Size: px
Start display at page:

Download ""

Transcription

1

2

3 ,,,,..,,., {. (, ),, {,.,.,..,,.,.,, {..

4 : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28, () { {. 29, k () { () {. 30, () { {. 3, () { () {. 3, r f () { f(x) 0 (mod ) {. 38. : [x] { x {. 5, fxg { x {. 5, (x) {. 6, 2 (x) {. 7, e(x) {. 39, (x) {, x {. 44, (x) { {. 44, (x) { {. 44.

5 , Q: ord p r {. 0, jjrjj p { p{ r {. 2, p (r r 2 ) { p{ {. 59. : Re s { s, Ims { s, (s) { { {. 32. : c( a) { ( ) {. 40, S l ( a) {. {. 4, S l ( a) {. {. 4, K( a b) { {. 43. : p. P P Q Q P Q P Q : a<b f() { 2 Z, a< b, b f() { 2 N, b, a<b f() { 2 Z, a<b, b f() { 2 N, b, pb f(p) { p b, pb f(p) { p b, p f(p) {, f(p) {. p : f(x) =O ; g(x), c>0 x 0, x x 0 jf(x)jcg(x). f(x) g(x), x 2 R, f(x), {,, g(x) > 0.

6 [x] fxg { 42 6 { 47 7 { 60 8 { {

7 ., : ) M N, M {. ) M N ) 2 M, 2) 2 M =) +2 M, M = N. ). :. N,..,,,.. a b 2 Z, b 6= 0., a b b j a, c 2 Z, a = bc. a b, b a. a b b - a. : {, b j a, a b 2 Z b 6= 0. 2., : ) a 2 Z, a 6= 0, a j a. ) a b 2 N, a j b b j a, a = b. ) a b c 2 Z, a j b b j c, a j c. ) a b 2 Z, a j b b j a, jaj = jbj. 7

8 ) a b 2 N a j b, a b. ) a b 2 Z, ab 6= 0 a j b, jajjbj. ) a b 2 Z a j b, ;a j b. ) a b c 2 Z a j b, a j bc. ) a b c 2 Z, a j b a j c, a j (b c).. a 2 Z m 2 N. q r 2 Z, a = mq + r 0 r<m. 3.. : q 2 Z, a [qm (q +)m). a = mq + r r, 0 :::m;., [qm (q +)m), q 2 Z,. 2. a 2 Z, m 2 N a a = mq + r, q r 2 Z 0 r<m. q r,, a m. 4. : ) 56 5 )9 7 );42 5 ) , a m 2 Z m 6= 0, q r 2 Z, a = mq + r 0 r<jmj. 6., a m 2 Z m 6= 0, q r 2 Z, a = mq + r ; jmj jmj <r. 2 2 { 3. a a 2 ::: a 2 Z, ( ). a a 2 ::: a,. {, a a 2 ::: a, { a a 2 ::: a (a a 2 ::: a ). 8

9 4. a a 2 ::: a 2 Z, (a a 2 ::: a ) =., a a 2 ::: a,. : 3, 5, 7, 2, 29,. 3, 7, 29. {. { d a a 2 ::: a d = k a + k 2 a k a k k 2 ::: k 2 Z (k k 2 ::: k )=., (a a 2 ::: a )=, k k 2 ::: k 2 Z, d = k a + k 2 a k a (k k 2 ::: k )=. 7. {. : I = fk a + k 2 a 2 + :::k a : k k 2 ::: k 2 Zg : a i 2 I i = 2 :::. I, I. m {, I ( ). a 2 I,, q r 2 Z, a = mq + r 0 r<m. I, r = a ; mq 2 I, r 6= 0, r<m, m. r =0 m j a. a i 2 I i = 2 :::, m a a 2 ::: a m d., d I, d j m d m.,, d = m,, d d = k a + k 2 a k a k k 2 ::: k 2 Z. l =(k k 2 ::: k ), (i), ld j d, l =. 9 (i)

10 8., {. : 3 {. 9. a b c 2 Z., b j ac (a b) =, b j c. : (a b) =, { u v 2 Z, au + bv =., acu + bcv = c. b j ac, b j c. 0.,. : 9. 5., : ), ), ), ),..,,., {. 2. a a 2 ::: a 2 N, a = mi k a k. r i a i a (i =2 3 ::: )., a, r 2, r 3, :::, r. 3.,, { -. 0

11 : 5, ( ),., 2. ( ),.. : 3 { -,. =2. 4. { 72, ;96, 80, 240, 360, ;504. : 3 (72 ; ;504) = ( ) = =( ) = ( ) = ( ) = =( ) = (24 2) = (2 24) = (2 0) = 2: 5. 2 a a 2 ::: a 2 N.,. : =2. =3,., a a 2 a 3 2 N. d =(a a 2 a 3 ). d j a, d j a 2 a 3 (a a 2 )=, (d a 2 )=. 9 d j a 3 (a a 3 )=, d =. 6. a a 2 ::: a 2 N k 2 N., a a 2 :::a k. : =2..

12 a j k, a 2 j k (a a 2 )=. k = a l l 2 N. a 2 j a l, 9, a 2 j l. l = a 2 s s 2 N. k = a a 2 s,..a a 2 j k. 7. a a 2 ::: a b b 2 ::: b m 2 Z a a 2 ::: a., (a a 2 ::: a b b 2 ::: b m )=((a a 2 ::: a ) b b 2 ::: b m ) : : a a 2 ::: a b 2 N., (a b a 2 b ::: a b)=(a a 2 ::: a )b: : (a a 2 ::: a )=d (a b a 2 b ::: a b)=h. b a b ::: a b, 8) b j h. {, h j a i b, h j a b i, i = 2 :::. 8), h j d,, h j db. b, d j a i. db j a i b, i = 2 ::: 8), db j h, db = h. 9. a a 2 ::: a b b 2 ::: b m., { a i b j, i, j m (a a 2 ::: a )(b b 2 ::: b m ) : : = m =2( )., a a 2 b b 2 2 N. 7 8, (a a 2 )(b b 2 )=(a (b b 2 ) a 2 (b b 2 )) = ((a b a b 2 ) (a 2 b a 2 b 2 )) =(a b a b 2 a 2 b a 2 b 2 ) : 20. a a 2 ::: a 2 N b 2 N., (b a a 2 :::a )=(b a )(b a 2 ) :::(b a ) : 2

13 : =2.. b i =(b a i ), i = b b 2 =(b 2 ba 2 ba a a 2 )=(b 2 (ba 2 ba ) a a 2 )=(b 2 b(a 2 a ) a a 2 ) =(b 2 b a a 2 )=(b a a 2 ) : 2. a a 2 ::: a 2 N., a a 2 :::a d d 2 :::d, d i a i, i = 2 :::. : =2.. a a 2 2 N (a a 2 )=. d d 2 a a 2, d d 2 j a a 2., d j a a 2, d 2 N, 20, d =(d a a 2 )=l l 2, l i =(d a i ) j a i, i = 2. d, , F =2 2 + = 2 :::. :, k 2 N, F +k ; 2=F +k; F +k;2 ::: F + F (F ; 2) : : F,, f(x) =a 0 x + a x ; + + a ; x + a., k l f(x), k j a l j a 0. :, a 0 a 6=0,. f ; k l =0 a 0 k + a k ; l + a 2 k ;2 l a ; kl ; + a l =0: 3

14 , l j a 0 k. 9 (k l) =, l j a 0. k j a l, k j a. 24., p 2+ 3p 3. :, p 2+ 3p 3 23,. { 6. a a 2 ::: a 2 Z,. a a 2 ::: a,. {, a a 2 ::: a, { a a 2 ::: a [a a 2 ::: a ]. 25.,, {. : , {, {. : a b 2 N., a b ab s, s 2 N. (a b) [a b](a b)=ab. : k 2 N a b (a b) =d. k = al l 2 N. b j al, b j a d d l ; b d d a =, 9 b j l. l = b s s 2 N, d d a b 2 N. ([a b] a)=a [a (a b)] = a. 4

15 29. a b 2 N., : ) a j b, ) [a b]=b, ) (a b) =a. 30. a b c 2 N. : ) ([a b] c)=[(a c) (b c)], ) [(a b) c]=([a c] [b c]), ) ([a b] [b c] [c a]) = [(a b) (b c) (c a)], ) [a b c](a b)(b c)(c a)=(a b c) abc, ) (a b c)[a b][b c][c a]=[a b c] abc. :,, ).. d =([a b] c), k =[(a c) (b c)]. 7, 9 27, d(a b)(a b c)=([a b](a b) c(a b))(a b c)=(ab ac bc)(a b c) k(a b)(a b c)= =(a 2 b a 2 c ab 2 ac 2 b 2 c bc 2 abc) : (a c)(b c) (a b)(a b c)=(a c)(b c)(a b) ((a c) (b c)) =(ab bc ac c 2 )(a b) =(a 2 b a 2 c ab 2 ac 2 b 2 c bc 2 abc) :, d = k. 3. ) ) a a 2 ::: a 2 Z, d =(a a 2 ::: a ) b 2 Z., a x + a 2 x a x = b x x 2 :::x 2 Z, d j b. 5 (i)

16 : (i), d, d j b. d j b. { k k 2 :::k 2 Z, d = a k + a 2 k a k. (i). x = b d k x 2 = b d k 2 ::: x = b d k :,,. (i) 32. f(x ::: x )=0 f, {.,, f.,,,. 33. (i) 32 (, ). : d =(a a 2 ::: a )., a i =0. x i. c = mi i a i 6=0 ; ja j ::: ja j,, c = ja j. 5, q i r i 2 Z, 2 i, a i = a q i + r i 0 r i <c 2 i : 6

17 x = y ; ; q 2 x q x. a y + r 2 x r x = b d =(a r 2 ::: r ). ( N), d, ( b) d. d,.,,. :. (a a 2 ::: a ) x +26x 2 +20x 3 ; 35x 4 =473: : ( ) = 3 3 j x +42x 2 +70x 3 ; 05x 4 =49: mi( ) = = 30 +2, 70 = , ;05 = 30 (;4) + 5. x = y ; x 2 ; 2x 3 +4x 4. 30y +2x 2 +0x 3 +5x 4 = 49 : {, mi( ) = 0 30 = 03+0, 2 = 0+2, 5 = 0+5. x 3 = y 2 ;3y ;x 2 ;x 4 2x 2 +0y 2 +5x 4 =49: 7

18 , mi(2 0 5) = 2, 0 = =22+. x 2 = y 3 ;5y 2 ;2x 4 2y 3 + x 4 =49. x 4 y 3,, x = 964 ; 7y 3 ; 7y 2 +7y x 2 = ; y 3 ; 5y 2, x 3 = 49 ; 3y 3 +6y 2 ; 3y x 4 =49; 2y 3. y y 2 y ) 6x ; 0x 2 +5x 3 =, ) 9x +5x 2 ; 2x 3 =33, ) 6x +5x 2 ; 2x 3 +3x 4 =55, ) 4x +6x 2 +8x 3 =0, ) 3x +4x 2 ; 5x 3 =7. : {. 36. a b c 2 Z, ab 6= 0, (a b) =d d j c. ), x 0 y 0 ax + by = c x = x 0 + b d t y = y 0 ; a d t t 2 Z: ) x 0 y 0. : ) a (x;x d 0)=; b(y;y d 0)., ; a b d d = 9. ), b 2 N. b =, x 0 =0, y 0 = c. b>. r ; = a r 0 = b 8

19 (a b), r i = q i+2 r i+ + r i+2 ; i s ; 2 r s; = q s+ r s r i q i 2 Z r s <r s; < <r <r 0., j s r s = P j r s;j; + Q j r s;j, P j Q j P = Q = ;q s P j+ = Q j Q j+ = ;q s;j Q j + P j :, r s =(r ; r 0 )=(a b) =d, d = P s a + Q s b., x 0 = c d P s, y 0 = c d Q s. 37., a b 2 N (a b) =d, a b 2 N, d = aa ; bb. : 36 ). 38. ) 735x +20y = ;25, ) 26x ; 4y =8, ) 2x ; 30y =46. : ) 735 = = = = 2 5, 36, s =3 r ; = 735, r 0 =20, r =55, r 2 =0, r 3 =5 q =4, q 2 =2, q 3 =5., (735 20) = 5 5 j;25,. { P = Q = P 2 = ;5 Q 2 = P 3 = Q 3 = ;59, x 0 = ;55, y 0 = 795., 36 ), x = ;55+24t y =795; 347t t 2 Z: ). ) x = ;92 ; 5t, y = ;345 ; 56t, t 2 Z. 9

20 2 7. >,. >,.,. 39., 2 N, >. :. 40., 2 N, p. : 7 = km, k m 2 N, <k m<.,, k m, p k, = km k 2 p 2,. 4. ), x 2. ), 00. : ) 40, 2 N, p x, p x< x,.,, p x, " \, ( p x x]. p x,. ) 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, 37, 4, 43, 47, 53, 59, 6, 67, 7, 73, 79, 83, 89, 97. : ( 238). x,,. 20

21 42. { 2 N, : p p ; j, p j. : , k 2 N m 2 N, m + m+2 ::: m+ k. : m =(k +)!;. 44., p, p. :, ( ). a b 2 N p j ab. p - a, (p a) = 9, p j b. 45. p., k p ;, ; p k p. : ; p 2 N, k! j p(p ; ) :::(p ; k +). k (k! p)=. 9 k! j (p ; ) :::(p ; k +)., ; p p. k. 2 N, > :..,, 2 N, > {,.,, k, m 2 N, = km <k m<., 2

