f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!"

Transcription

1 393/09/0 393//07 :,F! ::!n> b]( a.q 5 O +D5 S ١ ; ;* :'!3Qi C+0;$ < "P 4 ; M V! M V! ; a 4 / ;0$ f;g,7k ;! / C+!< 8R+^ ;0$ Z\ \ K S;4 "* < 8c0 5 * <., 5 n' ;! 4 «/7 8 J #4» i!;g + 5 ;* \ C! +M, /A++> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C! s 4 xa0=4, /$;J\ 8q0 UF 4 8 J < * A0;/ AA5 n' /K0 m\ 0 k4 /! ;2 A 4! 2 4 /^).A30 30< 4... G$A,5 k A0 /+ M,7,+K ;7 / A+0 M` > C! 4 ~> 5 / c0 4 Uk /;K 6c0 8; C! +., 7 8+G 4 K =7 * /!_$!. / Y! ;2 8+G 4 4 < /!;'~> =+0,7 8Pz ;* 4.0/ <,0 P^ 9+0 PK m\ V! /0;0$ AP / d /7 /$;J\ 8qP 4 0;/ <,Ps M M.nE4 /A +z US4 4 8 /7 8 J #4 :!3& 5 3 E0

2 6 '( )* +, ( ) 78 :! /7 8+G 8Pz,7 + U4J K /;K 6c0 4 /AP * V! Ak4 0C+!< U P0*V! ;K 8+G i7$,7. /3 `J0. >/ 4 ;2 ]4 6+cA 4 U7; \ C! 4., /7 8 J,!^ 4 /'+ G0 "*,7K ;! i!;g +,! 8 J i!;g {> "* < 8c0 5 < U /2 /$;J\ ]4 XAX 5!</ CMy 4 ` > C! ;* )F 30< #4 k Q0 m\ n' : F CM * i7$ RK US4 4 8 J d /A +z "A!y 4 0;/ 8 J < #4!< A!<!>... 2!! U k! \ Q ;0$ pr2 J #4 4!< ne4 4 =!,7 pr2 UK A0;/ J < i!;g /0 "A7K 4 /AP AM $,7 82 P7# /5 6K /$;J\! /J+J\ k A ;0 C! «k» ;GJ,7 4 /$;J\ ]4 #4 š4;g d 4 `+> 5, /5 + k! "A!y U+7 4,7 4 2 ]4 C 4! 0F!, /$;J\ 4 m! S C! 30< F /!M,! M!, /$;J\ #4 4 J i!;g M\ C+AX6M.;/! +\ AP J #4 0;4 8R M\ E! 4 * f;g 8 J 4 A4 A0;/ =+0 30< ; /7 /0P 4 M;< + ;2 4 * C! "$.0; /$;J\ 4 4,7 ]4 /2 4 U4J AP J V! #4 x, A0 C!; f;xx!... : F * A0 /0P d ; > * /!_$ š! U+) 4 `+> 7J. +'/ 8;...!=! G$A.6!< 4 0qK M~> CF! ; N! 4 /$;J\ ;

3 79 <' ) &8/0%9&7:,8&; 8c0 i^ m\ + =! /$;J\ M;0 /2 4 `M N> ša++> u+\ K;9! +2 ; M < U U!y,k0 ; q; +4 Q -6+G / 8J K! pg0 < 4 RK 0! š! c0 4 /!;Ek>, F #K p G0 U!q W /;K /0QRS 4 ;A /)5 M 4 0 mp4 [#K U < 4 RK.(35 56 :393 +A34), < A!y.(49 :392 3), 6+ =+0 /7 8 J C! 5 < 4 RK x, 0 / 4, C! /!M;0 Z\ 7J Q;Z; C! 8P /Ai+< =+0 Q 8c0 U P^ m\ /J+) +4 /> 9 =+0,7K ;! ;0$ M/5 /2 4 0;/ 7J M.6+4/ '!. p S 4 * /!_$ š! -5 66V 3Y t +D5 S -!( sa,5 ld :.]6 a.q 8P 9+0 x4!/, +A+K /; "A!y k šp^ m\ /)K š! d 4! /!_$ < ',!!,+)4$ K A0 S;4 /$;J\ 8A+_ k /0;0$ ]! ;* 4 AP C!.4 /0;0$ AP 5 4/ 34 AP =+0 /;K [+)^ V!,+F! /0;0$ + V! 34 4 ]! 7* -K! ; 6+G ;4 9 /0;0$ i7$ < i)! m\ V! n'! J0 *;! J0 AP CF Y! 8; C! x;/ ;4 /! * 8J ;7 =+0 P^ m\ S;4 A!y! "A!y F ]! JF [5! m\ < n'! m\ #K `+> ]! C!., K 6^\ Q;Z; 0 4 i7 # \ 4 < J0! #K AP J ;4 /0;0$ + [5 8; k,+\r ;4 J < 4 /AP /$;J\ ]4 R0! ~F A 4 J V!. 4/ Y! P^ m\ ;2 4 "A!y

4 6 '( )* +, ( ) 80 8 Z» 4 m)# ;S 4 ;2 š! 8\ < /^! CZ,7K ;! Ky < 4 ;4 /$;J\ 8A+_ ;2 4 4 «P^ m\ AP ;4 /0;0$ i)! m\ V! #K AP J ;4 /0;0$ =7 0;/ < m!g /^! 5 5 : < i\.4 < U\ 8+ < '0 4 P^ m\ /0;0$ + 8$ U\ 8+...».«...4 /0;0$ z< i ^ 5 M;k0 #4 8; 5 ;4 c0 C! 4! š! R 8\ n2 4 ;/ C! 9+0 ;/ /A < /0 šp^ m\,7, J V! /5 q; 34 8PK 4 x,+0 ;G m\ < 0 /0 82 šp7# 4!!< 4 K J,+0 "A!y /PK 4 0 /0;0$,œˆ q; ; C+AX 2 «,+)M K».M;k4 82 `J0 +P F! c0,!;j d+$ X ' 4 $ AP J R#4 4 < d+$ _F < ~F $ p S ;/ «Q ;0$ 4 J 8!e»! «,+\R 2»! «,+\R K» U+7 ;3 E! 8PK 4 x, ,7 + $ ~F 6^\ J V! #4 4 3} «,+\R» ˆ +t+> ˆ/$;J\ {+ 4 4 «,+)M» 5., 3X ++e /;K /0;0$! š! 8\ i\.859/89 0 > šr /3/ I; 0. M,+7F /7;,JF; ;e7 < /0;0$,+\R U+7 4 ;5 U5 /4 8$ ;4., m\ < ;4 Q;Z; 0 4 i7 ;3 30< šp^ m\ 0;' M /F0 +5 p G 4,+)M ) 4 /0;0$,+)M 4 RK!4 "!4 V! M :/0 ;0$ =+0 Cz! "+P 3. Capacity 4. Competence! x0 /A!+A4 `! ' C! ;3 C! 4 i M F `+> ' P7.5 _$ /#$ 6^\! n';0$ l! G =) < pr2 ;4,+)M 4 U _F

5 8 <' ) &8/0%9&7:,8&; /M;* < A 4 5 /)7; #4 ;» =+0 ' /$;J\ c0 -UP$ 4 z 4 n2 /7 E ]; ;0$ pr2 #4 6^\ UP$ 5 /05 m\ "++_ q,! R4 /3!4 -U7; K.«, ;0$ pr2 0 +P M;k0 P* 02 > ;0$ pr2 /M;*., q ;2 `+> 4 V! ; "* < c0 C! ; M\ 8+G 82,F! ^ f;g ;! ;0$ l! G 82,F! ^ 4 K 2 ' M' (/A+K) ; 8+G ; c0 5 4 A C! 4 /AZ ;S 4! ;0$ < ;7K 8 J #4 /0 /0 4! m+$ 8PK 4 < 4 /AP /F0 J V! #4 n';0$., «< ;4 /0;0$» [ U+7 4 «P^ m\» [ va.q sd 5 ' +D5 S$ -!( sa,5 ld *! :* -$ # (6 `7X 4 0;/ C! ;! R 8\ 4 ; q c0 C! d 4 4 ;2 4 ;! i <! š! 8\ /) AP 5 ; +5 3 F ' $ 8 / /'+ ; i < 5 ;4 (/A+K) ; 8!^ U < ;Ek> 8$ A5 8W_$ 4 A4 3} 4 4., ;0$ * +P 4.; ;) ;0$! G < pr2 5 < E, /7 ;,7,+\R K 4.«A5 RK <! ;0$ 5 < E 0 +2 w+m {5 w+m» _F C!.+W_$ ;$ C+0;$ C! /$;J\ U5 373/7/4 I; 7/3499 š! c f;g,7k ;! / C+!< 8R+^ ;0$ 0 GP. 2 5 /;» :393 f;g,7k ;! / C+!< 8R+^ ;0$ i\.3 AA5/'+ P 4 "++_ i*;,!^ Q;Z; 8$ 8+G K 4,!^ p S =7!,!^ ; $ 6+G z ;e7! J0 4 6^\ C! *., ;* =+0,7K ;! C++> ;0$ C! «.!0/ I; M0 «;A 6)+F» +_$ ;! ; P s 4

