PRISON POLICY INITIATIVE ANNUAL REPORT

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PRISON POLICY INITIATIVE ANNUAL REPORT"

Transcription

1 PRISON POLICY INITIATIVE ANNUAL REPORT N PO Bx 127 N MA :// (413)

2 T Ex D 1 W 3 P k 4 C R - 7 S j 8 B j 10 P x 12 P j 14 P 16 Wk 18 C x 19 Y P Nk S R 15 B j R 20 L 20 S k 21 P P I

3 Ex D D F T j T W H (T ) W k x F C C j T - - P P I x k j P O J C M I: T W P S 90% j W j k T A k j T T F x C I ( 12) A k j W D ( 18) A k : x k S : Tk ( 5) Ex k P T Bk L ( 6) Ex ( 7) 1

4 Mk k j j ( 8) O x j k x z B 70 A j 4 W k F I z O P A L C j J C S W B j k A k W P D k (I k :///j!) A k k I I k k k k I k k x j I P W Ex D N

5 W T - - P P I x k j T P P I 2001 z O z W M S W B C S L C P A Ak Kj L D W S S P A P W Ex D P- E Oz R A B R S P A E W R A J D S V P V D G C NYU L M C D K T W Qz E Lk Ck N E A S R A Mk M J S D P P Y U *Oz S Ax Ck G W U S F Y P Nk G H Y P Nk S H-Fz Y P Nk L Hk Y P Nk S Kk Y P Nk R L A S Bk J M Y P Nk S R Y P Nk M S Y P Nk M T S C C B C GIS B M G D J M P E J I B D* N A D R D E P P I L P UCLA S L R B D V R A Cz U N V D P P L W L U S L B V P Mq U L S ( ) A B* A B S Q C A E P S U V Ax F P L N B G-P T L A S R G S R C T C L C J Jzz H H Pk D H D V R Pj ACLU D Jk L J B R F I C P M B S P S J H A T D P H U M J T M D Nk B W Dē: A Nk I A R Y A *Oz R J Ak P F A W P & C A 3

6 P k ://// W W ff j M I: T W P 2017 W j 15 k - U S I W H j T W P ff k fl 4

7 F M M I T j j I ---k j- $182 B k k q k q z 5

8 W S--Fk R M: D & U F A P T A G S --k Bk L T z N Yk C % Bk L W k H? P x k A : - B O

9 R - ://// A U S B - W k x O P P: T M z O T B G 7

10 S j :///j O j j (95%) j J j j k W j j j T : E M Ex: W S O S F J G: T US j ---k k q: j? F x : - j O k j W j T j k j W x q N Yk C j k - A M C S J A x W x x $ W k j O 75% A j 1978 W j 8 8

11 9

12 B j ://// S $1/ k W? B j F 14 F C C (FCC) x j Rz k I FCC k j A x P T FCC W J FCC I J L P Y P Nk - j (C j - j $1/) T FCC j k - j k W k x x F x k 10

13 B T S J T G q k P k I $2256 NBA P O U F D I P S P Eq D S $ M 11 T G P: G S/G I

14 P x ://// C j - x -q V k j A : W k z - M I C - S M N J S P A B R C P S C - W US S T Dk (D-IL) q FCC x O x - W k k T N Yk T T B G k W T 12

15 /OP IN IO N PR q k OM SC ME TI J F 00 F W k - N LET TE RS LA A? j B B k k Ex q x K k M C k z H T J $3 70 T 50 H H P T E x x C R M T k O z k NIO -- Exx M N T H V P W A V E B : C D N 200 Yk M B V M L z E xx :35 k - C j k O S V - j j B T k N Yk P ' 1 k 7 S ' x k C E S - 7:1S9 V - R k - S - j F O W O k G O j j S P B C T x S k B x - k B k T Bk k k I k '1 j 8 - T E q B j ' N k M A Y ' k j L k 2 S 0 k B F 2 4 J k A S j j x q - F k $26 C T j G - S D C ' - B J - S B x S T 39 H x k - O j j C B x k B x F - S C j I C j k j N G L x B I I k A k M q - j W S j z F R H x P C - B T x j Y J C L R S ; I P k ED j B ITO RT B IN -CH D R IEF AN D H N MV M D PU B M F LISHE N O j R D MAN FO G T AGIN C UN G B DE I L EDIT D C S DD OR EPUT EC S Y M 30 E C EM M ANA BE DI GIN M ASS k R4 G W E 18 M B ISTAN G DITO 81 T N RS :: MANA S H N I K M GING EDIT J K M M O D G RS L O S M x W E OP D G -ED ITOR W OF AN D R SUN THE E? DIT DA H Y O OR C IA PIN L P IO A N ED AGES ITO R :: x W I k I C F? OPI LS RIA C X ITO ED W ISO 13

16 P j :/// T x - B j W j C? I x - x F W q 13 - q k $200 U k j jz 14

17 O : U z HIV W j x jz W k x x US W F : W z B J S 21% j H x j N Yk C D N R Wk I S R S j Y P Nk H x x W k q x W j Y P Nk? W I I k I I P W P P I Y P Nk j x x W k? A k P P I? I k - B P P I k I k j T j I k W k q P P I j k? S I k j 1998 A z z j k T P P I k R k- z j 15 15

18 P :/// T C B x W k k j T k k k k k j T : C T R W US G M I 13 US S q C B 2020 C W C B 2020 C B ) C ) ) M I M N J T G C x 16

19 W - - k R I Ok W x ff 6-0 /201 / / / 9-22 :// V ' C P T B -B B R C C T B B V ' C W LA P R ' T DT M E 7 P 3: P 2 SE 6 C z F S S N U B P C S C A U j 20 W W I I R C 7 3 ; T x x I I C R x A Sx Sx T W B q C R 17 17