22 k m.,.., p p 2 :::p l = q q 2 :::q s p i, q j. p q q 2 :::q s, 44 p q j. q j, p., p 2 q j., k = l p i q j (, N) :, 2 N, >, = p p 2 :::p l = q q 2 :::q s p i, q j., {., l>, s> p i 6= q j i, j., p 6= q., p <q. k =(q ; p )q 2 :::q s, <k<., k. k = q q 2 :::q s ; p q 2 :::q s = p p 2 :::p l ; p q 2 :::q s = p (p 2 :::p l ; q 2 :::q s ), p k., k, p q 2 :::q s,, p 22

23 q ; p,.. p q,.,. :, 47, k 2 N, k 2 m 2 N k{., kp m. : 0. : p 2., e., p 2 p 2+ 3p 3, e,... e, {. 8. p. 2 N ord p. p - ord p =0. p j, ord p = l, l 2 N {, p l j N = Y p p ordp p. : N, > = p l p l 2 2 :::p ls s, p i l i 2 N., p p 2 2 :::p s s, i 2 Z, 0 i l i, i = 2 :::s. 23

24 :. 5. p, 2 ord p ( 2 )=ord p +ord p 2. 2 N., :. 52. a a 2 :::a 2 N d =(a a 2 ::: a ) k =[a a 2 ::: a ] :, p ) ord p d =mi ; ord p a ord p a 2 ::: ord p a, ) ord p k = max ; ord p a ord p a 2 ::: ord p a. : 3 6. : 46 ( ) 47, {. d k, ), ), 52, {,, { a ::: a { :,, 30 ). p. ord p a =, ord p b =, ord p c =.,. 52 ord p (a b c) =, ord p [a b c] =, ord p [a b] =, ord p [a c] =, ord p [b c] =. 5, p.. 24

25 p{ 0. p. ord p r r 2 Q, r 6= 0. m 2 Z, m 6= 0, ord p m =ord p jmj. {, r 2 Q, r 6= 0 r = m, m 2 Z, m 6= 0 2 N, ord p r = ord p m ; ord p. 54., ord p r r 2 Q, r 6= , r 2 Q, r 6= 0 r = " Y p p lp(r), " =, l p (r) 2 Z, l p (r) 6= 0 p. l p (r) = ord p r. :.. 55 r 2 Q, r 6= , ;68,, ; r r r 2 2 Q, rr r 2 6=0 2 Z. ) ord p (r r 2 ) = ord p r + ord p r 2, ) ord p ; r r 2 =ordp r ; ord p r 2. ) ord p (r )= ord p r. 2. p r 2 Q. p{ - jjrjj p r jjrjj p = ( p ;ordpr r 6= 0 0 r =0: 25

26 58. p r r 2 2 Q. : ) jjr r 2 jj p = jjr jj p jjr 2 jj p, ) jjr + r 2 jj p max ; jjr jj p jjr 2 jj p, ) jjr jj p < jjr 2 jj p =) jjr + r 2 jj p = jjr 2 jj p. : ) ) ). r i,. r i = p l i m i i, l i =ord p r i, m i 2 Z, i 2 N, p - m i i i = 2., l 2 l. r + r 2 = p l 2 p l ;l 2 m + m 2 2 = p l 2 m m = p l ;l 2 m 2 + m 2 = 2 : ord p =0, ord p m 0. ord p (r + r 2 ) l 2 = ord p r 2 ) 2. l 2 <l,, ord p m =ord p (m 2 )=0. ord p (r + r 2 )=ord p r ) p. p{ p Q. r r 2 2 Q p (r r 2 )=jjr ; r 2 jj p., Q. : 58. :.,, {. 60., Q 2 : = ; : jj jj 2 = jj2 + jj 2 =2 ;;! 0!: 26

27 3. p. p{ Q p Q 59. :, p, Q Q p,., Q p 59,.. Q 6= Q p., p{ a 0 + a p + a 2 p 2 + :::, a i 2 Z, 0 a i p ; i =0 2 ::: ( p ). Q p R, ( p). Q p p{.,., Q p,. ) 58, { R. p{ {. {., {, F (x ::: x ) Q (.. 2 Q, F (x ::: x )=0 x ::: x ), R Q p p. Q p p{ :, p p 2 :::p s. =+p p 2 :::p s. 39 p., 27

28 p p i, p j p p 2 :::p s, p j ( ; )., p j,,. : : p F = , p, = 2 3 :::,,. :. 63., x 2 R, x>2 Y ; ; > p : px : Q ; P (x) = px ; ; p. Q ; P (x) = px + + +:::. (, p p 2 ),, P P (x) = +P x 0>x. P0,, x : ( 63), P (x)!, x!.. :. {,, P p, p,. { x

29 4., 2 N ( ),. : 5, , , 2 N = k 2 q, k q 2 N q. : : = ; ; 2 3 : :, s. m 2 N, m>4 s, 2 N, m., m., 65, m = k 2 q, k q 2 N q., k p m, q { 2 s. p m 2 s., m p m 2 s, m. : 66 P p, p. p 67., Z,, H a b = a + bz= fa + kb : k 2 Zg a b 2 Z, b 6= 0( ). 29

30 ), Z. ), H a b, a b 2 Z, b 6= 0. : ),, H a b. ) : H 4 = Z ; H 0 4 [ H 2 4 [ H 3 4. :, " \, { : A H 0 p p. 62 A, ; 62 A., k 2 Z, k 6=, k, k 2 A. Z A = f ;g.,. A, H 0 p. f ;g, Z. :, 68,. 3 [x] fxg 5. x 2 R. { 2 Z, x x ( x) [x]. x fxg = x ; [x]. : [2 4] = 2, [6] = 6, [;5 7] = ;6 f2 4g =0:4, f6g =0, f;5 7g =0:3. 30

31 69., x 2 R : ) x ; < [x] x, ) 0 fxg <, ) [x]=x () x 2 Z, ) [x + a] =[x]+a () a 2 Z, ) fxg = x () 0 x<, ) fx + ag = fxg() a 2 Z. 70., m 2 N, a q r 2 Z, a = mq + r 0 r<m, q = a m, r = m a m. 7., x 2 R 2 N, ; k=0 h x + k i =[x] : : P ; h(x) = k=0 x + k ; [x]. 5, 0 x< h(x) =0. {, 69,, h(x). h(x) =0 x 2 R. 72. a b 2 R, a<b f(x), [a b].,, f (x y) 2 R 2 : a<x b 0 <y f(x) g (i) S = a<b f() : : 5. :. (i),, S (ii). 3 (ii)

32 , S = S ; S 2, S = f() a<b S 2 = a<b ff()g : S, - f(x) ( x 4). {, S 2 0 S 2 [b] ; [a]. S., f(x), S 2 {., fxg e 2ix, = 0 2 :::, S 2, 39 x R 2 R, R L(R), ) L(R) = R ) L(R) =2 f (x y) 2 R 2 : x>0 y>0 xy R g : R p R R h p i 2 ; R : : ) 72. ),,, y = x. : L(R) ),,, { ), {,. 32

33 74. R 2 R, R K(R), ) K(R) =4 f (x y) 2 R 2 : x 2 + y 2 R g : p R ) K(R) =8 p R 2 h pr ; 2 i h pr i +4 + h pr ; 2 i ; 4 hp R=2 i 2 +4 h pr i +: :. 75., l 2 N (l ) =, ; k= kl = (l ; )( ; ) : (i) 2 :, l> > ( ). O(0 0), A(0 l), B( l), C( 0). (l ) =, OB,. {, 72, (i), OCB,,, OABC,.. (l ; )( ; ) , l 2 N, 2 - l (l ) =, kl k + = (l ; )( ; ) : l 4 k ; 2 k l; 2 : , k 2 N, x 2 R x 0, 2 N, x, k, x k. 33

34 78., k 2 N x 2 R, x k ; [x] k : x k k 0 x<k. = [x] k. x 79., 2 N p, ord p (!) = h pi + h p 2 i + h p 3 i + ::: : : =. >, k2n, k<., p, p 2p 3p ::: tp, t = p. v u, p.! =uv., p - u, ord p u =0. { v = p t t!,, ord p (t!) = t p + t 5,, ord p (!) = ord p v = t+ t p + t p 2 + :::. p 2 +:::. t 78,,. 80., x x 2 ::: x 2 R [x ]+[x 2 ]++[x ] [x + x x ] : : = 2( ). [x ]+[x 2 ] [x +x 2 ] fx +x 2 gfx g+fx 2 g. fxg, 0 x x 2 <. x + x 2 < x + x 2. 8., a a 2 ::: a 2 N, (a + a a )! a! a 2! ::: a! 2 N : : 79 80, x a :::x a (x + + x ) a ++a. 34

35 82., k 2 N, k k!. : 8. :, R,., a q 2 Z, ; a q q q (a q) =: (i) : k m 2 Z, jm ; kj m : (ii) =[] fg f2g ::: fg : (iii), fsg, 0 +, (ii) m = s, k =[s]. fsg (iii), (ii) m = s, k =[s]+. +, (iii) + +. ; Il = l l+ + +, l = 2 ::: ; (iii),, fs g fs 2 g, s <s 2, I l., fs2 g;fs g < + (ii) m = s 2 ; s, k =[s ] ; [s 2 ] 0, k m a, q 2 N., a q q (i). : 83.,, m 35

36 m,..,,, x 2 R (x) = ;fxg , (x) : ) x 2 R ; < 2 (x). 2 ) x 2 R Z (x) 0 (x) =;. ) k 2 Z, lim x!k x<k (x) =; 2 lim (x) = (k) = 2 : x!k xk ) (x). 7. x 2 R 2 (x) = Z x 0 (t) dt : 85., 2 (x) : ) x 2 R 0 2 (x) 8. ) 2 (x) x 2 R x 2 R Z, 0 2 (x) = (x). ) k 2 Z, 2 (k) =0. ) 2 (x). 36

37 86. a b 2 R, a<b f(x) [a b]. a<b f() = Z b a f(x) dx + (b)f(b) ; (a)f(a) ; : t 2 [a b] F (t) = Z t a f(x) dx ; Z t a (x)f 0 (x) dx H(t) =F (t) ; G(t) : G(t) = a<t Z b a (x)f 0 (x) dx : f() ; (t)f(t) F (t). [a b], { t 2 (a b), F 0 (t) =f(t) ; (t)f 0 (t). G(t)., [a b]. t 0 2 (a b) Z. 84, (t)f(t) t 0, P a<t f(), t t 0. G(t) (a b) Z. k 2 (a b)\z, 84 lim t!k t<k a<t f() = a<k; f() lim t!k tk a<t f() = a<k f() lim t!k G(t) =lim t!k G(t) =G(k), G(t) t<k tk (a b) \ Z. G(t) a b. F (t) G(t) [a b], H(t). k 2 Z, I k =(a b)\(k k +). t 2 I k G 0 (t) =f(t); (t)f 0 (t) =F 0 (t). H 0 (t) =0 t 2 I k H(t) I k. k H(t) [a b]., H(t) [a b]. H(b) =H(a) = (a)f(a),

38 : Z b a (x) f 0 (x) dx = a;b = a;b. Z Z (a b)\( +) (a b)\( +) (x) f 0 (x) dx = 2 + ; x f 0 (x) dx 88. a b 2 R, a<b f(x) [a b]. a<b f() = Z b a f(x) dx + (b)f(b) ; (a)f(a) ; ; 2 (b)f 0 (b) + 2 (a)f 0 (a) + Z b a 2 (x)f 00 (x) dx : :, : a b 2 R, a<b 2 N, 2 (a b] c 2 C., f(x) [a b], a<b c f() =; Z b a a<x : F = f(b) c ; c f() = a<b a<b c f 0 (x) dx + f(b) 38 a<b a<b c : c ; f(b) ; f() :

39 {, Z b Z b F = c f 0 (x) dx = a<b H(x ) = a<b ( x b 0 a x<: a c H(x ) f 0 (x) dx, F = Z b a a<b. c H(x ) f 0 (x) dx = Z b a a<x c f 0 (x) dx : , x 2 R, x x. x =lx + + (x) + O x x 2 : 84, =+ <x Z x =+ =lx + + (x) +(x) x = 2 + Z 85, j(x)j j 2(x)j x 2 + dt t + (x) ; x 2 ; 2(x) + x 2 2 (t) t 3 dt (x) =; 2(x) x 2 ; Z x Z x Z x 2 (t) t 3 dt : Z j 2 (t)j dt t 3 8x + dt 2 8 x t 3 4x : (t) t 3 dt =

40 :, 9,., = :::. 2: { x =lx + + O x x = O(l x) R 2 R, R> L(R) 73. ), L(R) =R l R +(2 ; ) + (R)+O() (R) =2 p R R ) : L(R) =R l R +(2 ; )R + O ;p R : : 73 ), 84, 9 6. : ). { ( 39 x 4),, O ; R 3 +", ">0.. {., O ; R 4 +", ">0. ( 263). 40

41 93. R 2 R, R> K(R) 74. ), K(R) =R + 0 (R)+O() 0 (R) =8 p R 2 ;p R ; 2 : ) K(R) =R + O ;p R : : 74, : )..,, O ; R 4 +", ">0. 94., x 2 R, x 2 x l = x l x ; x + O(l x) : : , x 2 R, x 2 : ) x = x+ + + O; max( x ) 2 R, >;, O ) >x = O; x ; 4

42 2 R, >, O ) x l c. = 2 l2 x + c + O l x x 96. ) x l 2 ) 2x l ) x p +l : N a = k= k l( +2; k) :, a, = 2 :::. :, k, 2 k. : lim! a =. 5 { 8., N C,. {. 42