6 6 '( )* +, ( ) 82 /7 8 J 8!^ 5 /7\ 0;4 +90! 8\ 4!30 ;S 4 GA 5, (/K;0) ;7K ; 8!^ 30< #4,;2.!</ UK 4 ;! /;K 8 +M ;M < C+_ 4 P^ m\ AP ;4 /0;0$ ]! ; ;! E! ; < /0 /7 8 J 4 i šp^ m\ 4 < z< 6+ 4! ;K 0 3 ; S;4 /0;0$ A!< F,!K K,k0 ;K! x, 8 \ \ ]! UK + /+J #4 /PK 4 x F '!0 0K /5 US4 M4 5 /7 8 J ; /7 ;4 $ 4 S;4 +! P^ m\ +J < 4 i šp^ m\ ; f;xx MŠ 5 J A 4,+\R / 8J ^)4 0,+K;Z; 0< 5 $ 4 ]4! # * +0 i!;g 4 ; p [+7^ /2 4 U+! ;2 4 M $ /0 W;K! 8+ /2 4 AP 8 J i!;g C! A!< F S;4 0 3 E! 8PK 4 x0 "A!y 0 3 d+$ C!., 0 /+J zy `J0 ;2 < /0 4 /AP ;! ;*; /!_$ /]2 4 / 8J f;g 8 J * ; UF! UF V! * K;$ A i š0k J0 U+7 c0 \ /$;J\ ]4 CE0!0 9+0 P^ m\ ˆ/ ]! 0 ca C! i "A!y 0 3 /M'< 8Pz 8; 3A US4 J d 4 $ 4 8 <! 6)+F 5 K /R TAM F 8 $ +! ;* 4 378/4/29.( :392 EA; : ;5 / :.) ,2 > 4 [)^ MUF UF,!^ 393 f;g,7k ;! / C+!< 8R+^ ;0$ i\. /'+ ; ;! /;K 8 +M ;7K /K;0 8 J,!^ ;! i ; 0)k. +'/ $

7 83 <' ) &8/0%9&7:,8&;, 0 3 q; /A! x!n>/ 8; #4 4 J ;4 /0;0$ + ; >,7 4 ;2 ]4 d C+M 4 A+0 '< #4 4 J V! ;P0 p S;4 ;2 4 8; {>.AA5/ 6+ [! J < m\ / A 4 / 8J ; 4;G V! 4 30< C+4+F #4 A4 /J ]! JF! AA5 i!;g 8J,+\R K 5 < E x, P^ q4 8J A0 /c0 "*! 4 ;) C p ;S 4 < i!;g 5 Ky ;0$ 4 J < 8!e 4 `+>... ;5 8P ;! ;5 U5 /4 4 U 4 S;4 8 J 4 K 4 q; 0 3 ;X /! G C+AX ˆ;P0.A4 2 /#$ < N! 3A «;k PK».; U+ 0< 4 S;4 J #4 A!=M!P0 0 >/,7 5, U U C! +2 q M8c0! 8P ;! ;5 U5 /4 M:=', /!_$ (... K K! a_+ Œ m+j i7$ ) /R ; {)9 /+ J V! R#4 0 3 /M'< AP A0;/0 /$;J\ c0 00! [ / ;0$ i\,7k ;! 5 < 4 RK.A4 < /0;0$ ]! JF! 3., /7 8 J /! R#4 /#$ RK 4 +\R "* 3A AP4 $ k 4 S;4 3 /!+F e* ;\ 2 R ; 3 V! 3 ' s 4.! < UK 4 /3 E0 < U2 /k ; E0 V! {+W C+0* J 0 F! 8J+J ;)K! ; ;2 Q;P E0 A 8 +M 4;G /!30 n+a 4 E0 V! {+W.}4 ^0+> 4 j > 90! M $!= V! =' 4 AP 4;G < AF (344!;5 :.) ;k PK 8P ;3 /M'< 4.2 ;05 ;Z d$ < /R < E0 A0 /7 + M30 M\ 84;G ;.3 /7» U /;G2 8Y M,5 \ RM,+*! +2 M30 ' R5 /7 M\,7 4,7K ;!,!^ p S E!* G2 30< "Z "* «;P0 C!.0 /'+,+\R ' M' / ;0$ 6M 9A> V! U m4# *q. ;k PK ' /#$ 3A =+0 M30 U+P$ C! 84;G ;

8 6 '( )* +, ( ) 84 «Q 8c0» ˆ+A4 U /0 8W_$ ;7 < 4 RK 4 J V! d 4 (0< UF UF 6K) 0 3 8$ 5 A5/ f9! 4 /$;J\ ]4,;0 4 /\ 4 0;0 < #4 ; #4, 8+G < A!< F 2.nE4 * 4 /A +z 0< /;K /;G2 4 /7 m! S 4 «,+F» 3 «/;K 8+G,+#$» < *, ]4 4 J V! R#4 /A n' z 30< ; -`+> C! +3 q;!! "A!y 0 3 < 4 RK.M/ ;)* *;0,+\R q; 0,5 30< /!30 i!;g A!< F! #4 8 J {!;0 F E0 $ =+0 p S 0;P0 ;2 4 MA!< F <,5 )2 4 /0;0$ 8 J < #4 /A 4 U+ C!.0;4 '<0 30< i!;g A!< F 9+0 f;g 8 J / /;K R4 K 8; q C!.,+0 0qK 0< 4 =7. +4 i 4 /J#A +*; 30< R4 4 *!,7 ;. Legitimate expectations 4 ;,k0 ; U!$ =! Q 8c0 P^ m\ AP + 'A!;0 /2 4 P7 W ;\ /;K ='5 +2 F ' 4 E! A0/ $! /0;0$ J [+)^.(89-53 :390 +A34 /K :.) 00 /;K 82 ;,!! 4 F U4J ]4 5 ;/ ' /7;J 8$; M;2 d C! 4 Q 8c0».2 M! M,+ 8RK 8+G z /7 8J N! 4 /;K ='5 m4 ;J 8R! J0 CZ 30< 4 *; K! 30< p G0 5 ;0 4 9! /! * =)! 8c0,3* C! 4 x;/ "A!y PSk,A i)! 82! i*; :«AM /$;J\,!\ /K;0 Expectations: A Conceptual Analysis, The Law Craig, Paul, (992), Legitimate Quarterly Review, Vol. < 55 Q 8c0 ;3 4 /!A< 4.(390 +A34 /K) : UJ0 4.(393 +A P0; :.) 3. Certainty of General Policy Makings 4. Transparency

9 85 <' ) &8/0%9&7:,8&; /2 4 ; =+0 6+M 4 ; Mq i7$ q4, 4 :, W 0$;J\ C+4 )F Œk 5 /7K C! 4A4,! n' 4 +M #4...» 3A.4 US4!4, 4;G < 4 /^ 90 < ~! 4;G #4,+0 C\ 4 /)K ;*; 8 J AP 4 /5 ' 5, C! 5 *;!4 5 ^0 F!n>!4 ;0$ 4 U3* K ; RK J! ;0$ < #4 4 M 90! 0C+!< C! A 4 /5 ' s ;AK 4.4 :,+0 C \ ;4 0 0C+!< #4 m) ; / ;G 5 4 /^) Ak4!;5) «$ i+j, ;/0 + J0 * 4, ;P0 V7 5 M.(38 :378., U U4$ /3* < /AF!n> š9+0 ;* 4! q / c0 4 K$! x,+0 *; AX «"A!y ; ;0$ 4 U3* K» :!n> =7 4 Ky K;Z; ;0$ 4 GA +4 5 < CZ «;0$ 4 U3* ;P0,+7; AX * C!, /! * 0 UJ 8 J 4 i ;K 8 J p GA C! + d+$ US4 ;! ; M4 R4 q; J ;X \ > 4 P3E0 ; /K M8c0 n' z /E0;EX q4 MK,!;J 84;G < /2 4 #4 4!< x +' $ R \ 0;/ /) ; {)9 84;G, F! 6+ =+0 "A!y 4 (R#4 A V! 4 ) ;4 /K + RK z< ; 2 /0 ;0$ ;! ;02,!\ ;0$ 7 ;4 /K + RK 4!< ;02,!\ ;0$ 7 ;4 /K + ;G2 P3E0 ; 363/5/9O 488! c0.., 5 +2 M < pr ;G2 ) /0 ;0$ 309 ;4 /K + ;G2 P3E0 ; 367/8/8-2655! c0.2.(83 A

10 6 '( )* +, ( ) 86 / c0 4, F! 6+ =+0 $ 4 `+> ]4 4 ;4 /K K z< F ' 8; `+> ˆ/$;J\ ]4 n' 4 #4 /A 4 /;K 6c0 ƒ\ =7 0;/ 0 C!., F+0 n' 4 ; <! c0 z< =+0 UK 2 /A. 54 =+0 n' 4 J #4 z 6+ K =7 4 /AP K,!;J 4 xk4/!> < 2 4 /$;J\ ]4! * 4 J #4 C! E!.0 +z C++> ]4 /0;0$! *,!;*; \ 0 3 V! + JA $ ~F ^ 8; 5 ; '! ;,7 4 ;/ ;! ; $ AP J #4 8; S;4 /7 $ ~F 4 < {>! JK CZ A 4 5 m\ < Q;P c0 4.A4 U4J p S 4 /2,2 > < 4 0 }4 < /0 q;! x4 0 /0AX /$;J\,M* /Gk0 63P C+AX 5 / 2! '! P7. < z< P0 JK _J pr2 ^\ ' /7=7= C+AX 4 /M' ^)4,+0 $ i7$ +M 4,7 ]4 5! ca C! ; C!! q C!,,7 P0*V! AP C+0;$ «0 mp4 [#K U» 5 ' q < ;M 63 8K;Z; /^! 8J ; < 4 \ +'/ $ M' /!_$ 8c0 Q;Z; 5, 8+G yk A!< F C+0;$ / ;0$ «;0$ 0 mp 4 [#K U» ;AK 4 J U C! 4 U C!,+M.!</ 4 /$;J\ 6) ; =* F ' $ +5 ; K {)9 R 4 ~> Z ;4 /K + ;G2 P3E0 ; 374/2/24 2;! c0. / 0 ; <! c0 Z 0 4! 8 +M 4;G ;G2 /R ;. * *; ]4 ;0$ 9 Q;Z; m\ ;4 /K + ;G :, JK R#4 i*; US4 U!y )G :/0 ;0$ JK _J pr2 -.; C+Z;K 4 U3* i*; < 4 U3* 5 /7;39 -