20 Wk ://// 12 DC A k -k W D q W k O R C S: H k j T T N Yk T T R T-D T S L (NJ) T C N (F) L ; k M F Tx W DC T V x - j O z R B O Rk (D-Tx) z 18 18

21 C x ://// C C - k U k N W S R Y P Nk ( 15) -k x k C F P B (CFPB) T S H k W CFPB S k P P Lk - Dz k B D W 5:00 M U: 5:00 M k 87 2 E- P Dz - P C k T k k A JP J I D I C F A L BY HERB WEISBAUM A 19 P j I j R k P k k B j $20 x $10 Ak P I D C B q C F B I

22 R C & L R I P :/// & :///// B P P I j k j O R C 2500 j I j Y x R C ://// O L R G I P W k z 20

23 S k ://// T P P I 2001 j 2017 O k k z k k - ( 12) k j k W P ( 4) k US I k j k PO Bx 127 N MA I k k J ://// k A q k P Ak W L W (413) W k k k 21

24 P P I I S F $88000 L F* $ I D $ C $32500 I $2221 H $3750 Pz $10000 T $ Ex S x 52 FTE $ C G $459 R $2663 S $3122 O x T $3522 P $3069 P $395 W $2902 R & U $12605 T Fx I $2255 C q $2725 I $2067 R T $461 S $5626 L/A S $1350 S D $360 Bk C $421 P & $3098 Tx $144 S x $40999 T $ *S k x 22

SYLPH E D I T I O N S 2016

SYLPH E D I T I O N S 2016 SYLPH EDITIONS 2016 A WORD FROM THE PUBLISHER J k, z b bk: J Pk T P Hz, v z P b Hz b J Pk. I, bk z b v : b. Sbq b v v vv b v vb. W k b bk, bk b b. T bk b v bj : v T C S Rk v - bk. N b T M,, 29, T C S v.

More information

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C! 393/09/0 393//07 :,F! ::!n> b]( a.q 5 O +D5 S ١ ; ;* :'!3Qi C+0;$ < "P 4 ; M V! M V! ; a 4 / ;0$ f;g,7k ;! / C+!< 8R+^ ;0$ Z\ \ K S;4 "* < 8c0 5 *

More information

M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7; ;J zy U;K z< mj ]!.,,+7;

M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7; ;J zy U;K z< mj ]!.,,+7; V 3U. T, SK I 1393/08/21 :,F! 1393/10/29 ::!n> 2 1 /M + - /E+4q; Z R :'!3Qi M $,7 8$ 4,!AK 4 4/ * /;K "FA ƒf\,7 /;G2 @;J\ M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7;

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Baby Beauty Contest Judging Today In WR Recreation Halt

Baby Beauty Contest Judging Today In WR Recreation Halt MO BOOM JO R 7OM OJJM JC 20 946 MG 2 O H K F C O Ck C U VMR B G DON U M L H Y v C M G 2 v COMMNDNG MG-2 R R5-C k k C G - R k < v : L C B Z - v C R L C D H - v M -2 - «v G z F - MG-2 v j v v K O G - C

More information

Comprehensive Economic Development Strategy for the Greater Nashville Region

Comprehensive Economic Development Strategy for the Greater Nashville Region G N R NNUL UPT FOR FY 206 G N R 50 U x F N T 3729 P: (65) 862-7204 Fx: (65) 862-7209 GNR T I 2 2 2 F Rq 2 3 B 3 4 U 3 2 WOT 4 3 G Oj P 6 G P P P P 7 G 2 R O 8 G 3 N P 9 G 4 I G 0 G 5 P G 6 P T 2 4 R 3

More information

Mundaneum #reopening

Mundaneum #reopening # 1895-2015 k T N, 76 - B-7000 - : P, 15 - B-7000 T : +32 (0)65 31.53.43 - F : +32 (0)65 39.54.86 -.. : E T - P @.@.b T : +32 (0)65 39.54.95 - +32(0)498 48.44.31 [] b B?... 2 T b k : T... 3 : k... 6 Q...

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

Tornado, Squalls Strike Kinston Area

Tornado, Squalls Strike Kinston Area q k K A V N 28 #/K N /WANE CO A AON-CHEY ON A N F W N H W D M D H U x 30 M k k M D 945 E M A A k - A k k k A C M D C 030 D H C C 0645 000 200 W j A D M D k F E- HAUNNG CALL - A A x U M D M j A A 9000 k

More information

The Evolution of Outsourcing

The Evolution of Outsourcing Uvy f R I DCmm@URI S H Pj H Pm Uvy f R I 2009 T Ev f O M L. V Uvy f R I, V99@m.m Fw wk : ://mm../ P f B Cmm Rmm C V, M L., "T Ev f O" (2009). S H Pj. P 144. ://mm..//144://mm..//144 T A b y f f by H Pm

More information

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES ON MY HONOR, I WILL TRY.. DAISI ES AMBASSADORS BROWNI ES I JUNIORS 2017-2018 GIRL SCOUTS! CAD E TTES SENIORS Wm! W' I? W'v Pm G, v, m m G S x. I, y' m w x m, v, v v G S G W M. T v wm.. I y v y q q m, 888.474.9686

More information

that a w r o n g has been committed recognize where the responsibility

that a w r o n g has been committed recognize where the responsibility Z- XX q q J U Y ' G G, w, 142 16, U, j J ' B ' B B k - J, 5 6 5:30 7:00, $125;, -, 10:00 $300;, 4:00, 6:00, B C U 000 2:00, J $125; ' :, q C, k w G x q k w w w w q ' 60,, w q, w w k w w - G w z w w w C