43 9., f(), f() =,, 2 2 N, ( 2 )=, f( 2 )=f( )f( 2 ). 20., f(),, 2 2 N f( 2 )=f( )f( 2 ). 2., h(), 2 2 N, ( 2 )=, h( 2 )=h( )+h( 2 ). 22., h(), 2 2 N h( 2 )= h( )+h( 2 ). 98., h() ( ) a 2 C, a 6= 0, f() =a h() ( ). :,. 99. f() g() ( ). ), f()g() ( ). ), g() 6= 0 2 N, f () g() ( ). 00., f() ; k 2 N k = p l p l 2 ; 2 :::p ls s, f(k) = f p l f p l 2 ; 2 :::f p l s s. 0., f() g(), f ; p l = g ; p l p l 2 N, f() =g() 2 N. 43

44 02., f() g() f(p) =g(p) p, f() =g() 2 N. 23. f(). F () = dj f(d) ( d ) f(). 03., F () f(), F (). : : f(). f() = F ()., > f(k) k<. f() =F () ; kj k< f(k) :, F () f(). :, f() f (), 2 N F () = dj f(d) = dj f (d) : (i) f() = f () = F (). 2 N, >, k 2 N, k<, f(k) =f (k). (i), f() =F () ; dj d< f(d) =F () ; dj d< f (d) =f () :, f() =f () 2 N. 44

45 : F () f() 23. f() F () , f(), F (). : 2 2 N ( 2 )=. 2, F ( 2 )= f(d) = f(d d 2 )= dj 2 d j d 2 j 2 = dj d 2 j 2 f(d )f(d 2 )= d j f(d ) d 2 j 2 f(d 2 )=F ( )F ( 2 ) : 05., F () f() F (), f(). : P F () = dj f(d) F (), f() = F () =., f(). 2 2 N, ( 2 ) = f( 2 ) 6= f( )f( 2 )., 2 ( N)., 2 >, 2 >., F () f(), 2, 2, F ( 2 )= f(d) =f( 2 )+ f(d) = dj 2 dj 2 d< 2 = f( 2 )+ d j = f( 2 )+ d j f(d d 2 )= d 2 j 2 d d 2 < 2 f(d )f(d 2 ) : d 2 j 2 d d 2 < 2 45

46 F ( )F ( 2 )= f(d ) f(d 2 )= f(d )f(d 2 )= dj d2j2 dj d 2 j 2 = f( )f( 2 )+ d j f(d )f(d 2 ) : d 2 j 2 d d 2 < 2 {, F (), F ( 2 )=F ( )F ( 2 )., f( 2 )=f( )f( 2 ), 2. f(). 06. f() F ()., k 2 N, k> k = p l p l 2 2 :::p ls s, F (k) = sy i= +f ; p i + f ; p 2 i + + f ; p l i i : : k. F (). 07. f()., 2 2 N f ; [ 2 ] f ; ( 2 ) = f( ) f( 2 ) : : f() P = f()., = f() = Y p +f(p)+f(p 2 )+f(p 3 )+:::. 46 (i)

47 f(), = f() = Y p : p p =+f(p)+f(p 2 )+f(p 3 )+::: : ; ; f(p) ; : (ii),, p, P f(). = x 2 R, x>2 P (x) = Q px p. f(). P (x) = x f()+(x) (iii) (x) = P 0>x f(), P0,, x. j(x)j P >x jf()j, lim (x) =0: x! (iii), (i). f(), p f(p) 6=,, p,,. (ii), p = ; ; f(p) ; (i). : (i). 6 { N.!(), () {. 47

48 :!(6) = (6) = 2,!(8) =, (8) = ,!(), () {. 25. () ( = (d) = 0 > : dj 0.,. : 05, 25.., ) () =, ) () =0 p 2 j p. ) () = (;) s s. : () =. 0 (), ) ), p, (p) =; (p l )=0 l 2 N, l>. 0= (d) =() + (p) =+(p) djp (p) =;. {, l =2 0= djp 2 (d) =() + (p)+(p 2 )=; +(p 2 )=(p 2 ) : 48

49 l 3, (p s )=0 s 2 N, 2 s l ;, 0= djp l (d) =()+(p)++(p l )=;+0++0+(p l )=(p l ) :, (p l )=0 l 2 N, l 2,. 2. () ), ) ) F () f()., : ) F () f(). ) 2 N f() = dj (d) F : d P : ),.. 2 N F () = f(d). 2 N dj () = dj (d) F d = dj (d) tj d f(t) : 25, () = f(t) (d) =f() tj dj t )., ) ). 4. F (x) f(x), x 2 R, x>0 x., : 49

50 ) x>0 F (x) = k= f(kx) : ) x>0 f(x) = k= (k) F (kx) : : ). x>0 H(x) = k= (k) F (kx) = k= (k) l= f(lkx) : 25, H(x) = m= k= l= kl=m (k) f(lkx) = m= f(mx) kjm (k) =f(x) )., ) ). 5. F (x) f(x), x 2 R, x>0., : ) x>0 F (x) = kx f x k : ) x>0 f(x) = kx (k) F x k : : 3 4. : 3 { 5. 50

51 6., x 2 R, x = kx (k) h x ki : : 5 f(x), f(x) = x>0. 7., k 2 N, ( 0 p p k j (d) = d k j ( d 2 N, d k j ). :,., = p l, p l 2 N N () ( (d) = 0 : dj 8.,. : , 2 N () =(;) (). : 0, = p l, p l 2 N. l , x 2 R, x [ p x]= kx (k) h x ki : 5

52 : N () dj (d) =l: 2., 2 N () = dj (d) l d = ; dj (d) ld: : , 2 2 N 2 > ( 2 )=, ( 2 )=0. : 2 2, ( 2 )=; (d) ld = ; (d ) (d 2 )l(d d 2 )= dj 2 d j d 2 j 2 = ; d j d 2 j 2 (d ) (d 2 )(ld +ld 2 )= = ; d j (d )ld d 2 j 2 (d 2 ) ; d 2 j 2 (d 2 )ld 2 d j (d ) : 25,. 23., 2 N () = ( l p = p l p l 2 N 0 : : 2, () = 0. >. p p 2, = p l p l 2 2 m, l l 2 m 2 N (p p 2 m)=. 22 = p l, 2 = p l 2 2 m, () =0. 52

53 , = p l p l 2 N. 50, 2, ; p l = ; djp l (d) ld = ; l ; p l p =lp: 24. () , x 2 R, x 2 h x (k) ki kx =0 = x l x ; x + O(l x) : : 77, 94 27, kx (k) h x ki = kx = x (k) x kj = x kj (k) = l = x l x ; x + O(l x) : N '() k 2 N, k, (k ) =. '(). 26. '() = dj (d) d : : 8) 25, 28, '() = = (d) = (d) : k (k )= k dj(k ) k, '() = (d) : dj k djk k,. d 53 djk dj

54 27., 2 N = dj '(d) : : : 2 3 ::: ;.., d j d>0, '(d) d. 29.,. : 04, 26 (), , ; : p '() = Y pj : 06, :, p =2 p 2 =3 ::: p s. = p p 2 :::p s m = '(). m =, k = k 2 p p 2 ::: p s,., 30 Q s m = (p i= i ; ) >.,,... 54

55 32., 2 N '() = dj 2 (d) '(d) : : 99, 0 29, 2 (). 04, '().,., '() 0, = p l, p l2n., 30, '() = ; p = p p ; :, 50, 30, dj 2 (d) '(d) = l =0. 2; p ' ; p =+2 (p) '(p) =+ p ; = p p ; 29. P () = dj { 2 N. 33., (). : , 2 N, >, = p l p l 2 2 :::ps ls, () =(l +)(l 2 +):::(l s +). : , 2 2 N ( 2 ) ( ) ( 2 ) : 55

56 : , 2 N dj 3 (d) = 2 (d) : dj : 0, 04, 33 P m k= k3 = ;P m k= k2. 37., " 2 R, ">0 C(") > 0, 2 N () C(") " : : " (), 0 <"<., >. = p l p l 2 2 :::p ls s, l i 2 N. () " = sy i= l i + p "l i i = UV U, i, p i 2 =", V i. V. l 2 N 2 l l +, p i > 2 =" l i + p "l i i l i + 2 l i V. {, U { 2 =" l i + p "l i i l i + 2 "l i 2l i 2 "l i = 4 " (, x 2 R, x>0 2 x = e x l 2 > +xl 2 > x ). 2 U 4 " 2 =" U V. 56 :

57 38., A>0 2 :::, ( m ) lim m! (l m ) = : A : l =[A]+2 H l l. m = H lm, m = 2 :::. 34, ( m )=(m +) l. ( m ) (l m ) A = (m +)l (m l H l ) A ml;a (l H l ) ;A m (l H l ) ;A. :, 37, 38. {,, " 2 R, ">0 () < 2 (+") l l l., () > 2 (;") l l l : 39. k m 2 N, k 2 t(k m) x y + x 2 y x k y k = m x y ::: x k y k 2 N., " 2 R, ">0 k t(k m) lim =0: m! mk;+" " =0? 57

58 : 29 37,, >0 t(k m) = ::: k 2N ++ k =m C() k m k ( ) ::: ( k ) C() k ::: k 2N ++ k =m ::: k 2 ++ k =m C() k m k ::: k;m ::: k (k ; ) C() k m k;+k : = "(2k) ; t(k m) (k ; ) C()k mk;+" m "=2. " =0, m t(k m) ::: k 2N ++ k =m ::: k; m k m k; : 2k 30. k 2 N. k () k- m m 2 :::m k 2 N, m m 2 :::m k =. 40., () =, 2 () =(), k 2 N, k 2 k () = P dj k;(d). :, , k 2 N k (). : k (),. 58

59 : = p l, p l 2 N, 4. : = p l p l 2 2 :::p ls s, k () = sy i= (l i + )(l i +2):::(l i + k ; ) (k ; )! 43., k 2 N, k 2 " 2 R, ">0 C(k ") > 0, 2 N k () C(k ") " : : k () () k; N 2 C. () = P dj d.,, () = (). 44., 2 C (). 45. () 2 C, 6= 0,. : = p l :::p ls s, () = sy i= p (l i+) i ; p : i ; 46., A>0, 2 N A () '() 2 : :, > = p l :::p ls s, l i 2 N. f() =() '() ; , Q s ; f() = i= ;p ;l i ; i. f() sy i= ; p 2 i Y i=2 : ; i 2 :,. 59

60 7 { 32. s 2 C, Re s >, { (s) = = s : : { {., (s) C, s =., (s) s = ;2 ;4 ;6 ::: ( )., (s) 0 Re s., Re s =.. 2, { {. (s),, R, >.,, (s), Re s { Re s >. :,. 48., Re s > (s) = Y p ; p s ; : : , (s) 6= 0 Re s >. 60

61 : Re s = >, 08, Y p ; Y + p s p p = = () : 48. :, (2) = 2 6 k 2 N (2k) =c k 2k, c k 4, (4) =, 90 2 Q.,,, k 2 N (2k). { (2k +), k 2 N., (3) ( ), (2k +) , (5), (7), (9), (). 50., Re s > (s) = () : s = : 25, (s) = () s = = k= = m= () (k) = s m= () =: m s jm m s k 2N k=m 5., Re s > 0 (s) =; = l s : () :. 6

62 52., Re s > ; 0 (s) (s) = = () s : :, P () = s Re s >, (s). {, 50, , Re s > (2s) (s) = Y p + p s ; : : k 2 N, k 2., Re s > k (s) = = k () s : : , Re s > 2 (s ; ) (s) = = '() s : 56., Re s > 2 (s ; )(s) = = () s : : { 56. = a s 62

63 a, = 2 3 :::.., a b 2 N (a b) =, a+b, = 2 3 :::. 8 { 33. m 2 N a b 2 Z., a b m a b (mod m), m j (a;b)., a b m,, a b m a 6 b (mod m). : 33 8 (mod 5), ;29 (mod 8), (mod 7), 46 6;7 (mod 7). 57. a b c 2 Z m 2 N. : ) a a (mod m). ) a b (mod m) =) b a (mod m). ) a b (mod m) b c (mod m) =) a c (mod m). 58. a b c d 2 Z, m 2 N. : ) a b (mod m) =) a c b c (mod m), ) a b (mod m) =) ac bc (mod m), ) a b (mod m) c d (mod m) =) a c b d (mod m), ) a b (mod m) c d (mod m) =) ac bd (mod m), ) a b (mod m) =) a b (mod m). : ) ) 33. ) (ac);(bd) =(a;b)(c;d). ) ac;bd =(a;b)c+b(c;d). ) ). 59. a b 2 Z, m 2 N d 2 N a, b m., a b (mod m), a d b d (mod m d ). 63

64 : 33 b d ; a d m d = b ; a m : 60. a b 2 Z, m 2 N a b (mod m)., d 2 N a b, (d m) =, a d b d (mod m) : : m j ; b d ; a d d (d m) =, 9, m j ; b d ; a d. 6. a b 2 Z ::: s 2 N., a b (mod ::: s ) a b (mod ) ::: a b (mod s ) : : m 2 N MZ., M m ( {... (mod m)), : ) a b 2M a6= b =) a 6 b (mod m), ) x 2 Z c 2M, x c (mod m). 62.,... (mod m) m. 63., m, m,... (mod m). 64., m 2 N, ) 2 ::: m...(mod m), ) m, 0 2 ::: m;... (mod m), 2 ) m, ; m+ ; m+2 ::: ; 0 ::: m... (mod m)