11 87 <' ) &8/0%9&7:,8&; RK ; 0 F / C+0;$ 5 M;\! 0 mp4 [#K š)f M 4 U C!.,! ' 0[)^ 8J 5,+M C! 4, a # E! 8PK 4 xam $ c0 U C! ;M 8+G yk A!< F +> 0 mp4 [#K U 4 RP U C! m4#. 8 3 «K 0 mp4 [#K U» ;AK, U /)P$ Kœ 0;/0 ; "Z 0C+!< {} A4 90 /)K ' M /) 5 /^! U C! A5 )$ ; F < m4# ;0 US4 z C+0;$ U < d 4.( A34) '/ f; ;0$,+5\!> ;0$ 4,$) 4 ;0 C+ E! 8P+ 5 C! E 00 «/! J3$» M,+\R š#+\ /)5 U pr2 ;0$ /! J3$ +z C++ E! 8PK 4 x(/0 =* 4 C+0;$ ;0 mp4 [#K m\ * w+m 4 J, n';0$ /G2 š! U C!,!K K ip C+M 4 x, M;k0 n';0$ ; y ; #4 /!_$ A5,3* /!AP ;AK 4 =+0 {+)E0 0 F M' =* F ' $ 4 \ K,+\R 2 U+74 8$ U C! 5, *;!4 C^+7.(88 :393 +A34)!</ M +7.; *; /< As 4, C^ ; :, N!,+M =W\! 8^0 4 *; n';0$, C^ K C+0;$ mp4 [#K ^. C+0;$ N! 4) x!0 mp 4 [#K ;0$ /;K "0 )* /7G 4 A4 ~! C++,3* /2! ;0 C+ < 4 E! /0;0$ i+! (/+7.A5 C+;0$ z M/ ' M, r! +5 M/ 5 /)5 U pr2 4.2 K$ 4 ;/0 4 /)P$ ;0$ 4,P0 f;)# 8P+! [+k =) ;0$

12 6 '( )* +, ( ) 88 \ # «"0» +_$ 4 *; 4 6^\ ; C+AX mp 4 [#K /)5 U 4 *; 4 / c0 4 x0;0 yk M! M' 5,F ' 9+0 0;' C! ;/ M' pm a «0 3 "0 4 +» "0 4 83* /3* 4 5 C! E, C+0;$ mp4 [#K K 4 U Q /0;0$ 0;' 4 ;J V! ;S 5 < 4 RK ;0$ ]; =+0 ~0 4 m4 ;0$ F 0 C+4 ;0$ ++e 4 F! 8Pz! F ' U^ i^ m\ i) ;G2 86/6/8 I; 430., M;2,;^\!* 86/6/4 I; 389 M < i^ m\ ++e 4 "* 83/0/27 I; 544 U,7K ;! /;K 8 +M i^ m\! 4! 83/2/0-705 U C! 4 \ =7 /0;0$ ; ;0$ 0 mp 4 [#K -6M < i) k šp^ m\ F '!0 /W_$ 8c0 AP 4 F!n> +\0 m\q ;0$ "Z m4 ;0$ ~0 ;0 /J) 4 m\ C!! 8 ++e C+AX (390 q) «., $ 6^\ ; 8J 5# :*, C! U\ \,7K ;! ;0$ < {> P3E0 ; UK J0 /4! ;! C!! a 4.0 ^0 U\ < R5 AX M x0< 4 U^ : +'/ $ -ara6 ( v :+ 4 I 380/2/8 km 80/2/279 w( + š! c0 a 4 P3E0 ; z ;0$ 4 8!e S2 4 < #4 Q 4 4;G V! 8!e 4 /AP #4 + 8

13 89 <' ) &8/0%9&7:,8&; 4 #4 z +2 #4 ;,0 4;G i!;g,k0 ; ;! ]; ; /$ \ 2! /R 8 J. 5 GA ;! 5,3* C!...» : 4 /AP /R 4 ~> ; < C+0;$ 4 [7k /7 0C+!<! 0i!;G,7K X #4 z< '/ 30< #4 4 ;/ Œ+k! 9 ;$ 8+2 ;2 4 M : ~> ;S C! «;/ ; < 4 i /0 V! U MAk4 M0i!;G M0C+!< #4 4,P0» Œ+k 4 A Q pr2 ; #4 ;X C^7 0 #4 #4 n)f 4/ / ;0$ 3X U K m!g `+4 _$ ;2, P3E0 ; 3JF «.;4 M;2 30< i!;g Q 4 8!e AP 4 #4 n' z 4 l! G =! C! ;4 U U4$ c0p,+k K C! /AZ ;S 4 #4 J i!;g. 4/ Y! < /0 ]4 0 ;2 US4 š4;g i!;g < 4 /AP /$;J\ ]4 šm /K C!; 4 /7 J 8!e 4 /AP #4 C! /$;J\ 2 «;0$».M/ $ Q7,,7 + «Q» K$ 5 / c0 4! + +*; U š)f 4 A4! xa+0 ;2 4 /0^! 55 /Pz : ;5 * 4 K;Z; /$;J\ c0 M;5 šm * pr2 4 / ;0$ 3X 3A / ;0$ ˆ;2 /\, «Q» 4 4,7! c0 /!M;)* ;* =+0 /R ; {)9 84;G 4!/,M* < 4 8!e K Q f;xx 3A! + /+ /c0 /EAM F G$ /7 /!=* /0 8 J C+0;$ +)5 :3X U. E! 8 J C+0;$ / ;0$ ; M 4 U C!.4 /R C!; d 4!4., P3E0 ; 3JF 3K 4 C! Œ+k, 65\

14 6 '( )* +, ( ) 90 + =! 4 P3E0 ; =+0 * C!.AA^0 /#k C!+A4 = $ ]2 C! /!4 )*,k0 ; z< < ;0$ 4 '0 4 ; #4 Q 4 8!e d 4 #4 #4 AP ca C! / c0 4., 0 +2 ; +4 `+> i 4 2! / [Z 8 < RK "* c0p :, F ' $ J0 /4! ; E! 4! + c0 / imn ^\ ; 4 5 A5 "Z /A+0;$ 0; /0 /R ; {)9 : M U. P3E0 ; 3K 4 < 6 ;0 U 5 /P+ 4 C! Œ+k.4 8!e...;5., +P /4! U^ /)K ca n' 4 Q 4 8!e d 4 #4 z< ; /2 4.2 :(4 :388 /!;7P0), N C) {7> M /0!, +M 4;G!! Ak4 mps 4 +!0 ;G Q;Z; Rs ; ; 30< K C) C+5 C) ;P$ `!=F C! 4! `!=F! N+A4!,2 > S;4 E *! (A x 8 x n) 8 8 C) ;+)+ 5 ;! S;4 š4;g #4 < ;4 ;0$ pr2 4 ;G 4 /$;J\! /J+J\ /Gk 630 AA5 ;0$ pr2 4;G < ra> 4 / U\ /S {> 6M ;! ; ;2,7K C+^ 4 6M=0> 6M S;4 E 6M3X < #4 4 Œ+k 5,9A! 7.+0 ' 4 m4,+z 4 C) ;P$,2 >,F! #4 ;2 šak4 "A!y 4!4 /0 X /F! /FZ ;* ;/ X /0;0$ +,2 >,F! =0> C! [+)^ E! 4! 5,!^,7K ;! 4 5, /A!y ; ]JF C!!< ; +0 ' 4 P3E0 ; +! c0 C 5 ;S M 0 ^0,!^ 5 /0A!y,2 >,F! 00 5,+5, i!;g #4 4;G 4 Q pr2 i 8; '/ /K;0 4 FZ ;*,F!, Q pr2 ^)4 ;0$ pr2 3A 0 FZ ;* /J\! ' U\ + 4 Z < +\0 5 ;/ f; 82 / 0 ' i!;g M C! "!Z m\ 5 ; + /0!4 5, /3!4! ' *; 4 ` > ;., #4 Ak4 5 /0 0 n2 FZ ;* 5 ;4 Ak4 /S < W +0z,7K ;! Ak4 #4 n2 q =) m!y 4 ;* ^A! 4.C^ 0,,7K 9 0 (< / C+!< 5 t0< 4A4), ' "* 4,;2 4 AA5,!^ S;4 E,;2 ;+)+ =0> W 4 ;+)+ =0> /!4/ 5 X....,F ' M;2 $ _$ E `+> 0 > /9\ X +A5 ;G.A 4 J\