More information

2014 CANADIAN SURF LIFESAVING CHAMPIONSHIPS PROGRAM

2014 CANADIAN SURF LIFESAVING CHAMPIONSHIPS PROGRAM 2014 CANAIAN URF LIFEAVING CHAMPIONHIP PROGRAM Lv Lv vy b v, w,, w Lv y w k Lv z by I Oy C (IOC) Cw G F T IOC z I L v F (IL) w v v IL N Mb Oz v b v T Lv y v by v C I Lv W C z I L v F Cw Lv C z Ry L v y

More information

~fw. urning Desire. lean ul. «sw. Final Extinction NEW QUIRK 69, N. Q., TUESDAY, APR^FCX^^W. ted:

~fw. urning Desire. lean ul. «sw. Final Extinction NEW QUIRK 69, N. Q., TUESDAY, APR^FCX^^W. ted: EK» - - - u I» -? NE QUIRK 69 N Q UEDY PRFCX F Ex X!E - - - ; - - - ; & P --?!R» u \ u CCNY -C C j pp N up - [ P-up p upu >j u D CC F 9u - x pu x pp p p p u p & K I? - >

More information

Grilled it ems are prepared over real mesquit e wood CREATE A COMBO STEAKS. Onion Brewski Sirloin * Our signature USDA Choice 12 oz. Sirloin.

Grilled it ems are prepared over real mesquit e wood CREATE A COMBO STEAKS. Onion Brewski Sirloin * Our signature USDA Choice 12 oz. Sirloin. TT & L Gl v l q T l q TK v i f i ' i i T K L G ' T G!? Ti 10 (Pik 3) -F- L P ki - ik T ffl i zzll ik Fi Pikl x i f l $3 (li 2) i f i i i - i f i jlñ i 84 6 - f ki i Fi 6 T i ffl i 10 -i i fi & i i ffl

More information

Prayer. Volume III, Issue 17 January 11, Martin Luther King Jr. Prayer. Assumption Catholic School 1

Prayer. Volume III, Issue 17 January 11, Martin Luther King Jr. Prayer. Assumption Catholic School 1 Vm III, I 17 J 11, 2017 TROJAN NEW W Rpb Cz, E Cmm, L L L, d A Ch wh bd mm d mk p. P M Lh K J. P Gd h h h Am d A h wd, W w h h hh w; w whh M w h bh. A w whh h h wd w B h wd pwh, Ad h p p hk. A w whh m

More information

[Let's Do ToPolio What We Did To Tokyo

[Let's Do ToPolio What We Did To Tokyo [L D W W D k /%// / j } b w k w kk w b N b b k z w - k w k k b b b b b w k b k w S b b- K k D R w b k k kk k w w "b b z b bk b w wk w kk w w k b b b b q V /VSRN O R S R SON - H R VL 11 N 11 q HK NONL KONDON

More information

elegant Pavilions Rediscover The Perfect Destination

elegant Pavilions Rediscover The Perfect Destination Pv Rv T Pf D W... T O Lv! Rv p f f v. T f p, f f, j f f, bw f p f f w-v. T f bk pv. Pv w b f v, pv f. W, w w, w f, pp w w pv. W pp v w v. Tk f w v k w w j x v f. W v p f b f v j. S f f... Tk Y! 2 3 p Pv

More information

interns ~ Bi ll Dr ay to n Dawn Sonnenb Te g ro n S ta ff in g

interns ~ Bi ll Dr ay to n Dawn Sonnenb Te g ro n S ta ff in g 2014 ? f I f 4 1 20 V -P T ff f v x? H k? f k f v f k F? H f? H? T xv j Iv E x v f q F f -M v v f j v E T f f f z v v ~ A f j T L H T f v v L L H 4 K z f x f f z j J ff V -P K - k v T M M k P J k k V v

More information

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k Qu V vu P O B x 1361, Bu QLD 4575 C k N 96 N EWSLEE NOV/ DECE MBE 2015 E N u uu L O C 21 Nv, 2 QV v Py Cu Lv Su, 23 2 5 N v, 4 2015 u G M v y y : y quu u C, u k y Bu k v, u u vy v y y C k! u,, uu G M u

More information

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib, #4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0

More information

M e t ir c S p a c es

M e t ir c S p a c es A G M A A q D q O I q 4 78 q q G q 3 q v- q A G q M A G M 3 5 4 A D O I A 4 78 / 3 v D OI A G M 3 4 78 / 3 54 D D v M q D M 3 v A G M 3 v M 3 5 A 4 M W q x - - - v Z M * A D q q q v W q q q q D q q W q

More information

!" #$% & $' ()$'* Javid_

! #$% & $' ()$'*   Javid_ 1367-1386 1367-1386 :!" #$% & $' ()$'* 87/12/20 : 87/9/30 : * VAR &' # ()! "!# $ % 1367-1386 " 8! ', +% 7 %./ ' 0 *#1,# +! 2 3 '4 5( %+% #,-. C D% / 5(: / % / 5(: 2" / #9% # : % ;- 0 #( /?> 4@ AB0

More information

FAIR FOOD GRADE 5 SOCIAL STUDIES FRIED FOOD FRENZY: SHOULD CONSUMERS EAT THE FAIR?

FAIR FOOD GRADE 5 SOCIAL STUDIES FRIED FOOD FRENZY: SHOULD CONSUMERS EAT THE FAIR? FAIR FOO GRAE 5 SOCIA IES FRIE FOO FRENZY: SHOU CONSUMERS EAT HEATHIER @ THE FAIR? F F G Fv F F Fzy: S C E H @ F? I w: Appy k k z f q f vy f F F v y F fk T S f Tx, w v p C v f y y b w f y k y q B T f?

More information

BIG TEX GRADE 5 SOCIAL STUDIES CELEBRATING SYMBOLS: BIG TEX & LADY LIBERTY UNITE

BIG TEX GRADE 5 SOCIAL STUDIES CELEBRATING SYMBOLS: BIG TEX & LADY LIBERTY UNITE GRA 5 SOCIA STUIS CBRATIG SYMBOS: & AY IBRTY UIT TACHR Cb Syb B Tx & y by U Fv G SOCIAIS STU I h w: x h fcc f yb k h Ac Tx bf c. c c h! A w Wh h c, y, Tx b c y w A h, x w y c f h, y cz. C c yb k h cb y.

