M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7; ;J zy U;K z< mj ]!.,,+7;

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7; ;J zy U;K z< mj ]!.,,+7;"

Transcription

1 V 3U. T, SK I 1393/08/21 :,F! 1393/10/29 ::!n> 2 1 /M + - /E+4q; Z R :'!3Qi M $,7 8$ 4,!AK 4 4/ * /;K "FA ƒf\,7 M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7; ;J zy U;K z< mj ]!.,,+7; < =! ;* F ' $ / 4 ; m+$ ;S 4, q 5 4/ /2 ; C+0;$ / 4 4 6! G$ 7J C!. ' /!A /;G2 M $ 4 65\ K;$ 30< z< ]! 2 >,7 $,+7; ;J zy U;K /!A 4 8 J R#4 ~F :, 8PK,7 $,+7; ;J zy U;K.6+!0 / 4 V! M 5,+7; J! `M5! `!=F 4 /AP 2 8JF; U! J0 I0. M;2 C++P 5 4/ /2 z< ]! U;K C! `M5 $ U! I0 83 J0 $ ~F $ :!3& `!=F.(; A!;0) 3 8J+J ;)K \. 3 8J+J ;)K \ /R < E10 5 ;910.1 /R < E10 /)K 8 +M ;_K.2

2 6 '( )* +, ( ) 10 :!., +1k4 90 c0 14 /K* ]4 Mn' /$;J\ K Ĉ+F S q; n'.4/ k + JA M $ /7K C+AX 4 m!g AP 4 30< ]4 5 0/ U+^1 /$;J\! /J+J\ k $,F! `!=F,7 [!Š GK < 4 C^+7./ 6+cA K;$ 4 M $ J0 4 /;K 82 W /;K M+0 5 < ;* 4 $!* U^ ;0 $ k.;/ ' «$» < 4 /;K,7 M+ 8$ 4,!AK 4 4/ * /;K "FA ƒf\,7 M $ C! 4 /2 ]! ;/! /+5\ 8$ ;AK 4 < 5 M $,7 ;* C! 4., =! M $ 4 65\ K;$ 5 4/ 65\ mj ]!.4/ =+0,+7; M $ /+5\ 8$ A5 4/ /2 ; K;$,7 $,+7; ;J zy U;K,+7; 4 65\ K;$ < =! ;* F ' $ / 4 ; m+$ ;S 4, q 5. ' /!A /;G2 M $ ;J zy U;K /!A,7 $,+7; / K;Z; /^! 4 ;4,7 $,+7; AM 2 U;K C!.,,7 $,+7; M < 4 7J C!.!n>/!>,7 $,+7; 30< V! M mj,+7; ;J zy U;K /!A 4 M $ 4 ;4 8 J C+0;$ / 4.6+M $ / 4 ; 30< z< ]! U;K C! /F CZ 2 >,7 $ V k. :+ U!q., $ ~F,7 $,+7; ;J 4 r! U;K /^!.6! >/ Q;Z; C! a 4 5 ' $ ~F i*; 0;/

3 11 V 3U. T, SK I, ; 46 Q63 V l]m I3 5 k. :+! ; ;tm +> /;K ]! ; m\ F5 ]! C! 5, /A+4`+> $ ]! [)k! ;G$ ;AK C++,)3 `+4 '5 CF ' U!; +2 :0;0 4 x, M;2 $ ~F `+4 /)+G 0 4 W +2 +> Q;Z; 83 /1k4! V! `+4 +> Q;Z; 8+)K Q +2 < 6+) 4 C++,)3 [G0 /A+4`+> M5 +2, M! +> M = V! `+4 '5 =,2 > +2 /)+G / ( ) A4 C++ 8 [G0 `+4 +> Q;Z; 8+)K Q 4 '5 [)k U+7 4 $ ~F m\ F5 5 AM ; )* +> /;K ]!. ^0+> ;G$ Q63 V 3?W I3 5 k. :*!5 ~F +2!</ `+> ^0+> 4 5 /$;J\,+Z 7 4 +> /;K ]! 214 :4/ U!y a 4 30< 6M 5, /A+4`+> (,7 ) F5 4 $ ; mps 5, 5y! :Q63 & ( +X>6 <> 5 k..l /$4 +G 4 ;4 ; 90,3* UA,5 /$;J\,+Gk 89 ;0$,5 83 * M [Š; +G! 0/ 4/0 /;K "FA,)G 4 mf; +G! ]; /;K 90 C^+7.A4/., #K $ ~F *,7 4 n7 ; +G ;0$ 15 mps AX M 2 :Q63 A.Q( <> 5 k..m 5 /)+7 M 4,7 C^+7 A5 ; /2 4 0;/ +G /E^.+> /;K ]! A4.1.+> /;K ]! A4.2