65 65. m 2 N, a b 2 Z, a 6= 0 (a m) =., x... (mod m), ax + b... (mod m). : 58, N, ( 2 )=., x x 2 2, x 2 + x 2... (mod 2 ). :, x 2 + x 2 x x 0 2 (mod 2 ) x 2 x 0 2 (mod ), x x 0 (mod ) 60. x x 0... (mod ), x = x 0., x 2 = x 0 2., x 2 + x m 2 N., x y m, x + y... (mod m). : 59, m 2 N, x 0 2 Z M...(mod m)., m y 2 Z, x 0 + y 2M. 35. m 2 N RZ., R m (...(mod m)), : ) a 2R =) (a m) =, ) a b 2R a6= b =) a 6 b (mod m), ) x 2 Z, (x m) = c 2R, x c (mod m). : (mod 0). 65

66 69. m 2 N.,... (mod m) '(m). 70.,... (mod m)... (mod m).,... (mod m)... (mod m). 7. m 2 N., '(m), m m,... (mod m). 72. m 2 N, a 2 Z, a 6= 0 (a m) =., x... (mod m), ax... (mod m). : N, ( 2 )=., x x 2 2, x 2 +x 2... (mod 2 ). : 66, 7. : m 2 N, a 2 Z (a m) =., a '(m) (mod m) : : a a 2 ::: a '(m)... (mod m). 72 aa aa 2 ::: aa '(m)... (mod m). a a 2 :::a '(m) (aa )(aa 2 ) :::(aa '(m) ) a '(m) a a 2 :::a '(m) (mod m) : ( a a 2 :::a '(m) )=,

67 : a 2 Z p., a p a (mod p) : : p j a,. p - a a p; (mod p), 74. : a ::: a s 2 Z p., (a + + a s ) p a p + + a p s (mod p) : : 75. :, :, a 2 N. a =. a>, a ;. ; a p = (a ; p; p ) + =(a ; ) p + k= p (a ; ) p;k +: k 45, a p (a ; ) p + (a ; ) + a (mod p) : 67

68 78. p l 2 N., m 2 Z m (modp l ), m p (modp l+ ). : m = + kp l k 2 Z. m p =(+kp l ) p : p, a 2 Z p - a. 77 a p; (mod p). l 2 N, l ; 78 a p(p;) (mod p 2 ) ::: a pl; (p;) (mod p l ).. a '(pl ) (mod p l ). 2 N, (a ) = > ( = )., = p l :::p ls s, l i 2 N., a '(pl i i ) (mod p l i i )., '(p l i i ) j '(). 58 ) a '() (modp l i i ) is, , a 2 N, a, a 2;2 (mod 2 ) : : =3. >3, a m 2 N a m; (mod m)., m? :.,, m =56=3 7 a 2 N, 56 - a. a 2 (mod 3) a 0 (mod ) a 6 (mod 7) : 2 j 560, 0 j 560, 6 j 560, a 560 (mod 3) a 560 (mod ) a 560 (mod 7) : 68

69 6 a 560 (mod 56). :, m 2 N { a 2 N, a m; (modm). m 2 N, { a 2 N, (a m) =,., 56., a 2 N, a>, { a. { 994., N f 2 Z[x]. x 2 Z, f(x) 0(mod),.. :, Z[x] x. 37. m 2 N f g 2 Z[x]., f(x) 0(mod) g(x) 0(modm), N f 2 Z[x]. ) x 2 Z f(x) 0 (mod ) (i) x 2 x (mod ), x 2 (i). ) M...(mod ), (i), M,. 69

70 ) M M 0... (mod ), M, (i), M 0,. : 82, (i),... (mod ). 2 N f 2 Z[x] (i). f,. 83. ) x 8 ; 0 (mod 5), ) x (mod ). : ) x (mod 5) ) N f 2 Z[x]. r f () f(x) 0(mod),... (mod ). r f (). : : ) 8 ) , f 2 Z[x] r f (). : r f () =. 2 2 N ( 2 )=. M M , 6, 65, 66 38, r f ( 2 ) = = = r f ( ) r f ( 2 ) : x 2M x 2 2M 2 f (x 2 +x 2 )0 (mod 2 ) x 2M x 2 2M 2 f (x 2 )0 (mod ) f (x 2 )0 (mod 2 ) 70

71 86. 2 N, a b 2 Z d =(a ). : ) d - b, ax b (mod ). ) d j b, ax b (mod ) d. : ). ) a = a d, b = b d = d. (a )=. 59,, a x b (mod ). 65, x 2 :::, a x... (mod ), 2 ::: x, a x b (mod ). 2 ::: d, x x + x +2 ::: x +(d ; ) ax b (mod ) N, a b 2 Z (a ) =., ax b (mod ) x a '(); b (mod ). : 74. : 86 87,., " \... (mod ), x 23 (mod 32),... (mod 32), 2 ::: 32. : (09 32) =,. 32= , '(32) = '(8) '(3) '(3) = 422 = , x (mod 32)., (mod 32). 7

72 (mod 32). { 25 2 =625 (mod 32), (mod 32). x (mod 32). :, {,. 89. ) ax b (mod ), " \... (mod ) ) 88. :, (a ),,.,, (a ) =( )., <a<. r ; =, r 0 = a., q r 2 Z, s +2, r = q +2 r + + r +2 ; s (i) =r s+2 <r s+ < <r <r 0 = a. P 0 =, P = ;q. P a r (mod ) (ii) =0. j s +., P 2 Z, 0 j (ii). : P j; a r j; (mod ) P j a r j (mod ) :, ;q j+. (i) P j+ a r j+ (mod ), P j+ = P j; ;q j+ P j, P. P s+2 a r s+ (mod ), x P s+2 b (mod ). ) 09x 23 (mod 32), 32 = , 09 = , 94 = , 5 = 3 4+3, 4=3+. 72

73 , (32 09) =., ), (;2) (mod 32), (mod 32), (;20)09 4 (mod 32), (mod 32), (;83) 09 (mod 32). x ;83 23 ; (mod 32). : {, ,. 9. ) 90x 68 (mod 32), ) 42x 32 (mod 98), ) 27x 9 (mod 94). : ) x (mod 32) ) ) x 39 (mod 94). 92. ) (x ; 5)(x ; 7) x 2 + x + (mod ), ) (x +)(x ; 2) (x +3)(x +2)+x + 7 (mod 6), ) 2(x +3)+5 5x + (mod 80) ::: k 2 N c ::: c k 2 Z., x c (mod ) :::::: x c k (mod k ) (i) c i c j (mod ( i j )) i<j k: (ii) 73

74 x c (mod [ ::: k ]) (iii) c 2 Z, ::: k c ::: c k. : k =,, k>., (i), (ii). (ii). c (l) 2 Z, l k,, c (l) c i (mod i ) i l: (iv) c () = c. l 2 N, l<k c (l) 2 Z, (iv). c (l+) = c (l) + z[ ::: l ] (v) z 2 Z {., c (l+) c (l) c i (mod i ) i l: (vi) z, c (l+) c l+ (mod l+ ) (vii) z[ ::: l ] c l+ ; c (l) (mod l+ ) : (viii) 86, (viii) z c l+ ; c (l) 0 (mod ([ ::: l ] l+ )) : (ix) ([ ::: l ] l+ )=[( l+ ) ::: ( l l+ )] (x) ( 30 ) ). (ii), c (l) (iv) c l+ ; c (l) c l+ ; c i 0 (mod ( l+ i )) i l: (xi) 74

75 (ix) (x), (xi) 25. c (l+) (v), z (viii),, (vi) (vii). c (l), l k, (iv),. c = c (k) (i),., x 2 Z, (iii), (i)., x 2 Z (i), i j (x ; c) i k, x (iii). :, ::: k, (i) ::: k.. 2: 93 (i). 3: { a i x b i (mod i ), i k.,,.. (i) ( ), { x 2 (mod 0) 2x 6 (mod 8) 6x 20 (mod 28) : (i) : 59,, (i) 3x (mod 5) 2x (mod 3) 4x 5 (mod 7) x 2 (mod 5) x 2 (mod 3) x 3 (mod 7) : (ii) (ii) x =2+5y y 2 Z. 2+5y 2 (mod 3), y 0(mod3),.. y =3z z 2 Z. x =2+5z (ii), 2+5z 3 (mod 7), z (mod7). z =+7t t 2 Z, x =7+05t., (i) x 7 (mod 05). 75

76 95. ) 36x 68 (mod 308) 66x 84 (mod 390) ) 42x 66 (mod 90) 44x 20 (mod 84) ) 5x (mod 6) 7x 9 (mod 0) x 7 (mod 5) ) x 3 (mod 5) x 4 (mod 2) x 8 (mod 35) : 96. {, 2, 3, 4, 5, 6 7. : a 2 Z, x a (mod 2) x 2a (mod 5) x 3a (mod 20). 98., k 2 N x 0 y 0 2 N, (x 0 + h y 0 + l) > h l 2 N, h l k. : k 2. m i M j, i j k, i{, j{. x 0 2 N x ;i (mod m i ) i = 2 ::: k (, 93, m ::: m k ). y 0 2 N y ;j (mod M j ) j = 2 ::: k ( )., h l k p h l, h{ l{, p h l j (m h M l ), p h l j (x 0 + h y 0 + l),. 76

77 3 {. 99. p, 2 N f 2 Z[x]., f(x) 0 (mod p), f(x) p. :. = f(x) =a 0 x+a. x x 2 2 Z, x 6 x 2 (mod p) a 0 x i +a 0 (mod p), i = 2,, p j a 0 (x ; x 2 ) 44, p j a 0., p j a. >, k 2 N, k<. f(x) x i 2 Z, i + p f(x) 0 (mod p). f(x) =f(x + )+(x ; x + )h(x) (i) h(x) 2 Z[x] ;. p j f(x + ), i 0 f(x i )=f(x + )+(x i ; x + )h(x i ) (x i ; x + )h(x i ) (mod p) : 44 x i, p j h(x i ) i,,, h(x) p. (i), f(x). : 99, f(x) p, f(x) 0(modp) f(x). {, ,? :., x 2 (mod8) 4. 77

78 20. p>2 f(x) =(x ; )(x ; 2) :::(x ; (p ; )) ; x p; +:, f(x) p. : 75, 2 ::: p; f(x) 0(modp). f(x) p ; 2, , p, (p ; )! ; (mod p). : p =2, p>2 20,,, (p ; )! +. : , (m ; )! 6 ; (mod m), m 2 N. : k j m <k<m, k j (m ; )!, k - (m ; )!+. : ,, (m ; )! m P, p>3, p; (p;)! k= 0(modp 2 ). k : f(x), 20, f(x) =c 0 x p;2 + c x p;3 + + c p;4 x 2 + c p;3 x + c p;2 : (i), c p;3 = ; P p; (p;)! k= k f(x), c p;2 =(p ; )! +. f(p) =(p ; )! ; p p; +=c p;2 ; p p; c p;2 (mod p 3 ) : (ii) 78

79 , (i) f(p) c p;4 p 2 + c p;3 p + c p;2 (mod p 3 ) : (iii) (ii) (iii), c p;4 p 2 + c p;3 p 0 (mod p 3 ) 59, c p;4 p + c p;3 0(modp 2 ). 20 p j c p;4. c p;3 0(modp 2 ),. : p f 2 Z[x]., r 2 Z[x] { p, f(x) 0(modp) r(x) 0(modp). : x 2 +6x 9 ; x (mod7) { p, l 2 N, l 2 M... (mod p l ). f 2 Z[x] x 0 2 Z f(x) 0 (mod p l; ). : ) f 0 (x 0 ) 6 0 (mod p), y 2M, f(y) 0 (mod p l ) y x 0 (mod p l; ) : (i) ) f 0 (x 0 ) 0(modp) f(x 0 ) 6 0 (mod p l ), y 2M, (i). ) f 0 (x 0 ) 0(modp) f(x 0 ) 0(modp l ), p y 2M, (i). : f(x + h) =f(x)+ f0 (x)! h + f00 (x) 2! h f () (x) h :! 82, k! f (k) (x) 2 Z[x] k 2 N. (ii) x = x 0, h = tp l;, t 2 Z. f(x 0 )=mp l; 79 (ii)

80 m 2 Z., 2(l ; ) l, f(x 0 + tp l; ) (m + f 0 (x 0 ) t) p l; (mod p l ) : (iii) ). p - f 0 (x 0 ), 86, t 0 2 Z, m + f 0 (x 0 ) t 0 0(modp). y 0 2M, y 0 x 0 + t 0 p l; (mod p), (i)., y 2M (i), y = x 0 + tp l;, t 2 Z. (i), (iii) 59, m + f 0 (x 0 ) t 0(modp) 86 t t 0 (mod p). 34 y = y 0, ). ). y 2M, (i), y = x 0 + tp l; t 2 Z, (iii). ). t 2 Z y = x 0 +tp l; (i). 68. : p l, p. p ( ).,, p 2 p 3 ::: p l f(x) =x 4 ;4x 3 ;8x 2 ;9x;4. f(x) 0 (mod 25). :, f(x) 0(mod5) x 2 (mod 5) x 3(mod5). f 0 (x) =4x 3 ; 2x 2 ; 6x ; 9, f 0 (2) 3(mod5) f 0 (3) 3(mod5). 207,., x 2 (mod 5). x =2+5t t 2 Z., 207, f(2) + 5f 0 (2)t 0 (mod 25), 5+5t 0 (mod 25). +3t 0(mod5), t 3(mod5). x 7 (mod 25). 80