15 9 <' ) &8/0%9&7:,8&;,!;7 4 *; 4 X ' 5, /RK /5 J)# /4;G C+AX #4 z...» ;X 5, *; U^ C! 4 x, +*; U4$ ;5 /$;J\ "4A Q C!AX, C^ 0 ;* Q 4!e 84;G 0;' C! #4,;2 4 /A+ š+)5 5 z/4 8; C!. +' 8; /$ C+AX 4;G V! * {> 5 < CZ x0 /0;26M /! * /)K 8+_J 4 8 C! F ' 90 8$ :382 R+) «5 M;2 J0 84;G C!,+0 C \ 4 M * z 84;G 4 ;K /7; K i) i*;» ;! z< mp 4 [#K (28,+5\ ;!» AX M 0 «/! * ; 0 [+_ 9+0,7,!;*; JF A 4 0 #4!30.(26 M) 0 <,Ps z< «;0$ < z ;* [$;,7 /0;0$ P $ ~F ~0 ;3 ^)4 /$;J\ z /A+K.(29 M), < 4 (,7K ;!) +\R "* šp0*v! $ ~! :392 EA; /), /$;J\ c0 R#4 /! J3$ z i+ C!4 +5 `7X 4 #4 ~ *; K ca! + š! c0.(84 :, J PK 6M / "Z, 5, K$ 4 Š0 ;0$ ~0» 5,A C! 4 ;0$ #4 5 /7\ x, ^0 ~0 < K6M J! q4 5 X < C! 4A4., ;0$ MŠ 8; ]JF 0 "Z, 4 ;0$ 0, ;0$ #4 / < 4,7K ;! /A+4`+> / ;0$ 70 U / K$ +K /A! A5/ ~0 K$ 5 /J : /#! ~0...;0$ ~0 0C+!< 4,3* C+M 4 4 C+k0 J q4! K /J!4 +'/ < 5,7K ;! ~0 / ;0$ ;/0 ;0$ 4 ;0$ ;/0.(38 :388!;5) «...0 ;0$ ~0,+)4$,+0 n';0$ ~A

16 6 '( )* +, ( ) 92! -, 43$ OX3QM -6V rw :* "Z; P3E0 ; + š! c0 d^0 4 ;2 3 CZ ;! /)F ;0$ : C! d 4 x, $ `+> pr2 84;G ; E, /;K 8 +M 84;G #4 z» 4 < z ;5n 8 +M "++_ +';)* ;ca 4 5 ;! Q.«!0 i 4;G i!;g 8 +M ; 6M < E! ša!=' P3E0 ; + š! c0 d^0 CZ C! ^ < š# J 4;G i!;g 4 #4 z ; /;K 8!e U+7 4 #4 4 Q 4 8!e U+7 4 #4 =* 4 i!;g #4 z #4 z + 8., F! 6+ =+0! 9 ;$ 8+2 \! ;0$ 4 ; x, ;2 4 ;2 Q 4 8!e 4 /AP #4 ; C! 5, < =+0 8 +M l! G A+0 S;4 /! * ;$ 8+2 \! ;0$ 4 8!e /0 #4 P3E0 ; +! c0 ;X6M * ;0$ \ C! 4., 4 J #4 ;M z< 4 ',M #4 z < /!'= 4 F 8 +M #4 z< q; 5, U+) U4$., 2 }0 "A!y k P^ ca C!! Q 4 8!e d 4 #4 U C! 4 As ;S 4 0/ /;K "++_ \» 8; ;0$ 4 8!e 4 /AP #4 z< A5/ RK i!;g -;0$ E! 8PK 4.A5/ /;K 8 +M _K,! s5 6+G 4 ;A 7 4 x0/ n' 4 #4 z<,' 4 K ;2 /),+ < n' 4 #4 z mp 4 [#K ; < c0 C+ 4 P3E0 ; +! c0 d 4 n' 4 <,' 4 +$ 4 6+J ;S 4 Q 4 8!e d.;4 < 385 f;g,7k ;! ;0$ 20 A+K C!.

17 93 <' ) &8/0%9&7:,8&; ; /A+4,)G i\ f;)# ;0$ V! 0qK mf C+ * ;0$ 4 8!e., 0 9 ;0$ 3X J 6^\ R 8\ 4 ;! < z =+0 /2 4 /0 ;0$ 4 4 c0 4...» :30< c0 x00 A!< 4 q; /0 ]; 8 J #4 ^\ /0 /$;J\ z<!0/ 6^\ /$;J\ K;$ m#a 5 t0<!;5) «...!0 +> /< 4,P0,!4/,7K ;! /;K 8 +M.(27 :388 ~> 0!, m\ *; 0 /F J V! #4!<!!4 E! ca V! ;! *C! /!_$ <, n';0$ Œk < i) m\ 9! :,'!4 k F /0;0$ + "0 0;/!30 J V! #4 4 /AP. " ;0$! +Š V! M,+F! ' C! i!;g n "F [5 RK Q 4!e! /0;0$ + J #4 A4.A4!/ /0;0$ M,+F < ;4 J < 4 ;4 ; l! G =+0 4 C! 2 K ;0$ f+ 4 `k437 0;/!,7 /$7 M;+0;A5 8M! / ;0$ ;0$ pr2 J #4 4 C! 4A ,+A+K.A4!/,+)F 4 S;4 8M / d 4 0 ' 4 n' 4!4 #4 AP F 8 J #4 z< ca C! ^)4 0 AP 5 "++_»! «P^ m\» š! c0 p ˆ /!_$ J n';0$ Œk m\ i) 5 AP C! ; AP 4 8! c0 P7.; M< C!=E!* 0;/0 /! * 8+G, ;0$ * 0,+K;Z; /7#4 8 J š9+0, š#4 $ 4 F C+k0

18 6 '( )* +, ( ) 94 /!4 q; J #4 9 4! $ š#4 f+ /7.A4!! * 4 J < i!;g /$;J\ ]4 A!< F X /S 0;EX 5, < 7J ;AK 4 ;4 /!30 7 k 4 US4 J * /0 / 8J ; F ' 8+G ;/ P* k < 4! ar "A!y /! 5! /SP_0 < A0 /+G ; :,'!4 ~> A ;2 4 < AP J #4 5 9! "A!y k F +';)* +Š 5 8c0 /7K ; q; ;4 i+j A!< F ;4 /0;0$ + "A!y S;4 J0 4 /!4-3K 4 /0;0$ + < 7 4 `A!=' M8 +M Œk V! k A0 8+G! ;.0 ' k ]! [)k [5 š7=a 4 < k AP J #4 4 /+)^ US4 J d 4 XAX.AA5/ +';)* S;4 k 5 š [+)^ < U+ 4 +k4!> CZ /!4 #4 RK 4 U+ "A!y 0 3.; P* US4 J ' "A!y M"A7K! MA!=M z< A4 k 4;G V! * "A!y XAX < 4 RK =+X M `+4 P^ m\ q;! x /$;J\,M* i!;g 4 < #4 < 4 4,,+K;Z; 0 3 /y m!g : > :;< 8 šak4 i!;g 8; 0;0 4 C! x0,+j! S < ;! < 4 #4 4 f< MA!=M,2 > /7 d,+f 4 W.0 /7^! š4;g i!;g 4 #4 z< =!0 4! š4;g!= 4 d! K ;/ [7k ca P7! x,0 < `+> 4 #4 z< K =7 4 /!AP ;/ < d 4.372/9/23 f;g 8)k 4 /'+ ;0$ 22.

19 95 <' ) &8/0%9&7:,8&; 0< {0 4 K 9+0 : k 4 84;G 4 K 8; C! +., V!=0,7K mf 4 +2 c0. 4/ C+4! `M5 d ; : 4 < /A!,Ps +z 9+0 n' 4 8 J #4 z< 6+ K! 6+ 7 C! 4 /A ~> * 8 J C+0;$.,,+M! "A!y k 6c0 ƒ\ =7 Q 8c0 U,7K 4 /AP ~> / c /0;0$ A F k 4 #4 z 6+ 5 A5/ _$ /;K #4,7K ;! 55 8; C! + x; ;2-30< /0;0$ +! l# /c0/4 /K;0 0;/! 9 ;2 /A^;0$ +';)* CZ 8 J. <!> * /0;0$ AP P^ m\,+k;z;,7 4! ;! /!_$! X ' C! A!< F zy + ˆ"A!y /0;0$ + 8 J #4 z< U+ x, 8 0< 4 #4 z< 6+ 8; 4,7 5 < E,+0 0qK 30< i!;g U+7 4 UK P7 x 8P "A!y k 4 82,2 > 4 S;4 /$;J\ n';0$ ; / +\R 8J ; 8 J i!;g ;4 /+5\.,+0 /=7,7 ; 82,2 > /0,+7; ;0$ +2,$ :339/2/7 f;g /0,+7; ;0$. 9+0! K +Š 90,PA < 4 4 8Y M 3,7 A5» 82 ' M /7 A4/ 82 P* ; Gk A!0 k 4 /2 /S+\/4 P* 8; C! 4 ;4= 8Y! 8 U! ŒJ0 4 ;4 ;P0 0< UK 4 A i\ 4 5 /$ ' M,7,+5\ K ; /7, S;4 Y! 3K 4 82,2 > 4 ;P9,7 ; E! Z i*;!< UK 4 ;0$ mps /K* "FA C+ 4 8 Z.«;4 M;k0 82 U 4 s 4 x 9 /+5\ K /2 4,!^ ^ 4 C+0;$ /2 4 P7,!^ U4$,7 3K 4 K + P /0,+7; / ;0$ 6^! M V!

