Analysis of Structures

7 Theory and nalysis of Structures J.Y. Richard iew National University of Singapore N.E. Shanmugam National University of Singapore 7. Fundamental Principles oundary Conditions oads and Reactions Principle

### Discontinuous Distributions in Mechanics of Materials

Discontinuous Distributions in Mechanics of Materials J.E. Akin, Rice University 1. Introduction The study of the mechanics of materials continues to change slowly. The student needs to learn about software

### Method of Sections for Truss Analysis

Method of Sections for Truss Analysis Notation: (C) = shorthand for compression P = name for load or axial force vector (T) = shorthand for tension Joint Configurations (special cases to recognize for

### Diagrammatic Convention for Supports. Fig. 1.1: Support Conditions

Diagrammatic Convention for Supports Roller Supports Hinge Support Fixed Support Link Support Fig. 1.1: Support Conditions xial Force, Shear Force and ending Moment Three forces are required to maintain

### Rigid and Braced Frames

RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

### Portal Frame Calculations Lateral Loads

Portal Frame Calculations Lateral Loads Consider the following multi-story frame: The portal method makes several assumptions about the internal forces of the columns and beams in a rigid frame: 1) Inflection

### two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS

APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability

### PLAT DAN CANGKANG (TKS 4219)

PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, two-dimensional structural components of which

### Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

### UNIT-II MOVING LOADS AND INFLUENCE LINES

UNIT-II MOVING LOADS AND INFLUENCE LINES Influence lines for reactions in statically determinate structures influence lines for member forces in pin-jointed frames Influence lines for shear force and bending

### ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13

ARC241 Structural Analysis I Lecture 10: MM1.3 MM1.13 MM1.4) Analysis and Design MM1.5) Axial Loading; Normal Stress MM1.6) Shearing Stress MM1.7) Bearing Stress in Connections MM1.9) Method of Problem

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

### General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

### ENGR-1100 Introduction to Engineering Analysis. Lecture 13

ENGR-1100 Introduction to Engineering Analysis Lecture 13 EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Today s Objectives: Students will be able to: a) Identify support reactions, and, b) Draw a free-body

### Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies 1 2 Contents Introduction Free-Bod Diagram Reactions at Supports and Connections for a wo-dimensional Structure Equilibrium of a Rigid Bod in wo Dimensions Staticall Indeterminate

### ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS

ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)

### structural analysis Excessive beam deflection can be seen as a mode of failure.

Structure Analysis I Chapter 8 Deflections Introduction Calculation of deflections is an important part of structural analysis Excessive beam deflection can be seen as a mode of failure. Extensive glass

### Flexure: Behavior and Nominal Strength of Beam Sections

4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

### ARCE 302-Structural Analysis

RE 30-Structural nalysis ecture Notes, Fall 009 nsgar Neuenhofer ssociate Professor, Department of rchitectural Engineering alifornia Polytechnic State University, San uis Obispo opyright 009 nsgar Neuenhofer

### The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three- Hence, only

### SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

### Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

### What Every Engineer Should Know About Structures Part B Statics Applications

What Every Engineer Should Know About Structures by Professor Patrick L. Glon, P.E. This is the second course of a series in the area of study of engineering mechanics called Statics and Strength of Materials.

### Equilibrium Equilibrium and Trusses Trusses

Equilibrium and Trusses ENGR 221 February 17, 2003 Lecture Goals 6-4 Equilibrium in Three Dimensions 7-1 Introduction to Trusses 7-2Plane Trusses 7-3 Space Trusses 7-4 Frames and Machines Equilibrium Problem

### Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

### Preferred practice on semi-integral abutment layout falls in the following order:

GENERAL INFORMATION: This section of the chapter establishes the practices and requirements necessary for the design and detailing of semi-integral abutments. For general requirements and guidelines on

### Now we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c

Now we are going to use our free body analysis to look at Beam Bending (WL1) Problems 17, F00Q1, F00Q1c One of the most useful applications of the free body analysis method is to be able to derive equations

### UNIT-V MOMENT DISTRIBUTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD Distribution and carryover of moments Stiffness and carry over factors Analysis of continuous beams Plane rigid frames with and without sway Neylor s simplification. Hardy

### 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

The basis for the method comes from the similarity of eqn.1 &. to eqn 8. & 8. To show this similarity, we can write these eqn as shown dv dx w d θ M dx d M w dx d v M dx Here the shear V compares with

OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

### Basis of Structural Design

Basis of Structural Design Course 2 Structural action: cables and arches Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Structural action Structural action: the way

### MT225 Homework 6 - Solution. Problem 1: [34] 5 ft 5 ft 5 ft A B C D. 12 kips. 10ft E F G

MT225 Homework 6 - Solution Problem 1: [34] 5 ft 5 ft 5 ft C D 10ft 12 kips E G To begin, we need to find the reaction forces at supports and E. To do so, we draw a free-body diagram of the entire structure

### 4. Cross-section forces

4. Cross-section forces Definitions subset I (rejected) subset II eternal forces (E) internal forces (I) Fig. 4.1 Two separated subsets Equivalence Theorem: E I = I II bar an element of a structure with

### For more Stuffs Visit Owner: N.Rajeev. R07

Code.No: 43034 R07 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 FOUNDATION OF SOLID MECHANICS (AERONAUTICAL ENGINEERING) Time: 3hours

### Chapter 9: Column Analysis and Design

Chapter 9: Column Analysis and Design Introduction Columns are usually considered as vertical structural elements, but they can be positioned in any orientation (e.g. diagonal and horizontal compression

### Torsional Analysis of

Steel Design Guide Series Torsional Analysis of Structured Steel Members Steel Design Guide Series Torsional Analysis of Structural Steel Members Paul A. Seaburg, PhD, PE Head, Department of Architectural

### Chapter 2. Design for Shear. 2.1 Introduction. Neutral axis. Neutral axis. Fig. 4.1 Reinforced concrete beam in bending. By Richard W.