81 , x 3(mod5). x = 3+5t, t 2 Z, f(3)+5f 0 (3)t 0(mod25), t 0 (mod 25), 4+3t 0(mod5), t 2(mod5). x 3 (mod 25) f(x) 0 (mod 49) f(x) = x 5 + x ; 5. :, f(x) 0(mod7) x 3(mod7) x 5 (mod 7). 7 j f 0 (3) 49 - f(3), 207 x 3(mod7). {, 7 - f 0 (5),, 208,, x 47 (mod 49). 20. ) x 4 +67x ; 29 0 (mod 2) ) x 2 ; 54x (mod 69) ) x 3 ; 3x 2 + x +2 0 (mod 25). : ) f(x) =x 4 +67x ; 29 f 0 (x) =4x f(x) 0 (mod ) x (mod )., x 2 (mod )., j f 0 (2) 2 j f(2). 207 ),, x 2+t (mod 2), t =0 2 ::: 0. {, - f 0 (3). 207 ),, x 3 (mod ), x 4 (mod 2)., - f 0 (4), x 4 (mod ), x 92 (mod 2)., f(x) 0 (mod 2) x (mod 2) : ) x 23 3 (mod 69). ) x 2 (mod 25). 8

82 2. f(x) 0 (mod m) (i) f 2 Z[x] m 2 N. : m m = p l :::p ls s. 6, (i) f(x) 0 (mod p l i i ) i s: (ii), 207. (ii), (i). (ii) i{ x c () i c (2) i ::: c ( i) i (mod p l i i ) : j ::: j s 2 N, j ::: j s s (iii) x c (j i) i (mod p l i i ) i s:, 93, (i). j ::: j s, (iii), (i). 22. ) x 3 ; 6x 2 +9x ; 5 0 (mod 360) ) x 4 +7x 3 +4x 2 +3x +2 0 (mod 2520) ) x 2 ; 80x +3 0 (mod 7920). : ) 360 = , f(x) 0 (mod 2 3 ) f(x) 0 (mod 3 2 ) f(x) 0 (mod 5) 82

83 f(x) =x 3 ;6x 2 +9x;5. 207, 93, 48, x a +30b (mod 360), a = 3 7 b =0 2 :::. ) 2520 = , 5. ) 32, x a b (mod 7920), a 83, 457, 73, 073, 307, 483, 667, 843, 2297, 2473, 2657, 2833, 3067, 3427, 3672, 3683, b x 2 R,, e(x) =e 2ix. P a<kb e; f(k), a b 2 R, a<b f(x),. 23., ) x 2 Z e(x) =. ) x 2 R je(x)j =. ) x y 2 R e(x + y) =e(x) e(y). ) 2 N ; x e x. 24., a<kb e ; f(k) [b] ; [a] : : 23 ). : 24. f(k), a<k b, [0 ) ( ),, e(f(k)) 83

84 " \. { [b] ; [a], m 2 N 2 R Z., m ; e k = e(m) ; e() ; e() : k= :. :, 25, 26 27,.,, { 25,.,,, 40.,. 26. a m 2 N., m k= ak e = m ( m m j a 0 m - a: : 23 ) m 2 N 2 R Z., m ; e k mi m k= 2jjjj jjjj {. 84

85 : 25 e(m) ; e() ; j si j = si(jjjj) 2jjjj : : 27 2 Z, ; mi m 2jjjj = m. 40. c( a) 2 N a 2 Z c( a) = k (k )= ak e : 28.,, k... (mod ). : 23 ). 29., 2 N, a b 2 Z ( b) =, c( a) =c( ab). : , 2 N, a 2 Z ( a) =, c( a) =(). : 29, a =. 25, c( ) = k (k )= e k = k e k dj(k ) (d) :, 26 k c( ) = (d) e = (d) e l = () : dj dj d k k0 (mod d) 85 l d

86 22., a. : 2 2 N ( 2 )= a(k 2 + k 2 ) c( 2 a)= k (k 2 )= = k (k )= ak e = 2 k e ak k 2 2 (k 2 2 )= k 2 2 (k )= (k 2 2 )= e ak2 2 e 2 = c( a) c( 2 a) : 222. p, l 2 N, a 2 Z, a 6= 0 ord p a =., c(p l a)= 8 >< >: p l ; p l; l ;p l; l = + 0 l +2: : 29,, a = p. l, l>,, c(p l p )=p c(p l; ) , 2 N a 2 Z c( a) = '() : (i) ' ( a) ( a) : a =0. a 6= 0. (i) h( a). c( a) h( a) 20, 99, 0, , c(p l a)=h(p l a), p l 2 N. {, ord p a =., c(p l p )=h(p l p ),, =

87 4. l 2 N a 2 Z.. S l ( a) S l ( a) ak l ak l S l ( a) = k e S l ( a) = k (k )= : l =. 26,,,.. l 2 {. 2: ak l f(k), f 2 Z[x], {,.. f(x),. 224.,., k... (mod )... (mod ). 225., l 2 2 N, a a 2 2 Z ( 2 )=, ) S l ( 2 a 2 + a 2 )=S l ( a ) S l ( 2 a 2 ). ) S l ( 2 a 2 + a 2 )=S l ( a ) S l ( 2 a 2 ). : ). k k 2 2 Z, (a 2 + a 2 )(k 2 + k 2 ) l (a 2 + a 2 )(k l l 2 + k2 l l ) a l+ 2 k l + a 2 l+ k l 2 (mod 2 ) : 4, 65, 66, 23, 224 e : 87

88 ,, S l ( 2 a 2 + a 2 )= e k k 2 2 = e k k 2 2 = k e a ( 2 k ) l = S l ( a ) S l ( 2 a 2 ) : (a 2 + a 2 )(k 2 + k 2 ) l 2 a l+ 2 k l + a 2 l+ k l 2 = 2 a2 ( k 2 ) l k 2 2 e 2 = = ) N, a 2 Z (a ) =., S = P k e; ak 2 jsj ( p 2 - p 2 2 j : : jsj 2 = S S ( S S). a(k 2 ; k2) 2 jsj 2 = k e ak 2 k 2 e ;ak 2 2 = e k k 2 k ; k 2 h (mod ) h 2 N,, : k 2 ; k 2 2 h(h +2k 2 ) h 2 +2hk 2 (mod ), 23, a(k 2 e ; k 2) 2 ah 2 = e e 2ahk2, h k 2 k,, k, k k 2 + h (mod ). : 88

89 26 jsj 2 = h k k 2 k 2 ;k h (mod ) = = h ah 2 e h 2ah0 (mod ) k 2 ah 2 e e 2ahk2 ah 2 e : 2ahk2 e (a ) =,, 2 j, 2 -. jsj 2. ( j : 226..,,,. {,. 2: 226 a =, k k 2 e = +i; +i ; p = 8 >< >: = = ( + i) p 0 (mod 4) p (mod 4) 0 2 (mod 4) i p 3 (mod 4) : N. k 2 Z, (k ) =, (k) 2 N k(k) (mod ), (k). 89

90 :, k (k)., k, k = (k) , k.. (mod ), (k).. (mod ). 229., 2 N, k 2 Z (k ) =, (;k) ;k (mod ) N k k 2 2 Z ( k k 2 )=., k k 2 (mod ), k = k N k k 2 2 Z ( k k 2 )=., (k k 2 ) k k 2 (mod ) N k k 2 2 Z,, ( k )=( 2 k 2 )=( 2 )=: (k 2 + k 2 ) 2 (k 2 2) 2 + (k 2 2 ) 2 (mod 2 ) : :, (k 2 + k 2 2 )=(k 2 2 )=(k )=. 42, (k 2 + k 2 ) ; (k 2 2) 2 + (k 2 2 ) 2 (mod 2 ), 6,, 2., 42, (k 2 + k 2 ) ; (k 2 2) 2 + (k 2 2 ) 2 (k 2 2) (k 2 2) (mod ) : 2,. 90

91 43. 2 N a b 2 Z. ak + bk K( a b) = k ( k)= : k (k). 2:. {, c( a) =K( a 0). 3:.,,., ( ab) =, " 2 R, ">0 C(") > 0, jk( a b)j C(") +" ,, k... (mod ). e : : 23 ) , 2 N a b 2 Z K( a b). : 72, ,. 235., 2 N a b 2 Z, K( a b) =K( b a) : : , 2 N, a b l 2 Z (l ) =, K( a bl)=k( al b) : 9

92 : 72, N, ( 2 ) = a a 2 2 Z. K( 2 a a 2 2 ) = K( a ) K( 2 a 2 ) : : K( 2 a 2 + a ) = = k k 2 2 (k )= (k 2 2 )= e (a a 2 2 )(k 2 + k 2 )+(k 2 + k 2 ) 2 2 (a a 2 2 )(k 2 + k 2 ) k a k 2 a 2 3 (mod 2 ) , K( 2 a a 2 2 ) = = k k 2 2 (k )= (k 2 2 )= e a k (k 2 2 ) a2 k e (k 2 2) 2 : ,, K( i a i ), i = 2,. : x 2 R, x>0, (x) = px (x) = px l p (x) = kx (k) (x) (x), x, (x) (k). 92

93 : (x) (x). : () = ( 7) = (0 96) = 0, (3) = 2, (7 2) = 4, (6 3) = l 2 + l 3 + l 5, (0)=l2+l3+l2+l5+l7+l2+l x 2 R, x. Q P = p p p, x x 4 P =, x 2 [ 4). (x) =( p x) ; + djp (d) h x di : :, x 2 [ 4). x 4. S 2 N, x, ( P ) = , S = (d) = x dj( P ) djp (d) x 0 (mod d) = djp h x (d) : di, 40, 2 N, x, P, ( p x x], =. S = (x) ; ( p x)+,. : (x) 238. x,, P x. 2: 238,,. 20{ {,.. c > 0, c 0 > 0, x 2, x x c x l x (x) c0 93 x l x :

94 : c c 0,. { c c 0.., (x) c c 0,, (x) lim x! x =: (i) l x 896. {., (x) { R x dt x,. 2 l t l x {, (x) = Z x 2 dt l t +(x) (x) (x) =O ; xe ;c p l x c>0., lim x! R x dt 2 l t x l x = (ii) (iii) (ii) (iii) (i). { (x),, (x) =O xe ;c (l x)3=5 (l l x) ;=5 (iv) c>0., (x) =O ;p x l 2 x { (iii) (iv). 94

95 239., : c 2 > 0 c 0 2 > 0 x 2 2, x x 2 c 2 x (x) c 0 2x: : (x) (x) (x)lx: p x<px l p ; (x) ; ( p x) l p x = 2 (x)lx + O(p x l x) :. 240., 2 N, 2 Y p p 4 : :. =2 3, m 2 N, 2 m<.,, Y p p = Y p; p 4 ; < 4 :, =2m +. 2m + (2m + )(2m)(2m ; ) :::(m +2) M = = : m m!, 2 2m+ =(+) 2m+ 2M, M 4 m. {, N = Y m+<p2m+ 95 p:

96 N j (2m +)(2m)(2m ; ) :::(m +2) (N m!) =, 9 N j M. N M 4 m :, Y Y p = N p 4 m 4 m+ 4 2m+ p2m+ pm+. 24., x 2 R, x (x) x l 4 : : , x 2 R, x (x) =(x)+( p x)+( 3p x)+::: log 2 x. : 23. {, k 2 N ( kp x) 6= 0, kp x 2, k log 2 x. 243., x 2 R, x 2 (x) =(x)+o( p x) : : (x) ; (x) =( p x)+( 3p x)+::: : 24 O( p x). log 2 x O( 3p x). 96

97 244., : c 3 > 0 c 0 3 > 0 x 3 2, x x 3 c 3 x (x) c 0 3x: : , x 2 R, x 2 (x) =O(x) : : , x 2 R, x 2 (k) =lx + O() : k kx : 25, h x x l x + O(x) = (k) ki = (k) kx kx = x kx = x kx (k) k (k) k + O( (x)) = + O(x) : x. x k ; xo 247., x 2 R, x 2 px l p p : kx (k) k =lx + O() : = px 97 l p p +(x) k =

98 (x) = k2 p p k x = px l p p k px l p p(p ; ) p 2 + p 3 + ::: k=2 l k k(k ; ) : l p =, (x) =O() , x 2 R, x 2 c. px : f(t) = (l t) ; c = p =llx + c + O l x ( ; l P pqx ( p q, pq x). : pq ; pqx pq =2 p p x q x p 248. p q p x pq 250., x 2 R, x 2 Y px c>0. ; = c +O p l x l x 98 pq

99 :, 248. :, c e ;,. 25., c>0, x 2 R, x 2 (x) cx: (i) : c 0 > 0, O() 247, pt l p p ; l t c0 t 2 : (ii) 2 R, 0 <<, l > 3c 0 : (iii) x 2 R, x 2 ; S = x<px (ii), S ; l l p p : 2c 0 (iii), S c 0. c 0 S x x<px l p (x) x : x 2 ; (x) c 0 x. (x) c = mi 2x2; c = mi(c x 0 c ). c>0 (i) x 2. 99

100 252.. : 239, : 25, (x),., N, 2 d =[ 2 3 ::: ]. d () : : p, p p =ord p (d ). 52, m 2 N, m, p = ord p m. p p m, d = Y p p p Y p = () : 254., 2 N, 6 d 253, d 2 ;2 : : m 2 N, m I m = = = I m = Z 0 ;m k=0 ;m k=0 Z 0 ;m x m; k=0 ; m k ; m k x m; ( ; x) ;m dx : ; m k (;) k Z (;) k x k dx = 0 (;) k m + k : x m+k; dx = 00