More information

Code of Ethical Business Conduct

Code of Ethical Business Conduct C E B C HR-PO717 1.0 S C O K R E P M I 411004.. C 2016 T M.. 1 I W I 1. I 2. Oj 3. S 4. C L Rq 5 I 6. P 7. R Sk 8. M Eq S Wk 9. R C & C 10. P & S M T T. ( ) T / C M. T T 11. D H C 2016 T M.. 2 Oj W I 1.

More information

FAIR FOOD GRADE 8 SOCIAL STUDIES ICONIC EDIBLES LIGHTS CAMERA ACTION!

FAIR FOOD GRADE 8 SOCIAL STUDIES ICONIC EDIBLES LIGHTS CAMERA ACTION! FAIR FOO GRAE 8 SOCIA IES ICONIC EIBES IGHTS CAMERA ACTION! F F G Egh Icc Eb gh Cm Ac! I h w: cm c fm b q f h S F f Tx. Az h cb f v c hc gp. cb vpm h c h q Amc c. W, pc, cm b cc b f h Tx S F. m w f j v

More information

2 v g vg mm u p qu xg g u u u u - m m g v O u m p m m - qu v Vg p p O gv W mp uu v u u u W k g uu p u mm m O m W m G p v Op u - Qu E p g W Gvm $80 mg

2 v g vg mm u p qu xg g u u u u - m m g v O u m p m m - qu v Vg p p O gv W mp uu v u u u W k g uu p u mm m O m W m G p v Op u - Qu E p g W Gvm $80 mg Qu m Vg P mg P O B x 1361 Bu QD 4575 P : 0424 251 646 pqv@gm m vggu J W P O B x 1361 Bu QD 4575 P : 07 5478 0443 qv@ g m m N 89 N EWEE F u 2014 E & p O u Fu N pg mm uuu v k - mm mm v g: O W m m V) Dm B

More information

Chapter 6: Structural Analysis

Chapter 6: Structural Analysis Chapter 6: Structural Analysis Chapter Objectives To show how to determine the forces in the members of a truss using the method of joints and the method of sections. To analyze the forces acting on the

More information

UCM DEPARTMENT OF THEATRE & DANCE PRESENTS SEASON

UCM DEPARTMENT OF THEATRE & DANCE PRESENTS SEASON UCM DEPARTMENT OF THEATRE & DANCE PRESENTS BECOME A SEASON SUBSCRIBER! Dh m wh ym : UCM Dm f Th D Uvy f C M PO Bx 800 M 113 Wbg, MO 64093 A Cv Sy M A bb, y y k F bf h bx ff. T v y k f F g wh y k, h f h

More information

Remote Sensing Applications for the Historic Environment

Remote Sensing Applications for the Historic Environment m S App H Em L H Em m S 4 C B P m k m m. B m S App H Em L H Em m S 4 m C A Im H Em. B m m H Lp U S D m S C U P m k B m S App H Em L H Em m S 4 m A m A W k? A pp :. Tpp. Px. mk.. S S mk.. Cp S mk B m m

More information

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts I k E M C k C C EN CN INI & NYU CN EN INI @ y @ Lzz M M zz@ M y IDE I - y W y W q : y; y y y; yz y ; y q j W I y y /y y /k W W j - y W - CCCk M y C O y C j D D [D q]: D G D q/ D D q D4 / V D5 D G D D E

More information

Topic 7. Part I Partial Differentiation Part II Marginal Functions Part II Partial Elasticity Part III Total Differentiation Part IV Returns to scale

Topic 7. Part I Partial Differentiation Part II Marginal Functions Part II Partial Elasticity Part III Total Differentiation Part IV Returns to scale Topic 7 Part I Partial Differentiation Part II Marginal Functions Part II Partial Elasticity Part III Total Differentiation Part IV Returns to scale Jacques (4th Edition): 5.1-5.3 1 Functions of Several

More information

Raman Amplifier Simulations with Bursty Traffic

Raman Amplifier Simulations with Bursty Traffic R S h y Tc h N., k F, Jy K. c D Ecc E C Scc Uy ch b 3, Oc b, ch 489 X Cc, c. 5 W. hy D, S, Tx 753 Th h h bh R h bjc by c. y c c h h z c c c. Sch by c h -k c cy b. cc c, h c -- h h ych c k SONET), hch c

More information

On the Front-Tracking Algorithm

On the Front-Tracking Algorithm JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 7, 395404 998 ARTICLE NO. AY97575 On the Front-Tracking Algorithm Paolo Baiti S.I.S.S.A., Via Beirut 4, Trieste 3404, Italy and Helge Kristian Jenssen

More information

COMMON FIXED POINT THEOREM OF THREE MAPPINGS IN COMPLETE METRIC SPACE

COMMON FIXED POINT THEOREM OF THREE MAPPINGS IN COMPLETE METRIC SPACE COMMON FIXED POINT THEOREM OF THREE MAPPINGS IN COMPLETE METRIC SPACE Latpate V.V. and Dolhare U.P. ACS College Gangakhed DSM College Jintur Abstract:-In this paper we prove common fixed point theorem

More information

kind read i i i i i i

kind read i i i i i i T u Mu P W NNG: Wu 1J1:9 u P OUT, 1J1: 6-10. u u u, u u, u' u u. v v 53:10-1 1' LXX x, u b : P u, N u, v u u u ( P ' "5 v" k ) k z u) ( ( k, u) ku ( u, k k, ub) ( u b u) k ( b Mk u, Ju) 1 J1:9 T Pb- v