20 6 '( )* +, ( ) 96 m\ Q;0 5,'!4 M;< ; > 7J /) 7 4 ~> :, /!A U4$ J V! #4 4 #4 ;J74! U74 "0 4 /$;J\ ; * 8 J C+0;$ + U :,k < ; > 5 J V! #4 8; 5 A5/ f9! /;K M< mp4 [#K ]4 < 4!P0 #4 z< q; 02 >,7 4 /$;J\ ]4 $ 4.n' /A +z 30< 4 ;! J0 #4 4 J V! ;J74 ; : +0z < ; mp4 [#K /!4 J #4 z< q; 0 ; P* 0< 4 U+ "A7K A4!! * 4 4! J i!;g.a5 +';)* 30<! * 2Y ;0$ 5 < E mp4 [#K 4!4 =+0 k A 8 J ; : s7z.00 /$4 P* 4 /2 w+m U!$ 30< #4 z< C+ =7 A0 /7; 4 J V! #4 z< mp4 [#K ; Q;9 < /!;'~>,7 A0;0$! i+p pr K;$ ; 4 UK 82 < "P 4 ;0$ ;4 /< 4 A0 K;$ 4 < mp4 [#K K, ;. ^... Q 8c0 A!< F ;4 /A+4`+>,+)4$ U ;! < ;! /A++>,72 +2 #K U^ C! "F 4 3A+> 34 U\ P7 0;/ C!.,! 9 ;$ 8+2 \ Q ;0$ pr2 8 J #4 /;K 6c0 Q 8c0 U 4 8 J #4 z< 6+ /7\.A5 +';)* 0 3,7K ;! 4 ;4 C+0;$ / ;0$ ; M V! U 5 AX6M,., /A+4`+> /7 8 J,!^ ^ [)k M

21 r5, R :m&.=+ 0 : 3 x(392) EA; : ;5 / M;+ /0P ;3) Q c0 U x(393) l+ +A A : 3 bx,7k ;! ;0$ U+) a x(390) Z q 0 : 3 P90 \ Q Mc0 x(387) ; P0; +A4 80 : 3,+4 bx 6c0 /0 ;0$ x(388) 0!;5.6.UEA*.7.=+.8.=+ /$;J\. 3 E0 80 : 3 /0 ; 34;^ +_$ PK x(344) 0!;5.A 2 80 /7 4 < x(392) /)K :OP 8+4 RJ :! 9 ;$ 84;G #4 /A;3» x(382) 0 > R+.2.3X /$;J\ /0QRS AM ;! Q 8c0 U Kˆ ^ 4 /)» x(390) +A34 l+ C+\ /K PM A)GF A)GF «n' /$;J\ ]4 /7 84;G #4 +z» x(378) 0!; `+> /K* C+

22 6 '( )* +, ( ) 98 :6#,7 0 «,7 84;G #4 /Z z /)» /!;7P /7/5 2; 682 :436V 393 f;g,7k ;! / C+!< 8R+^ ;0$ 372 f;g 8)k 4 /'+ ;0$ 4 8\R 4 34 f;g /0 ;0$ :! - 859/89 0 > R5 7 4 ;! 39/3/ I; 0.28 :-ara6 ( O d6 P3E0 ; 363/5/9O 488! c0 P3E0 ; 367/8/8-2655! c / 0 P3E0 ;! c0 P3E0 ; 374/2/24 2;! c V ' d6.+w_$ ;$ C+0;$ C! /$;J\ U5 373/7/4 I; 7/3499! c0.33

PRISON POLICY INITIATIVE ANNUAL REPORT

PRISON POLICY INITIATIVE ANNUAL REPORT PRISON POLICY INITIATIVE 2015-2016 2016-2017 ANNUAL REPORT N 2016 2017 PO Bx 127 N MA 01061 :// (413) 527-0845 1 T Ex D 1 W 3 P k 4 C R - 7 S j 8 B j 10 P x 12 P j 14 P 16 Wk 18 C x 19 Y P Nk S R 15 B

More information

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib, #4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0

More information

`G 12 */" T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S.

`G 12 */ T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S. 01(( +,-. ()*) $%&' "#! : : % $& - "#$ :, (!" -&. #0 12 + 34 2567 () *+ '!" #$%& ; 2 "1? + @)&2 A5&2 () 25& 89:2 *2 72, B97I J$K

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

FULL PRESCRIBING INFORMATION

FULL PRESCRIBING INFORMATION HIGHLIGHTS OF PRESCRIBING INFORMATION T gg f G f ffv S f pbg f f G G (p p j) INJECTION, GEL f INTRAMUSCULAR SUBCUTANEOUS I US Appv: 192 ---------------------------------------INDICATIONS AND USAGE ---------------------------------------

More information

Assignment. Name. Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz. 3) uv p u pv 4) w a w x k w a k w x

Assignment. Name. Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz. 3) uv p u pv 4) w a w x k w a k w x Assignment ID: 1 Name Date Period Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz 3) uv p u pv 4) w a w x k w a k w x 5) au xv av xu 6) xbz x c xbc x z 7) a w axk a k axw 8) mn xm m xn

More information

Gaylord, Michigan, Thursday, May 17, 1945

Gaylord, Michigan, Thursday, May 17, 1945 » BCMV J &KJ V 70 N 0 B Q f $6 B U CCN K V F M M M J MCK %&«~ f - M K M B C M M B B f q z f q b f 7 b z f j f f C Nb f b f f M M J M f f B C f b J V f B C b b M M - q B M M M M ff b ; b b b b j f b b M

More information

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES ON MY HONOR, I WILL TRY.. DAISI ES AMBASSADORS BROWNI ES I JUNIORS 2017-2018 GIRL SCOUTS! CAD E TTES SENIORS Wm! W' I? W'v Pm G, v, m m G S x. I, y' m w x m, v, v v G S G W M. T v wm.. I y v y q q m, 888.474.9686

More information

The Evolution of Outsourcing

The Evolution of Outsourcing Uvy f R I DCmm@URI S H Pj H Pm Uvy f R I 2009 T Ev f O M L. V Uvy f R I, V99@m.m Fw wk : ://mm../ P f B Cmm Rmm C V, M L., "T Ev f O" (2009). S H Pj. P 144. ://mm..//144://mm..//144 T A b y f f by H Pm

More information

M e t ir c S p a c es

M e t ir c S p a c es A G M A A q D q O I q 4 78 q q G q 3 q v- q A G q M A G M 3 5 4 A D O I A 4 78 / 3 v D OI A G M 3 4 78 / 3 54 D D v M q D M 3 v A G M 3 v M 3 5 A 4 M W q x - - - v Z M * A D q q q v W q q q q D q q W q

More information

Probe fire that killed 23

Probe fire that killed 23 V ' ( WUY J Y JUY 88 P k z ' ' F x k J K Y - P k k k Pz Pk k k 'J Pk k U k k - - k k Pz " " k x k k k W k k k ' z " x - " z k k k x j k k k k x k zz "' ' k " k k k» «K VU G k - k z k U k x (P) - P z

More information

STANDARDISED MOUNTINGS

STANDARDISED MOUNTINGS STANDARDISED MOUNTINGS for series 449 cylinders conforming to ISO 21287 standard Series 434 MOUNTINGS CONFORMING TO ISO 21287 - ISO 15552 - AFNOR NF ISO 15552 - DIN ISO 15552 STANDARDS applications Low

More information

FULBRIGHT ADVISORY. Australian-American Fulbright Scholarship Information Day for SA

FULBRIGHT ADVISORY. Australian-American Fulbright Scholarship Information Day for SA ULBRIGHT ADVIORY A-Am p Im Dy A T A-Am Cmm w A m p 2 My 205. T Uvy A w p w Cmm Uvy H A Dy. I pp p y v Uvy A mp, pp v k m m vy. T Cmm w w : pm p mp A D; k / y y pp D; pp m U.. p pm M., D C - p m m- p pv,

More information

!" #$% & $' ()$'* Javid_

! #$% & $' ()$'*   Javid_ 1367-1386 1367-1386 :!" #$% & $' ()$'* 87/12/20 : 87/9/30 : * VAR &' # ()! "!# $ % 1367-1386 " 8! ', +% 7 %./ ' 0 *#1,# +! 2 3 '4 5( %+% #,-. C D% / 5(: / % / 5(: 2" / #9% # : % ;- 0 #( /?> 4@ AB0

More information

Remote Sensing Applications for the Historic Environment

Remote Sensing Applications for the Historic Environment m S App H Em L H Em m S 4 C B P m k m m. B m S App H Em L H Em m S 4 m C A Im H Em. B m m H Lp U S D m S C U P m k B m S App H Em L H Em m S 4 m A m A W k? A pp :. Tpp. Px. mk.. S S mk.. Cp S mk B m m

More information

interns ~ Bi ll Dr ay to n Dawn Sonnenb Te g ro n S ta ff in g

interns ~ Bi ll Dr ay to n Dawn Sonnenb Te g ro n S ta ff in g 2014 ? f I f 4 1 20 V -P T ff f v x? H k? f k f v f k F? H f? H? T xv j Iv E x v f q F f -M v v f j v E T f f f z v v ~ A f j T L H T f v v L L H 4 K z f x f f z j J ff V -P K - k v T M M k P J k k V v

More information

Daily Register Q7 w r\ i i n i i /"\ HTT /"\I AIM MPmf>riAnpn ^ ^ oikiar <mn ^^^*»^^*^^ _.. *-.,..,» * * w ^.. i nr\r\

Daily Register Q7 w r\ i i n i i /\ HTT /\I AIM MPmf>riAnpn ^ ^ oikiar <mn ^^^*»^^*^^ _.. *-.,..,» * * w ^.. i nr\r\ $ 000 w G K G y' F: w w w y' w-y k Yk w k ' V 0 8 y Q w \ /"\ /"\ > ^ ^ k < ^^^*»^^*^^ _*-» * * w ^ \\ Y 88 Y Y 8 G b k =-- K w' K y J KKY G - - v v -y- K -y- x- y bb K' w k y k y K y y w b v w y F y w

More information

~fw. urning Desire. lean ul. «sw. Final Extinction NEW QUIRK 69, N. Q., TUESDAY, APR^FCX^^W. ted:

~fw. urning Desire. lean ul. «sw. Final Extinction NEW QUIRK 69, N. Q., TUESDAY, APR^FCX^^W. ted: EK» - - - u I» -? NE QUIRK 69 N Q UEDY PRFCX F Ex X!E - - - ; - - - ; & P --?!R» u \ u CCNY -C C j pp N up - [ P-up p upu >j u D CC F 9u - x pu x pp p p p u p & K I? - >