Chapter 2 Design for Shear By Richard W. Furlong 2.1 Introduction Shear is the term assigned to forces that act perpendicular to the longitudinal axis of structural elements. Shear forces on beams are

### Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

### Preliminaries: Beam Deflections Virtual Work

Preliminaries: Beam eflections Virtual Work There are several methods available to calculate deformations (displacements and rotations) in beams. They include: Formulating moment equations and then integrating

### Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

### 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

### Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

### = 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength

### MECHANICS OF MATERIALS

Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

### Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

### Moment Distribution The Real Explanation, And Why It Works

Moment Distribution The Real Explanation, And Why It Works Professor Louie L. Yaw c Draft date April 15, 003 To develop an explanation of moment distribution and why it works, we first need to develop

### SERVICEABILITY LIMIT STATE DESIGN

CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise

### DETERMINATION OF EI FOR PULTRUDED GFRP SHEET PILE PANELS. Abstract

DETERMINATION OF EI FOR PULTRUDED GFRP SHEET PILE PANELS Yixin Shao, Cynthia Giroux and Zeid Bdeir McGill University Montreal, Quebec, Canada Abstract The flexural rigidity, EI, plays an especially important

### Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

### Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

### Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC.

Name ME 270 Fall 2005 Final Exam PROBLEM NO. 1 Given: A distributed load is applied to the top link which is, in turn, supported by link AC. Find: a) Draw a free body diagram of link BCDE and one of link

### Sports biomechanics explores the relationship between the body motion, internal forces and external forces to optimize the sport performance.

What is biomechanics? Biomechanics is the field of study that makes use of the laws of physics and engineering concepts to describe motion of body segments, and the internal and external forces, which

### Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

CIVL 7/8117 Chapter 12 - Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness

### Statics: Lecture Notes for Sections

Chapter 6: Structural Analysis Today s Objectives: Students will be able to: a) Define a simple truss. b) Determine the forces in members of a simple truss. c) Identify zero-force members. READING QUIZ

### SLOPE-DEFLECTION METHOD

SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are

### BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

### The subject of this paper is the development of a design

The erformance and Design Checking of Chord-Angle Legs in Joist Girders THEODORE V. GALAMBOS ABSTRACT The subject of this paper is the development of a design checking method for the capacity of the outstanding

### D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s

D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s 1. Design of various types of riveted joints under different static loading conditions, eccentrically loaded riveted joints.

### Moment Area Method. 1) Read

Moment Area Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Area method. 2) Derive the Moment Area method theorems using mechanics and mathematics.

### Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 1 PRINCIPLES OF STATICS

PRINCIPLES OF STTICS Statics is the study of how forces act and react on rigid bodies which are at rest or not in motion. This study is the basis for the engineering principles, which guide the design

### MECHANICS OF MATERIALS

CHTER MECHNICS OF MTERILS 10 Ferdinand. Beer E. Russell Johnston, Jr. Columns John T. DeWolf cture Notes: J. Walt Oler Texas Tech University 006 The McGraw-Hill Companies, Inc. ll rights reserved. Columns

### External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the

### Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

### LECTURE 14 Strength of a Bar in Transverse Bending. 1 Introduction. As we have seen, only normal stresses occur at cross sections of a rod in pure

V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 14 Strength of a Bar in Transverse Bending 1 ntroduction s we have seen, onl normal stresses occur at cross sections of a rod in pure bending. The corresponding

### ENGR-1100 Introduction to Engineering Analysis. Lecture 23

ENGR-1100 Introduction to Engineering Analysis Lecture 23 Today s Objectives: Students will be able to: a) Draw the free body diagram of a frame and its members. FRAMES b) Determine the forces acting at

### 4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

### MECH 401 Mechanical Design Applications

MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (1-17-08) Last time Introduction Units Reliability engineering

### EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS

Today s Objectives: Students will be able to: EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS a) Identify support reactions, and, b) Draw a free-body diagram. In-Class Activities: Check Homework Reading

### Laboratory 4 Bending Test of Materials

Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

### Suspended high-rise. Suspended high-rise Copyright G G Schierle, press Esc to end, for next, for previous slide 1

Suspended high-rise Suspended high-rise Copyright G G Schierle, 2001-06 press Esc to end, for next, for previous slide 1 Suspended high-rise 1 Gravity load path 2 Differential deflection 3 Prestress to

### 8.3 Design of Base Plate for Thickness

8.3 Design o Base Plate or Thickness 8.3.1 Design o base plate or thickness (Elastic Design) Upto this point, the chie concern has been about the concrete oundation, and methods o design have been proposed

### MECHANICS OF SOLIDS Credit Hours: 6

MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second

### In this chapter trusses, frames and machines will be examines as engineering structures.

In the previous chapter we have employed the equations of equilibrium in order to determine the support / joint reactions acting on a single rigid body or a system of connected members treated as a single