More information

Probe fire that killed 23

Probe fire that killed 23 V ' ( WUY J Y JUY 88 P k z ' ' F x k J K Y - P k k k Pz Pk k k 'J Pk k U k k - - k k Pz " " k x k k k W k k k ' z " x - " z k k k x j k k k k x k zz "' ' k " k k k» «K VU G k - k z k U k x (P) - P z

More information

Sequential State Estimation with Interrupted Observation

Sequential State Estimation with Interrupted Observation INFORMATION AND CONTROL 21, 56--71 (1972) Sequential State Estimation with Interrupted Observation Y. SAWARAGI, T. KATAYAMA AND S. FUJISHIGE Department of Applied Mathematics and Physics, Faculty of Engineering,

More information

Chapter Homogeneous System with Constant Coeffici

Chapter Homogeneous System with Constant Coeffici Chapter 7 7.5 Homogeneous System with Constant Coefficients Homogeneous System with constant coefficients We consider homogeneous linear systems: x = Ax A is an n n matrix with constant entries () As in

More information

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc M D O : 8 / M z G D z F zw z z P Dẹ O B M B N O U v O NO - v M v - v v v K M z z - v v MC : B ; 9 ; C vk C G D N C - V z N D v - v v z v W k W - v v z v O v : v O z k k k q k - v q v M z k k k M O k v

More information

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2 Internal Innovation @ C is c o 2 0 0 6 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. C i s c o C o n f i d e n t i a l 1 Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork

More information

Stat 512 Homework key 2

Stat 512 Homework key 2 Stat 51 Homework key October 4, 015 REGULAR PROBLEMS 1 Suppose continuous random variable X belongs to the family of all distributions having a linear probability density function (pdf) over the interval

More information

Computational Graphs, and Backpropagation. Michael Collins, Columbia University

Computational Graphs, and Backpropagation. Michael Collins, Columbia University Computational Graphs, and Backpropagation Michael Collins, Columbia University A Key Problem: Calculating Derivatives where and p(y x; θ, v) = exp (v(y) φ(x; θ) + γ y ) y Y exp (v(y ) φ(x; θ) + γ y ) φ(x;

More information

Parallel Scientific Computing

Parallel Scientific Computing IV-1 Parallel Scientific Computing Matrix-vector multiplication. Matrix-matrix multiplication. Direct method for solving a linear equation. Gaussian Elimination. Iterative method for solving a linear equation.

More information

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a)

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a) Chapter 6 Chapter 6 opener A. B. C. D. 6 E. 5 F. 8 G. H. I. J.. 7. 8 5. 6 6. 7. y 8. n 9. w z. 5cd.. xy z 5r s t. (x y). (a b) 5. (a) (x y) = x (y) = x 6y x 6y = x (y) = (x y) 6. (a) a (5 a+ b) = a (5

More information

Gaussian Elimination for Linear Systems

Gaussian Elimination for Linear Systems Gaussian Elimination for Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University October 3, 2011 1/56 Outline 1 Elementary matrices 2 LR-factorization 3 Gaussian elimination

More information

Empowers Families Unites Communities Builds Capacity. An In. Read and Rise. Cultivates Literacy

Empowers Families Unites Communities Builds Capacity. An In. Read and Rise. Cultivates Literacy 8 Emw Fm U Cmm B Cc g A I Y h P R c L DY : U T S E CAS g L b U N ff H I h H c D Sch R R Cv Lc CASE STUDY A Ig P h Y Lc R Th N Ub Lg H ff wh H I Sch Dc (HISD) c Schc R R, fcg cfc hw gg mw fm f h ch c h

More information

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University A Gentle Introduction to Gradient Boosting Cheng Li chengli@ccs.neu.edu College of Computer and Information Science Northeastern University Gradient Boosting a powerful machine learning algorithm it can

More information

Note : This document might take a little longer time to print. more exam papers at : more exam papers at : more exam papers at : more exam papers at : more exam papers at : more exam papers at : more

More information

Creating New Objects

Creating New Objects Wk Obj 1 C bj 2 A vb bj 3 bj C M & I I B & M 4 Cv bj v - 5 M b bj 6 A vv Jv b C N Obj A Jv C bj: bj k H bj : R R Rk V Rk Jv k bj 1 I v bj 2 I bj b C Vb bj Jv vb v 1 A vb v v 2 A vb Obj bj I R bj bj H x

More information

HJERTESTANS- BEHANDLING I AMK CAMILLA HARDELAND PHD-STIPENDIAT NAKOS UIO

HJERTESTANS- BEHANDLING I AMK CAMILLA HARDELAND PHD-STIPENDIAT NAKOS UIO JTTN- BNLING I K ILL LN -TINIT NKO UIO KNINVIK KUTTIIN 7 3 TUI O JTTN GJNNOFØT I K TUI I NLIGNING V TO K-YT (ITI B IT OG IL IOITY IT TUI II UTFOKNING V FKTO O ÅVIK ÅNTING V JTTN TUI II INTVNJONTUI NÅ TIN

More information

Assignment. Name. Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz. 3) uv p u pv 4) w a w x k w a k w x

Assignment. Name. Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz. 3) uv p u pv 4) w a w x k w a k w x Assignment ID: 1 Name Date Period Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz 3) uv p u pv 4) w a w x k w a k w x 5) au xv av xu 6) xbz x c xbc x z 7) a w axk a k axw 8) mn xm m xn

More information

Chapter 12 - Solved Problems

Chapter 12 - Solved Problems Chapter 12 - Solved Problems Solved Problem 12.1. The Z-transform of a signal f[k] is given by F q (z) = 2z6 z 5 + 3z 3 + 2z 2 z 7 + 2z 6 + z 5 + z 4 + 0.5 = n(z) d(z) where n(z) and d(z) are the numerator