101 { d,, I m = a d a 2 Z: (i) {, J (y) = = = J (y) = Z ; 0 ; k=0 ; k=0 Z 0 ( ; x + xy) ; dx : ; (xy) k ( ; x) ;;k dx = k k=0 ; k ; k Z y k x k ( ; x) ;;k dx = 0 I k+ y k :, u =+(y ; )x, y 6= J (y) = y ; Z y u ; du = y ; y ; = ; y J (y) k=0 y k : I m = ; m ; = m m m 2 N m : (ii) (i) (ii), m 2 N, m d m m : (iii) 0

102 m =[=2]. ( +) [=2] k=0 m k 2 [=2] + : {, =2 (iii) m =[=2] d [=2] [=2] 2 ; 2 + 2;2 : 255., c>0 x 0 2, x x 0 (x) c x l x : : 2 N, 6, , () l d l l 2;2 l = ( ; 2) l 2 l l 2 2 l :, x 2 R, x 6 (x) =([x]) l 2 2 [x] l[x] l 2 x ; 2 l x l 2 4 x l x : 256. p {., c>0, c 0 > 0 0, cl p c 0 l 0 : :, p. (x),, = (p ) c 0 p l p c 0 02 p l

103 , (c 0 ) ; l p : {, (x) lim! p =,, p = (p ) c p p : l p p 2, p = (p ) c c p l p 2 l : p 2c ; l. 257., c>0, 2 N '() c l l(0) : :, >. = q l q l 2 :::qs ls, l i 2 N q <q 2 < <q s., q q 2 :::q s 2 s, s = O ; l(0) : p <p 2 < <p s s, p i q i i = 2 ::: s. 30 sy '() = ; ; sy ; ; Y ; = : q i p i i= i= pp s ; p 250, 256 (i), '() = O(l p s)=o(l s) =O(l l(0)). 258., c>0, 2 N () c l l(0) : : (i)

104 6 259., x 2 R, x 2 '() = cx + O(l x) c = (2) ;. x : 5 77, 26, x '() = x = dx js 2 j P dx dj (d) d = dj (d) h x = d di dx (d) d (d) d x 0 (mod d) x d ; x d o = (d) (d) x S d 2 2 = : d do dx S = dx 9, d S 2 = O(l x) : {, 50,, js 0 j P d>x d 2 S = (2) ; ; S 0 S 0 = (d) : d 2 d>x 95 ) S 0 = O x = xs ; S 2 (i) (ii) (iii) : (iv) (i) {(iv). : 49,, ;2. 04

105 260., x 2 R, x 2 '() =cx 2 + O(x l x) c = 2 (2);. x : 259, 90 c = '() f(t) =t. 26., x 2 R, x 2 x '() = cx + O(x" ) P c = 2 (k) k= " 2 R, ">0, k'(k) O ". : 77 32, x '() = x = dx dj S = dx 2 (d) '(d) 2 (d) '(d) = 2 (d) '(d) dx h x di = x d ; xo = xs + O(S 2 ) (i) d 2 (d) d'(d) 95 ) 257, S 2 = O dx S 2 = dx '(d) : S. = O(x " ) : (ii) d ;" S = c + O ; S 3 (iii) 05

106 P S 3 = d>x c d'(d) (,,, 257). 95 ) 257, S 3 = O d>x (i) {(iv). = O(x ;+" ) : (iv) d 2;" 262., x 2 R, x 2 '() = c l x + c0 + O ; x ;+" x c c 0 2 R (c 26), " 2 R, ">0, O ". : x 2 R, x 2. ), () =L(x) x L(x) 73. ) x : () =x l x +(2 ; )x + O ;p x : L(x) = = = kmx x km= x () ). )

107 264., x 2 R, x 2 x () = 2 l2 x +2l x + c + O ; x ; 2 c. : ). 265., l 2 N c l > 0, x 2 R, x 2 x () l c l (l x) 2l : : l = 264., l 2 N c l , () l+ () l = () = () l (km) l = km x x x km= kmx kx mx (k) l (m) l km = kx (k) l k 2 c l2 (l x) 2l , l 2 N c l > 0, x 2 R, x 2 x () l c l x (l x) 2l ; : 07

108 : l = 263., l 2 N , () l = x () l+ = x () l () = x kmx (k) l (m) l kx km= (k) l m 2x k kmx (m) l : (km) l, , x 2 R, x 2 () =cx 2 + O(x l x) c = 2 (2). x :, 2 N d,. d () = d = d = k: x x dx dx dj x 0 (mod d) P k = (+) k= 2 [x] x () = 2 = x2 2 dx dx h x d ih x + = di 2 d 2 + O x dx : d dx x 2 k x d d 2 + O x d O(x l x) 9. {, 95 ) 32, dx. d = (2) + O 2 x 08 =

109 268. x k () (k ; )! x (l x + k ; )k; : : k. 269.!() 24., x 2 R, x 0 x!() =x l l x + cx + O x l x c 248. : 77, 248,!() = = = x x px = px pj h x pi = px x 0 (mod p) x p ; xo = x l l x + cx + O x l x p : = x px p + O((x)) = 45., 2 N k{,, k. x 2 R, x. N(x k) 2 N, k{ x. : , k 2 N, k 2 N(x k) =c k x + O ; x k c k = (k) ;. 09

110 : 25 77, h x i N(x k) = (d) = (d) = (d) d k x d k j d kp x x 0 (mod d k ) d kp x. :,.,, M(x) = x () :, x 2 R, x jm(x)j x., M(x) (x).,, lim x! M (x) x =0., M(x) =O ; x 2 +", ">0. 0

111 [].,.,, " \,, 987. [2]..,..,, " \,, 985. [3]..,, " \,, 98. [4].,.,, " \,, 976. [5].,.,.,, " \,, 975. [6]..,.,..,, ". \,, 984. [7].,.,.,, " \,, 99. [8].,.,, " 6\,, 999. [9] \America Mathematical Mothly" " \,, 977. [0]..,, " \,, 983. []., p{, p{ { -, " \,, 98. [2].,, " \,, 97. [3].,,.. ". \,, [4].,., I," \,, 973.

112 [5].,., II," \,, 974. [6]..,, " \,, 97. [7].,, " \,, 967. [8].,, " \,, 996. [9].,, " \,, 966. [20]..,..,, " \,, 978. [2].,,, 959. [22].,, " \,, 974. [23]..,..,..,, " \,, 976. [24] T. M. Apostol, Itroductio to aalytic umber theory, Spriger, 976. [25] M. Aiger, G, Ziegler, Proofs from the Book, Sec. ed., Spriger, [26] G. H. Hardy, E. M. Wright, A itroductio to the theory of umbers, Fifth. ed., Oxford Uiv. Press, 979. [27] G. Teebaum, Itroductio to Aalytic ad Probabilistic Number Theory, Cambridge Uiversity Press,

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story... Dv G W C T Gp, A T Af Hk T 39 Sp. M Mx Hk p j p v, f M P v...(!) Af Hk T 39 Sp, B,,, UNMISSABLE! T - f 4 p v 150 f-p f x v. Bf, k 4 p v 150. H k f f x? D,,,, v? W k, pf p f p? W f f f? W k k p? T p xp

More information

wi& be demonstrated. Ilexbert Arkro,

wi& be demonstrated. Ilexbert Arkro, 8( P C B E L B A k> D A 10 O N O k jk \ CH 12 B R Z G kxj7~53> P C C 20 A A P O P 3 x G H kv 7 B5! &$ L N M k APO HM M B / Bk K j R 3(330 C BH& B k C j 2jB A D C & Dk M L 12 H R > APO k L E k M k APO M

More information

TUCBOR. is feaiherinp hit nest. The day before Thanks, as to reflect great discredit upon that paper. Clocks and Jewelry repaired and warranted.

TUCBOR. is feaiherinp hit nest. The day before Thanks, as to reflect great discredit upon that paper. Clocks and Jewelry repaired and warranted. W B J G Bk 85 X W G WY B 7 B 4 & B k F G? * Bk P j?) G j B k k 4 P & B J B PB Y B * k W Y) WY G G B B Wk J W P W k k J J P -B- W J W J W J k G j F W Wk P j W 8 B Bk B J B P k F BP - W F j $ W & B P & P

More information

`G 12 */" T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S.

`G 12 */ T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S. 01(( +,-. ()*) $%&' "#! : : % $& - "#$ :, (!" -&. #0 12 + 34 2567 () *+ '!" #$%& ; 2 "1? + @)&2 A5&2 () 25& 89:2 *2 72, B97I J$K

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include PUTNAM TRAINING POLYNOMIALS (Last updated: December 11, 2017) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Whitney Grummon. She kick started a fire in my soul Teaching me a tool to cleanse my mind That ll last a life time. That s how I will remember

Whitney Grummon. She kick started a fire in my soul Teaching me a tool to cleanse my mind That ll last a life time. That s how I will remember W Gmm S kk f m T m m m T f m T I mmb N m p f p f f G L A f b k, b k v M k b p:, bb m, m f m, v. A b m, f mm mm f v b G p. S m m z pp pv pm f, k mk, f v M. I m, I m, fm k p x. S f 45 m m CMS, I p mf,. B

More information

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C! 393/09/0 393//07 :,F! ::!n> b]( a.q 5 O +D5 S ١ ; ;* :'!3Qi C+0;$ < "P 4 ; M V! M V! ; a 4 / ;0$ f;g,7k ;! / C+!< 8R+^ ;0$ Z\ \ K S;4 "* < 8c0 5 *

More information

Prayer. Volume III, Issue 17 January 11, Martin Luther King Jr. Prayer. Assumption Catholic School 1

Prayer. Volume III, Issue 17 January 11, Martin Luther King Jr. Prayer. Assumption Catholic School 1 Vm III, I 17 J 11, 2017 TROJAN NEW W Rpb Cz, E Cmm, L L L, d A Ch wh bd mm d mk p. P M Lh K J. P Gd h h h Am d A h wd, W w h h hh w; w whh M w h bh. A w whh h h wd w B h wd pwh, Ad h p p hk. A w whh m

More information

GUIDE. mirfieldshow.com. Sponsored by. Orange Design Studio.

GUIDE. mirfieldshow.com. Sponsored by. Orange Design Studio. GUIDE mfhw.m Sp b O D S. Fh F m F C 1 3 5 7 9 b f M MIRFIELD COAT OF ARMS Th m w ff Fb 26, 1935. Th m f h mp f h w m h m. Th p S Jh H, wh pp h Pp h 13h h b f h ph hh. Hv W H Wh h? O, h wm mh, hp h f h.

More information

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1...

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1... 764 Octogon Mathematical Magazine, Vol. 24, No.2, October 206 Open questions OQ4867. Let ABC be a triangle and AA BB CC = {M} where A BC, B CA, C AB. Determine all points M for which 4 s 2 3r 2 2Rr AA

More information

ATLANTA, GEORGIA, DECEMBER 12, No. 13. D r. M. L. B r i t t a i n T e l l s S t u d e n t s C o n t r a c t I s B r o k e n

ATLANTA, GEORGIA, DECEMBER 12, No. 13. D r. M. L. B r i t t a i n T e l l s S t u d e n t s C o n t r a c t I s B r o k e n Z-V. XX,, D 141.. 13 ' ' b v k ; D... k x 1 1 7 v f b k f f ' b,, b J 7 11:30 D... D. b " vv f, bv." x v..., bk, b v ff., b b Jk,., f ' v v z. b f. f f b v 123. k,., - f x 123. ' b 140-41, f " f" b - 141-42

More information

55 Separable Extensions

55 Separable Extensions 55 Separable Extensions In 54, we established the foundations of Galois theory, but we have no handy criterion for determining whether a given field extension is Galois or not. Even in the quite simple

More information

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS MATHEMATICS OF COMPUTATION Volume 67, Number 223, July 1998, Pages 1207 1224 S 0025-5718(98)00961-2 THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS C. CHARNES AND U. DEMPWOLFF Abstract.

More information

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3 - - - - ff ff - - - - - - B B BB f f f f f f f 6 96 f f f f f f f 6 f LF LZ f 6 MM f 9 P D RR DD M6 M6 M6 M. M. M. M. M. SL. E 6 6 9 ZB Z EE RC/ RC/ RC/ RC/ RC/ ZM 6 F FP 6 K KK M. M. M. M. M M M M f f

More information

1 FUNCTIONS _ 5 _ 1.0 RELATIONS

1 FUNCTIONS _ 5 _ 1.0 RELATIONS 1 FUNCTIONS 1.0 RELATIONS Notes : (i) Four types of relations : one-to-one many-to-one one-to-many many-to-many. (ii) Three ways to represent relations : arrowed diagram set of ordered pairs graph. (iii)

More information

Solution: f( 1) = 3 1)

Solution: f( 1) = 3 1) Gateway Questions How to Evaluate Functions at a Value Using the Rules Identify the independent variable in the rule of function. Replace the independent variable with big parenthesis. Plug in the input

More information

Worksheet A VECTORS 1 G H I D E F A B C

Worksheet A VECTORS 1 G H I D E F A B C Worksheet A G H I D E F A B C The diagram shows three sets of equally-spaced parallel lines. Given that AC = p that AD = q, express the following vectors in terms of p q. a CA b AG c AB d DF e HE f AF

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

ers The Extraordinary Boogie and Swing Festival MUNICH GERMANY 9

ers The Extraordinary Boogie and Swing Festival MUNICH GERMANY 9 W!!! C, E p, C J 95 RT H v D L T BI 10 N P f B 70 5 z V D AY b T Ex B Fv 28.02. - 04.03. MUNICH 1 GERMANY 9 R O C KT H AT W I N G. C O M WING ENT F O LD DLY PRE R WO PROU 14 5 DAY HT G I N UIC M E LIV

More information

PRISON POLICY INITIATIVE ANNUAL REPORT

PRISON POLICY INITIATIVE ANNUAL REPORT PRISON POLICY INITIATIVE 2015-2016 2016-2017 ANNUAL REPORT N 2016 2017 PO Bx 127 N MA 01061 :// (413) 527-0845 1 T Ex D 1 W 3 P k 4 C R - 7 S j 8 B j 10 P x 12 P j 14 P 16 Wk 18 C x 19 Y P Nk S R 15 B

More information

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a TE Linear Algebra and Numerical Methods Tutorial Set : Two Hours. (a) Show that the product AA T is a symmetric matrix. (b) Show that any square matrix A can be written as the sum of a symmetric matrix

More information

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22.