More information

TESA IP40 protection against dust (TLC) Connector for a forward thinking approach to your overall quality control system

TESA IP40 protection against dust (TLC) Connector for a forward thinking approach to your overall quality control system V : 30.0.20 P x VA www.p. V 22 - EN N P p k, Cp y w A V IP0: A IP0, E b p y, y 7, E! P I v p b A E k w p b f 3 p, w IP7, w-c p. A b PC k w EA IP7 B IP7 p q - I EA Lk C (LC) f fw k pp y v qy y A w y w p

More information

Hansen s basic RBC model

Hansen s basic RBC model ansen s basic RBC model George McCandless UCEMA Spring ansen s RBC model ansen s RBC model First RBC model was Kydland and Prescott (98) "Time to build and aggregate uctuations," Econometrica Complicated

More information

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc M D O : 8 / M z G D z F zw z z P Dẹ O B M B N O U v O NO - v M v - v v v K M z z - v v MC : B ; 9 ; C vk C G D N C - V z N D v - v v z v W k W - v v z v O v : v O z k k k q k - v q v M z k k k M O k v

More information

6.4 Kalman Filter Equations

6.4 Kalman Filter Equations 6.4 Kalman Filter Equations 6.4.1 Recap: Auxiliary variables Recall the definition of the auxiliary random variables x p k) and x m k): Init: x m 0) := x0) S1: x p k) := Ak 1)x m k 1) +uk 1) +vk 1) S2:

More information

ALMOST GORENSTEIN RINGS

ALMOST GORENSTEIN RINGS ALMOST GORENSTEIN RINGS SHIRO GOTO, NAOYUKI MATSUOKA, AND TRAN THI PHUONG Abstract. The notion of almost Gorenstein ring given by Barucci and Fröberg [2] in the case where the local rings are analytically

More information

GEOMETRY HW 8. 1 x z

GEOMETRY HW 8. 1 x z GEOMETRY HW 8 CLAY SHONKWILER Consider the Heisenberg group x z 0 y which is a Lie group diffeomorphic to R 3 a: Find the left invariant vector fields X, Y, Z on R 3 whose value at the identity is the

More information

W= -b'e + af + cg + dh, X= a'e + bf + dg' - ch', Y = -d'e - cf+ ag' - bh, Z = e'e - df + bg + ah',

W= -b'e + af + cg + dh, X= a'e + bf + dg' - ch', Y = -d'e - cf+ ag' - bh, Z = e'e - df + bg + ah', PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 88, Number 4. August 1983 LAGRANGE IDENTITY FOR POLYNOMIALS AND Ô-CODES OF LENGTHS It AND 13/ C. H. YANG Abstract. It is known that application of

More information

You don t need a better car, you need to learn how to drive

You don t need a better car, you need to learn how to drive O h Imp f Cyb-Df L Am Y d d b, y d hw dv E Lv, F Hm, Phpp Lwk m AG 2017 m.m Wh w? m AG 2017 Pg 3 Y d d b, y d hw dv Wh h k b Wh w dd Wh w h p Wh h k NOT b C p-by-p hw fx hg Cd Vd bhg A mk

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2.3 Composition Math 4377/6308 Advanced Linear Algebra 2.3 Composition of Linear Transformations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377

More information

Supplementary Appendix (not for publication) for: The Value of Network Information

Supplementary Appendix (not for publication) for: The Value of Network Information Suppementary Appendix not for pubication for: The Vaue of Network Information Itay P. Fainmesser and Andrea Gaeotti September 6, 03 This appendix incudes the proof of Proposition from the paper "The Vaue

More information

EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE. An abridged version of the Cochrane review of exercise therapy for chronic fatigue syndrome

EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE. An abridged version of the Cochrane review of exercise therapy for chronic fatigue syndrome EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE EDIZIONI MINERVA MEDICA T PDF. A. T j. A C L LARUN J ODGAARD-JENSEN J R PRICE Kj G BRURBERG E J P R M S 6 [E ] EUROPEAN JOURNAL OF PHYSICAL AND

More information

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a)

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a) Chapter 6 Chapter 6 opener A. B. C. D. 6 E. 5 F. 8 G. H. I. J.. 7. 8 5. 6 6. 7. y 8. n 9. w z. 5cd.. xy z 5r s t. (x y). (a b) 5. (a) (x y) = x (y) = x 6y x 6y = x (y) = (x y) 6. (a) a (5 a+ b) = a (5

More information

Baby Beauty Contest Judging Today In WR Recreation Halt

Baby Beauty Contest Judging Today In WR Recreation Halt MO BOOM JO R 7OM OJJM JC 20 946 MG 2 O H K F C O Ck C U VMR B G DON U M L H Y v C M G 2 v COMMNDNG MG-2 R R5-C k k C G - R k < v : L C B Z - v C R L C D H - v M -2 - «v G z F - MG-2 v j v v K O G - C

More information

Predicate Logic. 1 Predicate Logic Symbolization

Predicate Logic. 1 Predicate Logic Symbolization 1 Predicate Logic Symbolization innovation of predicate logic: analysis of simple statements into two parts: the subject and the predicate. E.g. 1: John is a giant. subject = John predicate =... is a giant

More information

Disjoint paths in tournaments

Disjoint paths in tournaments Disjoint paths in tournaments Maria Chudnovsky 1 Columbia University, New York, NY 10027, USA Alex Scott Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK Paul Seymour 2

More information

Explicit inverse of a tridiagonal (p, r) Toeplitz matrix

Explicit inverse of a tridiagonal (p, r) Toeplitz matrix Explicit inverse of a tridiagonal (p, r Toeplitz matrix A.M. Encinas, M.J. Jiménez Dpt. Matemàtiques, Universitat Politècnica de Catalunya - BarcelonaTech Abstract Tridiagonal matrices appears in many

More information

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts I k E M C k C C EN CN INI & NYU CN EN INI @ y @ Lzz M M zz@ M y IDE I - y W y W q : y; y y y; yz y ; y q j W I y y /y y /k W W j - y W - CCCk M y C O y C j D D [D q]: D G D q/ D D q D4 / V D5 D G D D E

More information

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s 5 C /? >9 T > ; '. ; J ' ' J. \ ;\' \.> ). L; c\ u ( (J ) \ 1 ) : C ) (... >\ > 9 e!) T C). '1!\ /_ \ '\ ' > 9 C > 9.' \( T Z > 9 > 5 P + 9 9 ) :> : + (. \ z : ) z cf C : u 9 ( :!z! Z c (! $ f 1 :.1 f.

More information

arxiv: v1 [math.qa] 22 May 2015

arxiv: v1 [math.qa] 22 May 2015 ON THE MINIMAL AFFINIZATIONS OVER THE QUANTUM AFFINE ALGEBRAS OF TYPE C n XIN-YANG FENG JIAN-RONG LI YAN-FENG LUO arxiv:1505.05928v1 [math.qa] 22 May 2015 Abstract. In this paper we study the minimal affinizations

More information

Recursive Determination of the Generalized Moore Penrose M-Inverse of a Matrix

Recursive Determination of the Generalized Moore Penrose M-Inverse of a Matrix journal of optimization theory and applications: Vol. 127, No. 3, pp. 639 663, December 2005 ( 2005) DOI: 10.1007/s10957-005-7508-7 Recursive Determination of the Generalized Moore Penrose M-Inverse of

More information

(3) t<r3 bjk"k + 3 cjkvk = 3 bjkuk + 3 cjkvkv

(3) t<r3 bjkk + 3 cjkvk = 3 bjkuk + 3 cjkvkv PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 57, Number 2, June 1976 COMBINATORIAL FUNCTIONS AND INDECOMPOSABLE CARDINALS ERIK ELLENTUCK Abstract. Combinatorial functions are used to replace

More information

Square-Root Algorithms of Recursive Least-Squares Wiener Estimators in Linear Discrete-Time Stochastic Systems

Square-Root Algorithms of Recursive Least-Squares Wiener Estimators in Linear Discrete-Time Stochastic Systems Proceedings of the 17th World Congress The International Federation of Automatic Control Square-Root Algorithms of Recursive Least-Squares Wiener Estimators in Linear Discrete-Time Stochastic Systems Seiichi

More information

2 Interval-valued Probability Measures

2 Interval-valued Probability Measures Interval-Valued Probability Measures K. David Jamison 1, Weldon A. Lodwick 2 1. Watson Wyatt & Company, 950 17th Street,Suite 1400, Denver, CO 80202, U.S.A 2. Department of Mathematics, Campus Box 170,

More information

Q.1. Which one of the following is scalar quantity? Displacement Option Electric field Acceleration Work Correct Answer 4 w = F.ds; it does not have any direction, it s a scalar quantity. Q.. Which one

More information

In this chapter trusses, frames and machines will be examines as engineering structures.