More information

Assessment / audit system

Assessment / audit system h I f Thg IT Sh Wk Th Th/D 2004 m / m Nh B Fw h wk : h://hwk../h mm B, Nh, "m / m" (2004). Th. h I f Thg. fm Th M' j gh f f h Th/D IT Sh Wk. I h f Th hz m f IT Sh Wk. F m fm, hwk@.. h I f Thg g f M S m

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

You don t need a better car, you need to learn how to drive

You don t need a better car, you need to learn how to drive O h Imp f Cyb-Df L Am Y d d b, y d hw dv E Lv, F Hm, Phpp Lwk m AG 2017 m.m Wh w? m AG 2017 Pg 3 Y d d b, y d hw dv Wh h k b Wh w dd Wh w h p Wh h k NOT b C p-by-p hw fx hg Cd Vd bhg A mk

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

ConnectJuly Heartily Congratulations

ConnectJuly Heartily Congratulations cjy 2017 Oy F h Mmb f F Lc S Gp Awd f FL Id - B Hy M. Ahk Km A G, mmc Hd Id f h cb whch d h c d h wd. I h h mk cmp whch v-ch; h chvm vy dcv. I mm cb d hw h cmmm wk h pd ff d h j h b. W cfd w m, d m dp

More information

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Sampling Prof. Alberto Bemporad University of rento Academic year 2010-2011 Prof. Alberto Bemporad (University of rento) Automatic Control 2 Academic year 2010-2011 1 / 31 ime-discretization

More information

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth 6 6 0 x J 8 0 J 0 z (0 8 z x x J x 6 000 X j x "" "" " " x " " " x " " " J " " " " " " " " x : 0 z j ; J K 0 J K q 8 K K J x 0 j " " > J x J j z ; j J q J 0 0 8 K J 60 : K 6 x 8 K J :? 0 J J K 0 6% 8 0

More information

I n m V n Hoc tha hiehest number r i e a w i m xamuies, a n a o i u e r s tralned skuls 1

I n m V n Hoc tha hiehest number r i e a w i m xamuies, a n a o i u e r s tralned skuls 1 C H E R M A R I N E C O R P S R V AIR V H 43 STATION - C H E R R Y * P O I N T M C S 8 945 G M Tk H O O V- Dy Ov T I P y M A v ; - k M G R M y V y Sy C y R k M T y P T k 22 k U N G M - y v y v P vy y v

More information

JIEJIE MICROELECTRONICS CO., Ltd

JIEJIE MICROELECTRONICS CO., Ltd JIJI MICROLCTRONICS CO., Ltd SMJ Series 400 Transient Voltage Suppressor Rev.2.0 DSCRIPTION: TVS diodes can be used in a wide range of applications which like consumer electronic products, automotive industries,

More information

Integration - Past Edexcel Exam Questions

Integration - Past Edexcel Exam Questions Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point

More information

Cy/ 9. Pau JCs1 ce_ Moort- ARE YOU A CHO? Yes. ><'- \VbrrIe Ha li 0Z-Z. IVY r 5. 4 v.; ( r e cep X Oaf' , (-24.

Cy/ 9. Pau JCs1 ce_ Moort- ARE YOU A CHO? Yes. ><'- \VbrrIe Ha li 0Z-Z. IVY r 5. 4 v.; ( r e cep X Oaf' , (-24. \X stmoniauniverstry Cy/ 9 Miscellaneous Hazardous Waste/ Lab Safety! Hazardous Communicatii DATE a01.3 TME 3o N - // Pau JCs1 ce_ Moort- f: Cg6a-ti- Zbei:Cif5f"e Pawl 11.41/.../ ' ARE YOU ARE YOU A >

More information

QUADRATIC EQUATIONS AND MONODROMY EVOLVING DEFORMATIONS

QUADRATIC EQUATIONS AND MONODROMY EVOLVING DEFORMATIONS QUADRATIC EQUATIONS AND MONODROMY EVOLVING DEFORMATIONS YOUSUKE OHYAMA 1. Introduction In this paper we study a special class of monodromy evolving deformations (MED). Chakravarty and Ablowitz [4] showed

More information

BIII/. Malaysinn Math. Sc. Soc. (Second Series) 26 (2003) Coefficients of the Inverse of Strongly Starlike Functions. ROSlHAN M.

BIII/. Malaysinn Math. Sc. Soc. (Second Series) 26 (2003) Coefficients of the Inverse of Strongly Starlike Functions. ROSlHAN M. BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY BIII/. Malaysinn Math. Sc. Soc. (Second Series) 26 (2003) 63-71 Coefficients of the Inverse of Strongly Starlike Functions ROSlHAN M. ALI School

More information

-15V R36 2.7K. BLUE HW2 Power RED HW1 DDT AGND AGND 50V C35 100N 50V C40 U N 50V U11 SET 9 C30 12 CLK Q RST 100N 50V CD N 50V AGND

-15V R36 2.7K. BLUE HW2 Power RED HW1 DDT AGND AGND 50V C35 100N 50V C40 U N 50V U11 SET 9 C30 12 CLK Q RST 100N 50V CD N 50V AGND A C REV Eng ate: Revision escription ECN# A C E F VR 0K INEX VR SEE ESCRIPION Power/ecoupling Preamp Octave ivider P O POER AMP RK PRE_OU V V OCAVE_EFEA R0.K RE E_SP.0 efeat S PPP S PPP V V R.K UE Power

More information

«-» ()». :., , «-»..... «-».., mathcad: -, -.. :,. 8. -,. -,,, -,,..,.,

«-» ()». :., , «-»..... «-».., mathcad: -, -.. :,. 8. -,. -,,, -,,..,., .,. MATHCAD», 45.65 4 «,» . 45.65 «-» ()». :.,......., «-»..... «-»..,... - - mathcad: -, -.. :,. 8. -,. -,,, -,,..,., . 5.. 5... -.... 4.. -. 6.4. -, - -.... 5.. 6 4. 4.. 4.. 5 4.., 6 4.4., - 8 5. - 4