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22. 61 Matrices Definition: A Matrix A is a rectangular array of the form A 11 A 12 A 1n A 21 A 22 A 2n A m1 A m2 A mn The size of A is m n, where m is the number of rows and n is the number of columns The

More information

CCE PR Revised & Un-Revised

CCE PR Revised & Un-Revised D CCE PR Revised & Un-Revised 560 00 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE 560 00 08 S.S.L.C. EXAMINATION, JUNE, 08 :. 06. 08 ] MODEL ANSWERS : 8-K Date :. 06. 08 ] CODE

More information

WEAR A COLLAR RAISE A DOLLAR THIS

WEAR A COLLAR RAISE A DOLLAR THIS WEAR A COLLAR RAISE A DOLLAR THIS f Ac D A Wc Thk f k f Db. Db h f h f Ac D A b h Ocb., h W h f, b D. c h A D c f A Ab Ac D A T Rx A Ib T Ac D A Lb G R h h hc b. O, f h k, k k h b ffc, f b, f hch k k ch

More information

STRAIGHT LINES EXERCISE - 3

STRAIGHT LINES EXERCISE - 3 STRAIGHT LINES EXERCISE - 3 Q. D C (3,4) E A(, ) Mid point of A, C is B 3 E, Point D rotation of point C(3, 4) by angle 90 o about E. 3 o 3 3 i4 cis90 i 5i 3 i i 5 i 5 D, point E mid point of B & D. So

More information

and ALTO SOLO C H, Rnnciman. Woman's Mistake f*" M>rqut4te\ ol ting about wilh a crutch 00 ac- Gr,,,,d Ri ''*' d5 L o,

and ALTO SOLO C H, Rnnciman. Woman's Mistake f* M>rqut4te\ ol ting about wilh a crutch 00 ac- Gr,,,,d Ri ''*' d5 L o, BU AK A k A AD DA AB U XXX HA HUDAY U 3 92 3 > k z j - - Y Bk 73( 3 - Q H 2 H 9 k B 3 Bk 29 K 7 k 2 B k k k k Y Y D k Y A Uk x 22 B B x k - B B B 22 A B A 27 -- Ak A - - j B B D B Q A- U A-AK B k AD A

More information

MULTIPLE PRODUCTS OBJECTIVES. If a i j,b j k,c i k, = + = + = + then a. ( b c) ) 8 ) 6 3) 4 5). If a = 3i j+ k and b 3i j k = = +, then a. ( a b) = ) 0 ) 3) 3 4) not defined { } 3. The scalar a. ( b c)

More information

FULL PRESCRIBING INFORMATION

FULL PRESCRIBING INFORMATION HIGHLIGHTS OF PRESCRIBING INFORMATION T gg f G f ffv S f pbg f f G G (p p j) INJECTION, GEL f INTRAMUSCULAR SUBCUTANEOUS I US Appv: 192 ---------------------------------------INDICATIONS AND USAGE ---------------------------------------

More information

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a)

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a) Chapter 6 Chapter 6 opener A. B. C. D. 6 E. 5 F. 8 G. H. I. J.. 7. 8 5. 6 6. 7. y 8. n 9. w z. 5cd.. xy z 5r s t. (x y). (a b) 5. (a) (x y) = x (y) = x 6y x 6y = x (y) = (x y) 6. (a) a (5 a+ b) = a (5

More information

Junior Soldiers Unit 13 : Lesson 1

Junior Soldiers Unit 13 : Lesson 1 J S U 1 : L 1 R Bb PURPOSE: T v c pp xp pc f Bb f fm B Pc. Ev bf m, G v c C b f. Ep 1: NLT) C Pp R: Ep 1:-10 NLT) 1 C 8:6 CEV) Ep :-5 CEV) T Bb c b cf m, pc fc m p f. T v c B Pc m f Bb. W vc f G W, p v

More information

Matrix Differentiation

Matrix Differentiation Matrix Differentiation CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Matrix Differentiation

More information

CONCURRENT LINES- PROPERTIES RELATED TO A TRIANGLE THEOREM The medians of a triangle are concurrent. Proof: Let A(x 1, y 1 ), B(x, y ), C(x 3, y 3 ) be the vertices of the triangle A(x 1, y 1 ) F E B(x,

More information

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

Trade Patterns, Production networks, and Trade and employment in the Asia-US region Trade Patterns, Production networks, and Trade and employment in the Asia-U region atoshi Inomata Institute of Developing Economies ETRO Development of cross-national production linkages, 1985-2005 1985

More information

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths Topic 2 [312 marks] 1 The rectangle ABCD is inscribed in a circle Sides [AD] and [AB] have lengths [12 marks] 3 cm and (\9\) cm respectively E is a point on side [AB] such that AE is 3 cm Side [DE] is

More information

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations D. R. Wilkins Academic Year 1996-7 1 Number Systems and Matrix Algebra Integers The whole numbers 0, ±1, ±2, ±3, ±4,...

More information

Instruction manual of Susol & Metasol ACB

Instruction manual of Susol & Metasol ACB 0 I f S & M AB A. Sf P...... ~. Sf. W. D. W B. Sv........ ~6. N/S v. A I. S O.. 7~9. I. B f Bk D. R........ 0~. f S/ M S. f OR/ S. R E. W & D... 6~8. W. D F. Uk.......... 9~0. Rv. Uk. k G. H S. ~. H. S

More information

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1.

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1. (308 ) EXAMPLES. N 1. FIND the quotient and remainder when is divided by x 4. I. x 5 + 7x* + 3a; 3 + 17a 2 + 10* - 14 2. Expand (a + bx) n in powers of x, and then obtain the first derived function of

More information

50 Algebraic Extensions

50 Algebraic Extensions 50 Algebraic Extensions Let E/K be a field extension and let a E be algebraic over K. Then there is a nonzero polynomial f in K[x] such that f(a) = 0. Hence the subset A = {f K[x]: f(a) = 0} of K[x] does

More information

Remote Sensing Applications for the Historic Environment

Remote Sensing Applications for the Historic Environment m S App H Em L H Em m S 4 C B P m k m m. B m S App H Em L H Em m S 4 m C A Im H Em. B m m H Lp U S D m S C U P m k B m S App H Em L H Em m S 4 m A m A W k? A pp :. Tpp. Px. mk.. S S mk.. Cp S mk B m m

More information

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0 Q.No. The bisector of the acute angle between the lines x - 4y + 7 = 0 and x + 5y - = 0, is: Option x + y - 9 = 0 Option x + 77y - 0 = 0 Option x - y + 9 = 0 Correct Answer L : x - 4y + 7 = 0 L :-x- 5y

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

elegant Pavilions Rediscover The Perfect Destination

elegant Pavilions Rediscover The Perfect Destination Pv Rv T Pf D W... T O Lv! Rv p f f v. T f p, f f, j f f, bw f p f f w-v. T f bk pv. Pv w b f v, pv f. W, w w, w f, pp w w pv. W pp v w v. Tk f w v k w w j x v f. W v p f b f v j. S f f... Tk Y! 2 3 p Pv

More information

/ =0. (c) Section P.3 Functions and Their Graphs. (c) g(-2) = 5-(-2) 2 = 5-4 = 1. (e) g(x) = 0 for x = -I, 1 and 2. 2.

/ =0. (c) Section P.3 Functions and Their Graphs. (c) g(-2) = 5-(-2) 2 = 5-4 = 1. (e) g(x) = 0 for x = -I, 1 and 2. 2. Section P,3 Functions and Their Graphs 3 Section P.3 Functions and Their Graphs. (a) Domain off." -4 < x < 4 ~ [-4, 4] Range off:-3 < y < 5 ~ [-3, 5] Domain of g: -3 < x < 3 ~ [-3, 3] Range of g: -4

More information

Algebra I. Book 2. Powered by...

Algebra I. Book 2. Powered by... Algebra I Book 2 Powered by... ALGEBRA I Units 4-7 by The Algebra I Development Team ALGEBRA I UNIT 4 POWERS AND POLYNOMIALS......... 1 4.0 Review................ 2 4.1 Properties of Exponents..........

More information

PAIR OF LINES-SECOND DEGREE GENERAL EQUATION THEOREM If the equation then i) S ax + hxy + by + gx + fy + c represents a pair of straight lines abc + fgh af bg ch and (ii) h ab, g ac, f bc Proof: Let the

More information

Engg. Math. I. Unit-I. Differential Calculus

Engg. Math. I. Unit-I. Differential Calculus Dr. Satish Shukla 1 of 50 Engg. Math. I Unit-I Differential Calculus Syllabus: Limits of functions, continuous functions, uniform continuity, monotone and inverse functions. Differentiable functions, Rolle

More information

Transweb Educational Services Pvt. Ltd Tel:

Transweb Educational Services Pvt. Ltd     Tel: . An aeroplane flying at a constant speed, parallel to the horizontal ground, km above it, is observed at an elevation of 6º from a point on the ground. If, after five seconds, its elevation from the same

More information

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7 Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions /19/7 Question 1 Write the following as an integer: log 4 (9)+log (5) We have: log 4 (9)+log (5) = ( log 4 (9)) ( log (5)) = 5 ( log

More information

SOLVED SUBJECTIVE EXAMPLES

SOLVED SUBJECTIVE EXAMPLES Example 1 : SOLVED SUBJECTIVE EXAMPLES Find the locus of the points of intersection of the tangents to the circle x = r cos, y = r sin at points whose parametric angles differ by /3. All such points P

More information

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h 1 Sec 4.1 Limits, Informally When we calculated f (x), we first started with the difference quotient f(x + h) f(x) h and made h small. In other words, f (x) is the number f(x+h) f(x) approaches as h gets

More information

Odds find E n d s ENTRIES. and A L T O SOLO. iiik places for many species of liik JMtHSIDKVrS r ITCH I

Odds find E n d s ENTRIES. and A L T O SOLO. iiik places for many species of liik JMtHSIDKVrS r ITCH I LG Bx L G L L FY-F Y LLL G Y 593 JBL F GBB 3 P P P P P B P P P g J g -g ( J z x 000 P gg - F g L g g L YB J 933 g 95 Y LL g g g g- PY L FG LLL F LLX F q F PP06 BG P P P F g 000 g F L 93 PL - L g g G gg

More information

MDIV. Multiple divisor functions

MDIV. Multiple divisor functions MDIV. Multiple divisor fuctios The fuctios τ k For k, defie τ k ( to be the umber of (ordered factorisatios of ito k factors, i other words, the umber of ordered k-tuples (j, j 2,..., j k with j j 2...

More information

IUME Annual Report 1. Selected Announcements/Invitations Academic Year. iume.tc.columbia.edu

IUME Annual Report 1. Selected Announcements/Invitations Academic Year. iume.tc.columbia.edu UME A Rp 1 S Am/ 2012-2013 Am Y mmb ABLE OF CONENS SEPEMBER 2012 G R Pb V S (G Fy) 3 Um U Bk k 5 UME Cqm J J C Bk 6 Pmp E C 7 OCOBER 2012 Ly Pj P 9 UME C C: H Cm Bm WE W Bk D! 10 NOVEMBER 2012 G R Pb V

More information

! 94

! 94 ! 94 4 : - : : / : : : : ( :) : : : - : / : / : : - 4 : -4 : : : : : -5 () ( ) : -6 : - - : : : () : : : :4 : -7. : : -8. (. : ( : -9 : ( ( ( (5 (4 4 : -0! : ( : ( :. : (. (. (. (4. ( ( ( : ( 4 : - : :

More information

Early Years in Colorado

Early Years in Colorado Rp m H V I 6 p - Bb W M M M B L W M b w b B W C w m p w bm 7 Nw m m m p b p m w p E Y C W m D w w Em W m 7- A m m 7 w b m p V A Gw C M Am W P w C Am H m C q Dpm A m p w m m b W I w b-w C M B b m p W Nw

More information

b) The trend is for the average slope at x = 1 to decrease. The slope at x = 1 is 1.

b) The trend is for the average slope at x = 1 to decrease. The slope at x = 1 is 1. Chapters 1 to 8 Course Review Chapters 1 to 8 Course Review Question 1 Page 509 a) i) ii) [2(16) 12 + 4][2 3+ 4] 4 1 [2(2.25) 4.5+ 4][2 3+ 4] 1.51 = 21 3 = 7 = 1 0.5 = 2 [2(1.21) 3.3+ 4][2 3+ 4] iii) =

More information

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula.