In this chapter trusses, frames and machines will be examines as engineering structures. In the previous chapter we have employed the equations of equilibrium in order to determine the support / joint reactions acting on a single rigid body or a system of connected members treated as a single

More information

Week 9-10: Recurrence Relations and Generating Functions

Week 9-10: Recurrence Relations and Generating Functions Week 9-10: Recurrence Relations and Generating Functions April 3, 2017 1 Some number sequences An infinite sequence (or just a sequence for short is an ordered array a 0, a 1, a 2,..., a n,... of countably

More information

Turán s problem and Ramsey numbers for trees. Zhi-Hong Sun 1, Lin-Lin Wang 2 and Yi-Li Wu 3

Turán s problem and Ramsey numbers for trees. Zhi-Hong Sun 1, Lin-Lin Wang 2 and Yi-Li Wu 3 Colloquium Mathematicum 139(015, no, 73-98 Turán s problem and Ramsey numbers for trees Zhi-Hong Sun 1, Lin-Lin Wang and Yi-Li Wu 3 1 School of Mathematical Sciences, Huaiyin Normal University, Huaian,

More information

KFDA Inspection Program for Quality and Compliance Efforts. Young-Ok Kim Clinical Trials Management Div. Korea Food and Drug Administration

KFDA Inspection Program for Quality and Compliance Efforts. Young-Ok Kim Clinical Trials Management Div. Korea Food and Drug Administration KFA Ip Pg f Qy d Cp Eff Yg-Ok K C T Mg. K Fd d g Ad CONTENTS 1 Id C 2 3 4 Rgy b f K KFA p (C ) 2011 p p 5 Sgh h p f g If A www.dh.g 2 1. INTROUCTION INTROUCTION g If A www.dh.g 3 KOREA FOO AN RUG AMINISTRATION

More information

Lecture # 20 The Preconditioned Conjugate Gradient Method

Lecture # 20 The Preconditioned Conjugate Gradient Method Lecture # 20 The Preconditioned Conjugate Gradient Method We wish to solve Ax = b (1) A R n n is symmetric and positive definite (SPD). We then of n are being VERY LARGE, say, n = 10 6 or n = 10 7. Usually,

More information

Prayer. Volume III, Issue 17 January 11, Martin Luther King Jr. Prayer. Assumption Catholic School 1

Prayer. Volume III, Issue 17 January 11, Martin Luther King Jr. Prayer. Assumption Catholic School 1 Vm III, I 17 J 11, 2017 TROJAN NEW W Rpb Cz, E Cmm, L L L, d A Ch wh bd mm d mk p. P M Lh K J. P Gd h h h Am d A h wd, W w h h hh w; w whh M w h bh. A w whh h h wd w B h wd pwh, Ad h p p hk. A w whh m

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

Pushbutton Units and Indicator Lights

Pushbutton Units and Indicator Lights Insert labels and insert caps Clear, illuminated and indicator lights can be fitted with insert labels and caps for identification purposes. These labels and caps are made of a semi-transparent molded

More information

P = 1 F m(p ) = IP = P I = f(i) = QI = IQ = 1 F m(p ) = Q, so we are done.

P = 1 F m(p ) = IP = P I = f(i) = QI = IQ = 1 F m(p ) = Q, so we are done. Section 1.6: Invertible Matrices One can show (exercise) that the composition of finitely many invertible functions is invertible. As a result, we have the following: Theorem 6.1: Any admissible row operation

More information

«-» ()». :., , «-»..... «-».., mathcad: -, -.. :,. 8. -,. -,,, -,,..,.,

«-» ()». :., , «-»..... «-».., mathcad: -, -.. :,. 8. -,. -,,, -,,..,., .,. MATHCAD», 45.65 4 «,» . 45.65 «-» ()». :.,......., «-»..... «-»..,... - - mathcad: -, -.. :,. 8. -,. -,,, -,,..,., . 5.. 5... -.... 4.. -. 6.4. -, - -.... 5.. 6 4. 4.. 4.. 5 4.., 6 4.4., - 8 5. - 4

More information

w a s t h e t a r g e t f o r b i t t e r Gear* e d m y p o s i t i o n and. I s h a l l a c c e p t will ^travel a r o u n d t h e c o u n t r y, ;

w a s t h e t a r g e t f o r b i t t e r Gear* e d m y p o s i t i o n and. I s h a l l a c c e p t will ^travel a r o u n d t h e c o u n t r y, ; M M KER xor z > &5W3-> --1>-««K-U- - W - - - - ~ - -~-- >N!V- ---- - -> GENEROR MM GENE q - O F L N ; / U W 4 K -W RLPH GENZURG GERR RNGUHEO N F N L G H O - P -UM UN F - M W P W G

More information

Week 4-5: Binary Relations

Week 4-5: Binary Relations 1 Binary Relations Week 4-5: Binary Relations The concept of relation is common in daily life and seems intuitively clear. For instance, let X be the set of all living human females and Y the set of all

More information

Information furnished in conformity with the Convention on Registration of Objects Launched into Outer Space

Information furnished in conformity with the Convention on Registration of Objects Launched into Outer Space United Nations Secretariat Distr.: General 29 March 2000 Original: English Committee on the Peaceful Uses of Outer Space Information furnished in conformity with the Convention on Registration of Objects

More information

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3 - - - - ff ff - - - - - - B B BB f f f f f f f 6 96 f f f f f f f 6 f LF LZ f 6 MM f 9 P D RR DD M6 M6 M6 M. M. M. M. M. SL. E 6 6 9 ZB Z EE RC/ RC/ RC/ RC/ RC/ ZM 6 F FP 6 K KK M. M. M. M. M M M M f f

More information

and u and v are orthogonal if and only if u v = 0. u v = x1x2 + y1y2 + z1z2. 1. In R 3 the dot product is defined by

and u and v are orthogonal if and only if u v = 0. u v = x1x2 + y1y2 + z1z2. 1. In R 3 the dot product is defined by Linear Algebra [] 4.2 The Dot Product and Projections. In R 3 the dot product is defined by u v = u v cos θ. 2. For u = (x, y, z) and v = (x2, y2, z2), we have u v = xx2 + yy2 + zz2. 3. cos θ = u v u v,

More information

A PROJECTED HESSIAN GAUSS-NEWTON ALGORITHM FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS AND INEQUALITIES

A PROJECTED HESSIAN GAUSS-NEWTON ALGORITHM FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS AND INEQUALITIES IJMMS 25:6 2001) 397 409 PII. S0161171201002290 http://ijmms.hindawi.com Hindawi Publishing Corp. A PROJECTED HESSIAN GAUSS-NEWTON ALGORITHM FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS AND INEQUALITIES

More information

NOTE ON A THEOREM OF KAKUTANI

NOTE ON A THEOREM OF KAKUTANI NOTE ON A THEOREM OF KAKUTANI H. D. BRUNK 1. Introduction. Limit theorems of probability have attracted much attention for a number of years. For a wide class of limit theorems, the language and methods

More information

(2) ^max^lpm g M/?"[l - ^-(l - /T1)2}

(2) ^max^lpm g M/?[l - ^-(l - /T1)2} PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 56, April 1976 SOME INEQUALITIES FOR POLYNOMIALS Q. I. RAHMAN Abstract. Let pn(z) be a polynomial of degree n. Given that pn(z) has a zero on the

More information

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo CHAPTER 9 Conformal Mapping and Bilinear Transformation BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-4:

More information

o Suite West Pender Street Vancouver B C V8C 2V8 Telephone Telecopier 804 8B Telex o o o o D o o o o o o o o o

o Suite West Pender Street Vancouver B C V8C 2V8 Telephone Telecopier 804 8B Telex o o o o D o o o o o o o o o d s Gd s GGA A GA RPRT T STY A STY 4 RA AS Sk s TS 3 5 B d 5445 d B54 AST G S T 44 8 s Pd S V V6 V6 B G AT GGA BRA 7 PP 67 b3 F ASS F SS T R P R T j T B S F G A Pj Gs b 987 j j j S 44 8 s Pd S V B V8 V8

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Chapter 3. Matrices. 3.1 Matrices

Chapter 3. Matrices. 3.1 Matrices 40 Chapter 3 Matrices 3.1 Matrices Definition 3.1 Matrix) A matrix A is a rectangular array of m n real numbers {a ij } written as a 11 a 12 a 1n a 21 a 22 a 2n A =.... a m1 a m2 a mn The array has m rows

More information

elegant Pavilions Rediscover The Perfect Destination

elegant Pavilions Rediscover The Perfect Destination Pv Rv T Pf D W... T O Lv! Rv p f f v. T f p, f f, j f f, bw f p f f w-v. T f bk pv. Pv w b f v, pv f. W, w w, w f, pp w w pv. W pp v w v. Tk f w v k w w j x v f. W v p f b f v j. S f f... Tk Y! 2 3 p Pv

More information

); 5 units 5. x = 3 6. r = 5 7. n = 2 8. t =

); 5 units 5. x = 3 6. r = 5 7. n = 2 8. t = . Sample answer: dilation with center at the origin and a scale factor of 1 followed b a translation units right and 1 unit down 5. Sample answer: reflection in the -axis followed b a dilation with center

More information

STRAIGHT LINES EXERCISE - 3

STRAIGHT LINES EXERCISE - 3 STRAIGHT LINES EXERCISE - 3 Q. D C (3,4) E A(, ) Mid point of A, C is B 3 E, Point D rotation of point C(3, 4) by angle 90 o about E. 3 o 3 3 i4 cis90 i 5i 3 i i 5 i 5 D, point E mid point of B & D. So

More information

SCHEDULE F - CREDITORS HOLDING UNSECURED NONPRIORITY CLAIMS

SCHEDULE F - CREDITORS HOLDING UNSECURED NONPRIORITY CLAIMS 6F (fficial Form 6F) (12/07) ont. n re ilgrim's ride orporation ebtor ase o. 0845664 (M) F Y M (ontinuation heet) ' M M Z M (ee instructions above.) usband ife oint or ommunity M F M. F M FF. ccount o.

More information

DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof

DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof Delft Center for Systems and Control, Delft University of Technology, Mekelweg

More information

Collinearity/Concurrence

Collinearity/Concurrence Collinearity/Concurrence Ray Li (rayyli@stanford.edu) June 29, 2017 1 Introduction/Facts you should know 1. (Cevian Triangle) Let ABC be a triangle and P be a point. Let lines AP, BP, CP meet lines BC,

More information

Circle the letters only. NO ANSWERS in the Columns!