More information

lim n C1/n n := ρ. [f(y) f(x)], y x =1 [f(x) f(y)] [g(x) g(y)]. (x,y) E A E(f, f),

lim n C1/n n := ρ. [f(y) f(x)], y x =1 [f(x) f(y)] [g(x) g(y)]. (x,y) E A E(f, f), 1 Part I Exercise 1.1. Let C n denote the number of self-avoiding random walks starting at the origin in Z of length n. 1. Show that (Hint: Use C n+m C n C m.) lim n C1/n n = inf n C1/n n := ρ.. Show that

More information

Stochastic Differential Equations

Stochastic Differential Equations CHAPTER 1 Stochastic Differential Equations Consider a stochastic process X t satisfying dx t = bt, X t,w t dt + σt, X t,w t dw t. 1.1 Question. 1 Can we obtain the existence and uniqueness theorem for

More information

Patients and families are the guiding force in their own end-of-life experience.

Patients and families are the guiding force in their own end-of-life experience. 2009-2010 A N N U A L R E P O R T Pt ii t ii c i --i x. H t z t 2009/2010 P Hiit Tt t, H t z t tci t i ii i, t t i --i x, i i, i t t t. A At t Bi A Qit Li H t-it i t, H i t i i qit i ii t t i t i. Ext

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Corrected Version, 7th April 013 Comments to the author at keithmatt@gmail.com Chapter 1 LINEAR EQUATIONS 1.1

More information

JOIN GCRRA. Appeals Court Upholds Grand Canyon s River Management Plan. CRMP Update. In this Issue

JOIN GCRRA. Appeals Court Upholds Grand Canyon s River Management Plan. CRMP Update. In this Issue Nb N p pbc cc R F, 2009 pp Up G R M P B J S pto MRI RLOS I I PPELS OURT UPHOLDS RMP... 1 RMP UPDTE... 1 FIVE YERS... 3 NIENT LNDSPES OF THE OLORDO PLTEU... 4 OTILLO... 6 POSTRDS FROM THE NYON... 8 THE

More information

SCHEMATIC REV. DRAWING NO RELAY CONTROL CHART A A DE N V C L O REVISIONS

SCHEMATIC REV. DRAWING NO RELAY CONTROL CHART A A DE N V C L O REVISIONS THI RWIN I THE PROPERTY OF NLO EVIE IN. IT I NOT TO E REPROUE OR OPIE, IN WHOLE OR IN PRT, OR UE IN FURNIHIN INFORMTN TO OTHER, OR FOR NY OTHER PURPOE ETRIMENTL TO THE INTERET OF NLO EVIE. THE EQUIPMENT

More information

An LQ R weight selection approach to the discrete generalized H 2 control problem

An LQ R weight selection approach to the discrete generalized H 2 control problem INT. J. CONTROL, 1998, VOL. 71, NO. 1, 93± 11 An LQ R weight selection approach to the discrete generalized H 2 control problem D. A. WILSON², M. A. NEKOUI² and G. D. HALIKIAS² It is known that a generalized

More information

Basic Deterministic Dynamic Programming

Basic Deterministic Dynamic Programming Basic Deterministic Dynamic Programming Timothy Kam School of Economics & CAMA Australian National University ECON8022, This version March 17, 2008 Motivation What do we do? Outline Deterministic IHDP

More information

Contents ... FREE! 4 6 BONUS Activity Pages! Additional worksheets for your students EASY MARKING ANSWER KEY GRAPHIC ORGANIZERS...

Contents ... FREE! 4 6 BONUS Activity Pages! Additional worksheets for your students EASY MARKING ANSWER KEY GRAPHIC ORGANIZERS... I, Z. H,. R. B,. C,. x. I S Z,, P W.? P. G. G, S,. CONFLICT RESOLUTION SKITS.. L S G L. H T : P.. T H Tx. C - COPYING, ILLUSTRATING I - G L. EMBELLISHING. C ANTI-BULLYING STRATEGIES B I: G F,,. R H U S.

More information

( ) You try: Find the perimeter and area of the trapezoid. Find the perimeter and area of the rhombus = x. d are the lengths of the diagonals

( ) You try: Find the perimeter and area of the trapezoid. Find the perimeter and area of the rhombus = x. d are the lengths of the diagonals lameda USD Geometr Benchmark Stud Guide ind the perimeter and area of the rhombus. ind the perimeter and area of the trapezoid. 0 0 0 erimeter o find the perimeter, add up the lengths of all the sides.

More information

Gaylord, Michigan, Thursday, May 17, 1945

Gaylord, Michigan, Thursday, May 17, 1945 » BCMV J &KJ V 70 N 0 B Q f $6 B U CCN K V F M M M J MCK %&«~ f - M K M B C M M B B f q z f q b f 7 b z f j f f C Nb f b f f M M J M f f B C f b J V f B C b b M M - q B M M M M ff b ; b b b b j f b b M

More information

Chapter 30 Design and Analysis of

Chapter 30 Design and Analysis of Chapter 30 Design and Analysis of 2 k DOEs Introduction This chapter describes design alternatives and analysis techniques for conducting a DOE. Tables M1 to M5 in Appendix E can be used to create test

More information

1. Vectors in the Plane

1. Vectors in the Plane CHAPTER 10 Vectors and the Geometry of Space 1. Vectors in the Plane We denote the directed line segment from the point P (initial point) to the!! point Q (terminal point) as P Q. The length of P Q is

More information

M a n a g e m e n t o f H y d ra u lic F ra c tu rin g D a ta

M a n a g e m e n t o f H y d ra u lic F ra c tu rin g D a ta M a n a g e m e n t o f H y d ra u lic F ra c tu rin g D a ta M a rc h 2 0 1 5, A n n a F ilip p o v a a n d J e re m y E a d e 1 W h a t is H y d ra u lic F ra c tu rin g? Im a g e : h ttp ://w w w.h