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. Points of local extremum Let f : E R be a function defined on a set E R. Definition. We say that f attains a local maximum

More information

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and CHAPTER I Rings 1.1 Definitions and Examples Definition 1.1.1. A ring R is a set with two binary operations, addition + and multiplication satisfying the following conditions for all a, b, c in R : (i)

More information

Bertie3 Exercises. 1 Problem Set #3, PD Exercises

Bertie3 Exercises. 1 Problem Set #3, PD Exercises Bertie3 Exercises 1 Problem Set #3, PD Exercises 1. 1 ( x)qx P 2 ( x)w x P ( x)(qx W x) 2. 1 ( x)(ax (Bx Cx)) P 2 Bd P Ad 3. 1 ( x)jxx P 2 ( y) Ry P ( y)(jyy Ry) 4. 1 ( x)(lx (Mx Bx)) P 2 ( y)(my Jy) P

More information

WBJEE Answer Keys by Aakash Institute, Kolkata Centre

WBJEE Answer Keys by Aakash Institute, Kolkata Centre WBJEE - 08 Answer Keys by, Kolkata Centre MATHEMATICS Q.No. 0 A B C D 0 C D A B 0 B D A C 04 C B A B 05 C A C C 06 A C D C 07 B A C C 08 B *C,D C A 09 C D D B 0 D A C D B A B C C D A B B A A C 4 C C B

More information

Day 66 Bellringer. 1. Construct a perpendicular bisector to the given lines. Page 1

Day 66 Bellringer. 1. Construct a perpendicular bisector to the given lines. Page 1 Day 66 Bellringer 1. Construct a perpendicular bisector to the given lines. a) b) HighSchoolMathTeachers@2018 Page 1 Day 66 Bellringer c) d) HighSchoolMathTeachers@2018 Page 2 Day 66 Bellringer 2. Identify

More information

Note : This document might take a little longer time to print. more exam papers at : more exam papers at : more exam papers at : more exam papers at : more exam papers at : more exam papers at : more

More information

OVER 150 J-HOP To Q JCATS S(MJ) BY NOON TUESDAY CO-ED S LEAGUE HOLDS MEETING

OVER 150 J-HOP To Q JCATS S(MJ) BY NOON TUESDAY CO-ED S LEAGUE HOLDS MEETING F F V à y y > * y y y! F! * * F k y è 2 3 U D Y F B U Y 3 * 93 G U P B PU FF; JH H D V 50 JHP QJ (J) BY UDY P G y D; P U F P 0000 GUU VD PU F B U q F' yyy " D Py D x " By ; B x; x " P 93 ; Py y y F H j

More information

The Evolution of Outsourcing

The Evolution of Outsourcing Uvy f R I DCmm@URI S H Pj H Pm Uvy f R I 2009 T Ev f O M L. V Uvy f R I, V99@m.m Fw wk : ://mm../ P f B Cmm Rmm C V, M L., "T Ev f O" (2009). S H Pj. P 144. ://mm..//144://mm..//144 T A b y f f by H Pm

More information

Generalized*Gauge*Theories* in*arbitrary*dimensions

Generalized*Gauge*Theories* in*arbitrary*dimensions Generalized*Gauge*Theories* in*arbitrary*dimensions N.K. Watabiki gauge*field gauge*parameter derivative curvature gauge*trans. Chern;Simons Topological* Yang;Mills Yang;Mills = Quantization of Abelian

More information

Vr Vr

Vr Vr F rt l Pr nt t r : xt rn l ppl t n : Pr nt rv nd PD RDT V t : t t : p bl ( ll R lt: 00.00 L n : n L t pd t : 0 6 20 8 :06: 6 pt (p bl Vr.2 8.0 20 8.0. 6 TH N PD PPL T N N RL http : h b. x v t h. p V l

More information

VoL 7 No. 48 MAjgNE CORPS Am STATION. rerrwwy POINT. H. C 1919 Station Sgt. Major Wheels Watch Saves.Retires On 30 Years $260,000 In Nine Days

VoL 7 No. 48 MAjgNE CORPS Am STATION. rerrwwy POINT. H. C 1919 Station Sgt. Major Wheels Watch Saves.Retires On 30 Years $260,000 In Nine Days HE VL 7 N 48 MAjNE ORPS A SAION Y POIN H 99 S S Mj W W S R O 30 Y $260000 I N D LONG ABEEB SPIED WIH ADVENDHE AND RAVEL NEW SYSO HEAPS LARGE DIVIDENDS IN FIRS FEW OAS B B P O D H q S - M W j! M S W S R

More information

M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7; ;J zy U;K z< mj ]!.,,+7;

M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7; ;J zy U;K z< mj ]!.,,+7; V 3U. T, SK I 1393/08/21 :,F! 1393/10/29 ::!n> 2 1 /M + - /E+4q; Z R :'!3Qi M $,7 8$ 4,!AK 4 4/ * /;K "FA ƒf\,7 /;G2 @;J\ M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7;

More information

ISI B.STAT/B.MATH OBJECTIVE QUESTIONS & SOLUTIONS SET 1

ISI B.STAT/B.MATH OBJECTIVE QUESTIONS & SOLUTIONS SET 1 1 Blog: www.ctanujit.in Ph: +91-84053573 ISI B.STAT/B.MATH OBJECTIVE QUESTIONS & SOLUTIONS SET 1 1. How many zeros are at the end of 1000!? (a) 40 (b) 48 (c) 49 (d) None Ans:- (c) The number of two s is

More information

Algebraic Expressions

Algebraic Expressions Algebraic Expressions 1. Expressions are formed from variables and constants. 2. Terms are added to form expressions. Terms themselves are formed as product of factors. 3. Expressions that contain exactly

More information

MAC 1147 Final Exam Review

MAC 1147 Final Exam Review MAC 1147 Final Exam Review nstructions: The final exam will consist of 15 questions plu::; a bonus problem. Some questions will have multiple parts and others will not. Some questions will be multiple

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

RENEWABLE IDEA LESSON PLANS

RENEWABLE IDEA LESSON PLANS RENEWABLE IDEA LESSON PLANS LESSON PLANS ESSON PLANS CONTENT LESSON PLAN 1 Mv: W k b? W? P E N T 4 R T m vm. T, m. C 3R m. U 4 R, b, b, b. T b mk k m mm m. AIM T b b 4R. OBJECTIVES T k b b. T 3R b v b.

More information

2.0 REGIONAL DRILLING ACTIVITY AND PRODUCTION

2.0 REGIONAL DRILLING ACTIVITY AND PRODUCTION ( S ) 2. 0REGI ONALDRI LLI NGACTI VI TY ANDPRODUCTI ON Nm C: 2-d d/3-d d/5-h df Exmp: 37027_OC12 (P B C Op Smp 12) F h w h f m d wh h API mb. Th d API mb/pj ID h fwd b h d f h f d whh h d fd. F dd f fm

More information

RATIO AND PROPORTION, INDICES, LOGARITHMS

RATIO AND PROPORTION, INDICES, LOGARITHMS CHAPTER RATIO AND PROPORTION, INDICES, LOGARITHMS UNIT I: RATIO LEARNING OBJECTIVES After reading this unit a student will learn How to compute and compare two ratios; Effect of increase or decrease of

More information

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is

2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time is . If P(A) = x, P = 2x, P(A B) = 2, P ( A B) = 2 3, then the value of x is (A) 5 8 5 36 6 36 36 2. A die is rolled 3 times, the probability of getting a number larger than the previous number each time

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mathematics SKE, Strand J STRAND J: TRANSFORMATIONS, VECTORS and MATRICES J4 Matrices Text Contents * * * * Section J4. Matrices: Addition and Subtraction J4.2 Matrices: Multiplication J4.3 Inverse Matrices:

More information

A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = (

More information

Exam VI Section I Part A - No Calculators

Exam VI Section I Part A - No Calculators No Calculators SOLUTONS-Exam V Section Part A 81 Exam V Section Part A - No Calculators 1. A p.121 Using the product rule we obtain the first and second derivatives of y = xe x. X X Y = e + xe X X x y=e+e+xe

More information

Years. Marketing without a plan is like navigating a maze; the solution is unclear.

Years. Marketing without a plan is like navigating a maze; the solution is unclear. F Q 2018 E Mk l lk z; l l Mk El M C C 1995 O Y O S P R j lk q D C Dl Off P W H S P W Sl M Y Pl Cl El M Cl FIRST QUARTER 2018 E El M & D I C/O Jff P RGD S C D M Sl 57 G S Alx ON K0C 1A0 C Tl: 6134821159

More information

1.1 Exercises, Sample Solutions

1.1 Exercises, Sample Solutions DM, Chapter, Sample Solutions. Exercises, Sample Solutions 5. Equal vectors have the same magnitude and direction. a) Opposite sides of a parallelogram are parallel and equal in length. AD BC, DC AB b)

More information

Sticky News. Also our Facebook page is now live.

Sticky News. Also our Facebook page is now live. Sk Nw k j v #07 WINTER 2011 Fm Ow C W! W w bk w v b v m m b k w v m m Y w m m w v v m! T P C Sm B, T C, Gvv H K R w b v M C S A Fbk w v YI v v w m bk m b m w A H O w bk w w v w m m b m v qk w I w k ABC

More information

Solutions for Chapter 3

Solutions for Chapter 3 Solutions for Chapter Solutions for exercises in section 0 a X b x, y 6, and z 0 a Neither b Sew symmetric c Symmetric d Neither The zero matrix trivially satisfies all conditions, and it is the only possible

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

1. Matrices and Determinants

1. Matrices and Determinants Important Questions 1. Matrices and Determinants Ex.1.1 (2) x 3x y Find the values of x, y, z if 2x + z 3y w = 0 7 3 2a Ex 1.1 (3) 2x 3x y If 2x + z 3y w = 3 2 find x, y, z, w 4 7 Ex 1.1 (13) 3 7 3 2 Find

More information

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Name: ID: Circle your instructor and lecture below: Jankowski-001 Jankowski-006 Ramakrishnan-013 Read all of the following information

More information

SYSTEM OF CIRCLES If d is the distance between the centers of two intersecting circles with radii r 1, r 2 and θ is the

SYSTEM OF CIRCLES If d is the distance between the centers of two intersecting circles with radii r 1, r 2 and θ is the SYSTEM OF CIRCLES Theorem: If d is the distance between the centers of two intersecting circles with radii r 1, r 2 and θ is the 2 2 2 d r1 r2 angle between the circles then cos θ =. 2r r 1 2 Proof: Let

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Libra Malpass A W v e enue stern 4th Floor Legal and Map Collections Lo Legal unge A-DA Emergency Exit Eme rg ency Exit Illinois Collection and Eme

Libra Malpass A W v e enue stern 4th Floor Legal and Map Collections Lo Legal unge A-DA Emergency Exit Eme rg ency Exit Illinois Collection and Eme Malpass Library 4th Floor Western Avenue A-DA Legal Lounge Legal and Map Collections Illinois Collection and Federal Collection A-C 3 Government and Legal Reference Offices Federal Collection C 4-Y 4th

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

NVLAP Proficiency Test Round 14 Results. Rolf Bergman CORM 16 May 2016

NVLAP Proficiency Test Round 14 Results. Rolf Bergman CORM 16 May 2016 NVLAP Proficiency Test Round 14 Results Rolf Bergman CORM 16 May 2016 Outline PT 14 Structure Lamp Types Lab Participation Format for results PT 14 Analysis Average values of labs Average values of lamps

More information

semi-annual Activities Fair, aimed at extra-cwrricular activities which the School

semi-annual Activities Fair, aimed at extra-cwrricular activities which the School OL OOH * 5 E B E ** -- E B < Pk & Ck** H - P U M 3 Q C B P k ** C P** >& B C C $2 $6 94 j q *B «>* 1 PC B W H 400 P - «VB E L 14- > C H C ~ E L H H [ * q H B Bk "B " G! O - F x- k x* L V CV 10 4 -C B F

More information

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k L = λw L = λw L λ W 25 l 1 R l 1 l 1 k j j 0 X {X k,j : k 0; j 0} X k,j k j 0 Y k,j i=j X k,i k j j 0 A k Y k,0 = X k,j k Q k k Y k j,j = k, j 0 A k j Y k j,j A k j k 0 0/0 1 0 n λ k (n) 1 n Q k (n) 1

More information

THE SOBOLEV ORTHOGONALITY AND SPECTRAL ANALYSIS OF THE LAGUERRE POLYNOMIALS {L k

THE SOBOLEV ORTHOGONALITY AND SPECTRAL ANALYSIS OF THE LAGUERRE POLYNOMIALS {L k THE SOBOLEV ORTHOGONALITY AND SPECTRAL ANALYSIS OF THE LAGUERRE POLYNOMIALS {L k n } FOR POSITIVE INTEGERS k W. N. EVERITT, L. L. LITTLEJOHN, AND R. WELLMAN Abstract. For k N, we consider the analysis

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

12 16 = (12)(16) = 0.

12 16 = (12)(16) = 0. Homework Assignment 5 Homework 5. Due day: 11/6/06 (5A) Do each of the following. (i) Compute the multiplication: (12)(16) in Z 24. (ii) Determine the set of units in Z 5. Can we extend our conclusion

More information

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

Chapter 8. Exploring Polynomial Functions. Jennifer Huss Chapter 8 Exploring Polynomial Functions Jennifer Huss 8-1 Polynomial Functions The degree of a polynomial is determined by the greatest exponent when there is only one variable (x) in the polynomial Polynomial

More information

SOME PROPERTIES OF ENTROPY OF ORDER a AND TYPE P

SOME PROPERTIES OF ENTROPY OF ORDER a AND TYPE P SOME PROPERTIES OF ETROPY OF ORDER a AD TYPE P BY J.. KAPUR, F.A.Sc. (Indian Institute of Technology, Kanpur) Received March 10, 1967 ABSTRACT In a recent paper, 3 we defined entropy of order a and type

More information