Circle the letters only. NO ANSWERS in the Columns! Chemistry 1304.001 Name (please print) Exam 5 (100 points) April 18, 2018 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

THE ROOST. Thanks, Brad. Sad faced hurdy-gurdy girl, City of cobbles, Where the muddy Meuse Marks cathedral floors With fingers of flood.

THE ROOST. Thanks, Brad. Sad faced hurdy-gurdy girl, City of cobbles, Where the muddy Meuse Marks cathedral floors With fingers of flood. THE ROOST H f Bg, vy, b kw w--y f b cc. Hwv b cgz, g g, f y f p, w kw cy. W p cfy w pc bg pb cp w Uvy f Lg. H y w f c c f f Lg' b Fcp p (W pb pc fg F p 2007 fw cp vb f $6.50) Sc bg pb Lg I g I g c p I

More information

MOL NM UR PM NUMR L RVON LVL T RWN K PPROV NOT P RVON T NUMR of -N TLP P0 K 0 0K R TLP P0 Z Z0WVX KTN Q U00 0 K KMZ Z R 0 0K 0 0 R K R N00 0 0K 0 K U00 0 K 0 KJ R U00 0 0.ohm R0 W -N Max.0KOM RX0 Min./W

More information

ICS 6N Computational Linear Algebra Matrix Algebra

ICS 6N Computational Linear Algebra Matrix Algebra ICS 6N Computational Linear Algebra Matrix Algebra Xiaohui Xie University of California, Irvine xhx@uci.edu February 2, 2017 Xiaohui Xie (UCI) ICS 6N February 2, 2017 1 / 24 Matrix Consider an m n matrix

More information

ON THE EQUATION Xa=7X+/3 OVER AN ALGEBRAIC DIVISION RING

ON THE EQUATION Xa=7X+/3 OVER AN ALGEBRAIC DIVISION RING ON THE EQUATION Xa=7X+/3 OVER AN ALGEBRAIC DIVISION RING R. E. JOHNSON 1. Introduction and notation. The main purpose of this paper is to give necessary and sufficient conditions in order that the equation

More information

Optimal control and estimation

Optimal control and estimation Automatic Control 2 Optimal control and estimation Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

2014 CANADIAN SURF LIFESAVING CHAMPIONSHIPS PROGRAM

2014 CANADIAN SURF LIFESAVING CHAMPIONSHIPS PROGRAM 2014 CANAIAN URF LIFEAVING CHAMPIONHIP PROGRAM Lv Lv vy b v, w,, w Lv y w k Lv z by I Oy C (IOC) Cw G F T IOC z I L v F (IL) w v v IL N Mb Oz v b v T Lv y v by v C I Lv W C z I L v F Cw Lv C z Ry L v y

More information

Steady State Kalman Filter for Periodic Models: A New Approach. 1 Steady state Kalman filter for periodic models

Steady State Kalman Filter for Periodic Models: A New Approach. 1 Steady state Kalman filter for periodic models Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 5, 201-218 Steady State Kalman Filter for Periodic Models: A New Approach N. Assimakis 1 and M. Adam Department of Informatics with Applications to Biomedicine

More information

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k Qu V vu P O B x 1361, Bu QLD 4575 C k N 96 N EWSLEE NOV/ DECE MBE 2015 E N u uu L O C 21 Nv, 2 QV v Py Cu Lv Su, 23 2 5 N v, 4 2015 u G M v y y : y quu u C, u k y Bu k v, u u vy v y y C k! u,, uu G M u

More information

UCM DEPARTMENT OF THEATRE & DANCE PRESENTS SEASON

UCM DEPARTMENT OF THEATRE & DANCE PRESENTS SEASON UCM DEPARTMENT OF THEATRE & DANCE PRESENTS BECOME A SEASON SUBSCRIBER! Dh m wh ym : UCM Dm f Th D Uvy f C M PO Bx 800 M 113 Wbg, MO 64093 A Cv Sy M A bb, y y k F bf h bx ff. T v y k f F g wh y k, h f h

More information

ON THE CHEBYSHEV METHOD FOR APPROXIMATING THE EIGENVALUES OF LINEAR OPERATORS

ON THE CHEBYSHEV METHOD FOR APPROXIMATING THE EIGENVALUES OF LINEAR OPERATORS REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 25, N os 1-2, 1996, pp 43 56 ON THE CHEBYSHEV METHOD FOR APPROXIMATING THE EIGENVALUES OF LINEAR OPERATORS EMIL CĂTINAŞ and ION PĂVĂLOIU

More information

Parallel Scientific Computing

Parallel Scientific Computing IV-1 Parallel Scientific Computing Matrix-vector multiplication. Matrix-matrix multiplication. Direct method for solving a linear equation. Gaussian Elimination. Iterative method for solving a linear equation.

More information

i t 1 v d B & N 1 K 1 P M 1 R & H 1 S o et al., o 1 9 T i w a s b W ( 1 F 9 w s t t p d o c o p T s a s t b ro

i t 1 v d B & N 1 K 1 P M 1 R & H 1 S o et al., o 1 9 T i w a s b W ( 1 F 9 w s t t p d o c o p T s a s t b ro Pgm PII: S0042-6989(96)00205-2 VR, V 37, N 6, 705 720,1997 01997 E S L Pd G B 0042-698997$1700+ 000 P M L I B L P S M S E C S W A U O S R E R O 1 f 1 A 1 f fm J 1 A bqu g vy bd z gu u vd mvg z d,, -dg

More information

IN HIS PRESENCE UNITE YOUR PRAYERS WITH THE PRAYERS OF JESUS

IN HIS PRESENCE UNITE YOUR PRAYERS WITH THE PRAYERS OF JESUS IN HIS PRESENCE UNITE YOUR PRAYERS WITH THE PRAYERS OF ESUS 9 I p m m 10 A I d m Ad m m m 11 H F p m b pw m m m m b w 14 I m wd d wd d m wd m I m wd 15 M p m wd b p m m 16 T wd I m 17 S m b ; wd 18 A m

More information

Inverse Iteration on Defective Matrices*

Inverse Iteration on Defective Matrices* MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 139 JULY 1977, PAGES 726-732 Inverse Iteration on Defective Matrices* By Nai-fu Chen Abstract. Very often, inverse iteration is used with shifts to accelerate

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

Cartesian Coordinates, Points, and Transformations

Cartesian Coordinates, Points, and Transformations Cartesian Coordinates, Points, and Transformations CIS - 600.445 Russell Taylor Acknowledgment: I would like to thank Ms. Sarah Graham for providing some of the material in this presentation Femur Planned

More information

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea G Blended L ea r ni ng P r o g r a m R eg i o na l C a p a c i t y D ev elo p m ent i n E -L ea r ni ng H R K C r o s s o r d e r u c a t i o n a n d v e l o p m e n t C o p e r a t i o n 3 0 6 0 7 0 5

More information

6.231 DYNAMIC PROGRAMMING LECTURE 7 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 7 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 7 LECTURE OUTLINE DP for imperfect state info Sufficient statistics Conditional state distribution as a sufficient statistic Finite-state systems Examples 1 REVIEW: IMPERFECT

More information

106 70/140H-8 70/140H-8

106 70/140H-8 70/140H-8 7/H- 6 H 7/H- 7 H ffffff ff ff ff ff ff ff ff ff f f f f f f f f f f f ff f f f H 7/H- 7/H- H φφ φφ φφ φφ! H 1 7/H- 7/H- H 1 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f ff ff ff ff φ φ φ

More information

Quasi-Progressions and Descending Waves

Quasi-Progressions and Descending Waves Quasi-Progressions and Descending Waves T. C. Brown, P Erdős, and A. R. Freedman Citation data T.C. Brown, P. Erdős, and A.R. Freedman, Quasi-progressions and descending waves, J. Combin. Theory Ser. A

More information

Expanding brackets and factorising

Expanding brackets and factorising CHAPTER 8 Epanding brackets and factorising 8 CHAPTER Epanding brackets and factorising 8.1 Epanding brackets There are three rows. Each row has n students. The number of students is 3 n 3n. Two students

More information

CHAPTER X. SIMULTANEOUS EQUATIONS.

CHAPTER X. SIMULTANEOUS EQUATIONS. CHAPTER X. SIMULTANEOUS EQUATIONS. 140. A SINGLE equation which contains two or more unknown quantities can be satisfied by an indefinite number of values of the unknown quantities. For we can give any

More information

Rings, Modules, and Linear Algebra. Sean Sather-Wagstaff

Rings, Modules, and Linear Algebra. Sean Sather-Wagstaff Rings, Modules, and Linear Algebra Sean Sather-Wagstaff Department of Mathematics, NDSU Dept # 2750, PO Box 6050, Fargo, ND 58108-6050 USA E-mail address: sean.sather-wagstaff@ndsu.edu URL: http://www.ndsu.edu/pubweb/~ssatherw/

More information

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University A Gentle Introduction to Gradient Boosting Cheng Li chengli@ccs.neu.edu College of Computer and Information Science Northeastern University Gradient Boosting a powerful machine learning algorithm it can

More information

Skew-coninvolutory matrices

Skew-coninvolutory matrices Linear Algebra and its Applications 426 (2007) 540 557 www.elsevier.com/locate/laa Skew-coninvolutory matrices Ma. Nerissa M. Abara a, Dennis I. Merino b,, Agnes T. Paras a a Department of Mathematics,

More information

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2 Internal Innovation @ C is c o 2 0 0 6 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. C i s c o C o n f i d e n t i a l 1 Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information