More information

A mathematical statement that asserts that two quantities are equal is called an equation. Examples: x Mathematics Division, IMSP, UPLB

A mathematical statement that asserts that two quantities are equal is called an equation. Examples: x Mathematics Division, IMSP, UPLB EQUATIONS A mathematical statement that asserts that two quantities are equal is called an equation. Examples: 1.. 3. 1 9 1 x 3 11 x 4xy y 0 Consider the following equations: 1. 1 + 9 = 1. x + 9 = 1 Equation

More information

On A General Formula of Fourth Order Runge-Kutta Method

On A General Formula of Fourth Order Runge-Kutta Method On A General Formula of Fourth Order Runge-Kutta Method Delin Tan Zheng Chen Abstract In this paper we obtain a general formula of Runge-Kutta method in order with a free parameter t By picking the value

More information

Generating and characteristic functions. Generating and Characteristic Functions. Probability generating function. Probability generating function

Generating and characteristic functions. Generating and Characteristic Functions. Probability generating function. Probability generating function Generating and characteristic functions Generating and Characteristic Functions September 3, 03 Probability generating function Moment generating function Power series expansion Characteristic function

More information

Optimal control and estimation

Optimal control and estimation Automatic Control 2 Optimal control and estimation Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

Lawrence R. Ernst, Bureau of Labor Statistics Bureau of Labor Statistics, 2 Massachusetts Ave., NE, Room 3160, Washington DC 20212

Lawrence R. Ernst, Bureau of Labor Statistics Bureau of Labor Statistics, 2 Massachusetts Ave., NE, Room 3160, Washington DC 20212 MAXIMIZING AND MINIMIZING OVERLAP OF ULTIMATE SAMPLING UNITS Lawrence R. Ernst, Bureau of Labor Statistics Bureau of Labor Statistics, 2 Massachusetts Ave., NE, Room 3160, Washington DC 20212 Key Words:

More information

Circle the letters only. NO ANSWERS in the Columns!

Circle the letters only. NO ANSWERS in the Columns! Chemistry 1304.001 Name (please print) Exam 5 (100 points) April 18, 2018 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan Monte-Carlo MMD-MA, Université Paris-Dauphine Xiaolu Tan tan@ceremade.dauphine.fr Septembre 2015 Contents 1 Introduction 1 1.1 The principle.................................. 1 1.2 The error analysis

More information

STRAIGHT LINES EXERCISE - 3

STRAIGHT LINES EXERCISE - 3 STRAIGHT LINES EXERCISE - 3 Q. D C (3,4) E A(, ) Mid point of A, C is B 3 E, Point D rotation of point C(3, 4) by angle 90 o about E. 3 o 3 3 i4 cis90 i 5i 3 i i 5 i 5 D, point E mid point of B & D. So

More information

L...,,...lllM" l)-""" Si_...,...

L...,,...lllM l)- Si_...,... > 1 122005 14:8 S BF 0tt n FC DRE RE FOR C YER 2004 80?8 P01/ Rc t > uc s cttm tsus H D11) Rqc(tdk ;) wm1111t 4 (d m D m jud: US

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

arxiv: v1 [math.fa] 31 Jan 2013

arxiv: v1 [math.fa] 31 Jan 2013 Perturbation analysis for Moore-Penrose inverse of closed operators on Hilbert spaces arxiv:1301.7484v1 [math.fa] 31 Jan 013 FAPENG DU School of Mathematical and Physical Sciences, Xuzhou Institute of

More information

Characterizations of some function spaces by the discrete Radon transform on Z n.

Characterizations of some function spaces by the discrete Radon transform on Z n. Characterizations of some function spaces by the discrete Radon transform on Z n. A. Abouelaz and T. Kawazoe Abstract Let Z n be the lattice in R n and G the set of all discrete hyperplanes in Z n. Similarly

More information

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Modified by Dr. Cheng-Yu Lai spontaneous nonspontaneous Spontaneous Processes Processes that are spontaneous in one direction are nonspontaneous

More information

I9 Lateral deflections of circular plates

I9 Lateral deflections of circular plates I9 Lateral deflections of circular plates 19.1 Introduction In this chapter, consideration will be made of three classes of plate problem, namely (i) (ii) (iii) small deflections ofplates, where the maximum

More information

Get Started on CreateSpace

Get Started on CreateSpace {paperback self publishing process} Account Set Up Go to CreateSpace.com Click Sign up Fill out Create Account info fields * Under What type of media you are considering punlishing?, you may want to choose

More information

Daily Register Q7 w r\ i i n i i /"\ HTT /"\I AIM MPmf>riAnpn ^ ^ oikiar <mn ^^^*»^^*^^ _.. *-.,..,» * * w ^.. i nr\r\

Daily Register Q7 w r\ i i n i i /\ HTT /\I AIM MPmf>riAnpn ^ ^ oikiar <mn ^^^*»^^*^^ _.. *-.,..,» * * w ^.. i nr\r\ $ 000 w G K G y' F: w w w y' w-y k Yk w k ' V 0 8 y Q w \ /"\ /"\ > ^ ^ k < ^^^*»^^*^^ _*-» * * w ^ \\ Y 88 Y Y 8 G b k =-- K w' K y J KKY G - - v v -y- K -y- x- y bb K' w k y k y K y y w b v w y F y w

More information

COMPOSITION OF FUNCTIONS

COMPOSITION OF FUNCTIONS COMPOSITION OF FUNCTIONS INTERMEDIATE GROUP - MAY 21, 2017 Finishing Up Last Week Problem 1. (Challenge) Consider the set Z 5 = {congruence classes of integers mod 5} (1) List the elements of Z 5. (2)

More information