4 6 '( )* +, ( ) 12 /+5\ K l7g 4 A4 +> ~F. $ ~F m\ ;AK q4 1 : n 5 5 k..b., /A+4`+> /;K "FA ƒ\ 8W_$ ;/ /J),7 p S C+AX 6M 2.4/ ;2 6+G /0RJK /0P W 4 [)^,7 ; C+AX E! 8PK 4.!0,!^ /!_$ l7 "* =0 ;4= UK 0;/ $ /;G2 (Laubade`re, M $ 0;' C!,7K C+_ * C!+A4 /!_$ 8c0 $ /;G2 p S $ ~F 8; 5, 5y 4 q.a, 1984: p 443).(166 :1392 /!q;) 0qK 82 /$;J\ c0 C^+7., F!n> Q;Z; C! 0 F M $ c0 3 c0 4.4/,5 ;G2 C!! C+0;$ 5 AM 4 C! 4 0$;J\ /2 4 F!n> +2 Q;0 C! +> /;K ]!! x, J0 U4$ c0 C! / a 4 /S ;+$ C! 4 A /E0;EX ]! 5 ;S 4., /+G C+AX RK 5, /A+4`+> C! 0;0 4.4/ +> 48 Œk1 0 M5 [+)^ < CZ 4 ^0+> QRS 4 /P5 ;S 4 /!4, 41, 40, 39 ;) A C! [)k ; /A+4`+> ]! m4# F5 C+AX6M.; C! x +'/ (,$;! /#$) U!; 0 M5 F!!> R5 M5 (52, 48., 5 Œk1 =+0 ^0+> MC+_ [+)^ 4 +2 C! 5 ; /\ AM J 0$;J\ s5 0 F /$;J\ c0 $ ~F +2 C! 4 A m\ 6M /A+4`+> $ p S +2 C!! xa5 i) ;2 +2 C! 0;/0 $ p S C! 4 RK. /7 ;.(239 : G0),,7,+5\ /0 M $ < K;$ 2.The duty to give reason.+> /;K ]! 48.1 (351 :1378 /AY /!PSPS :.) 1+4 7# 4.3

5 13 V 3U. T, SK I ip 4 F5 ;4! ' JA TA* 8 =) +3 4 $ 5 0 > 0 F (EC/1930/ Chantjers du midi) 5 "0 4 6^\ ;0 ~F < TA*!> 1 c0! C+AtM., ;4,Ps ;G2 C! 0$;J\ c0 =+0! ; ;A5!,7 ;P0 +2 C! m)# /F0 U$\ n' /$;J\., 5 +2 C! /0;'0;' $ ~F 4,+5\ K J l7g U+7 4 $ ~F,7,+7; [)^,7 l7g U+7 4 $ ~F., 8 ^0+> [)k! ;G$ U+7 4 < /#$ U!; +> /;K ]! 41 mps, 0 5 M5,$ <, ; /P! '. +E4,$; U!; 39 8 J mps, F!!> 5,$ mf; 4 5 /PA 8 ;2 A!=M 4, [)^ ^0+> ; M1 0 M5,$ 5 90 C\ C+_.M /#$ U!; {}!0 i+k "F ;/ C++ F5.;/ < 35 mps 0'* V! M /#$ U!;,$,$; U!; +2, Ž\ '5 5 /$; M2 8+,7 C+AX6M ^0+> 4 RP$ 5 /!M,2 > CF ' c0 4 M2 8+ C! 34. +'/. '/ ;ca ^0+> i)s f\ 4 ;/ C++ p S mf; 4, /3 u7z k U4J +> Q;Z; * ;ca 4 ^0+> 5 /; k < 4 /!M82 A!=M,2 > 4 =) +> 4 2 z 4 5 ^0+> ^04 f\ 4 F5 +! /'+ {> M82 MA!=M C! ' R4,F! 4, 5 ^0+> 5 /!MA!=M ', *;!4 P7.;/ ;ca ]! 48 mps! x;4 M;k0,7 P7# U4$ M82 C! 4 +> 2 M $ +> 2 R4,F! {> T0/4, [)^ ^0+> +> /;K ;2 A^0 $ [+)^ C! 4,P0 ' M 2 u7z k =* ^0+> 4 ;2 ( :1380$% & 350 :1378 :.).١

6 6 '( )* +, ( ) 14.;4 M;k0,7 *; /+)^ ;4 M;2 90 MA!=M M82 ; 4 ;4 M $! x!0,2 > =+0 l7g 4 ;4 MA!=M, [)^,7.;4 M;2 S;4 MA!=M,2 > ;,7 ;/ UJA,7 4 l7g! 2 V o.=6 -XD5 :* J0 ) 90 /) ]! ;* K U+7 4, C^ $ R#4,+K 1 C+ Q;Z; C+F S Z G$,+)M) 8R / ]!.4 JK R#4 i*; ]! C! V! M JF 5, /0 ;0$ 190 Q;Z; (),3* /7 M $ R#4 i*; =+0 E! ]! ; 4 RK. '/ ) $ 6+cA 4 C^+7 x4 0 $ 6+cA,+\R ' 0;0 4.;/.;4 M;2 US4 $!0 8P C! 4. '/,7 $ 83 ;J i*; 5, /);K E! /^! I0 RK ~F ;AK, $ R0 +> /;K ]! ; /2 4 5 ;* 5 4/ I0 ; ^)4 ;P0 ~F m!g <,+M 4 *; 4 C^+7 x,.6! >/ < a 4 Q63 66V 3 I3 5 o.=6 :+!5,+K;A ;1 F5 ]; ~F ; /^! +> /;K ]! 46 2 A4 {)9 'A!0 )2 "A ;0$ mps., 5 +4 ^0+> /0;0$ C! ;5n A5 (1337 f;g) /7 ME 4 ),7 A5 ^0+> +> /;K ]! 44 mps C+AX6M.AM Q;A,7 4 ) ;0$ 8Pz < pr2 ' C^+7 4/0 )2 "A ;0$ ;1 5 A5/ RK +> JK "$; 5 / ++e U+7 4 ^0+>,$; U!; 5 90 CZ ' M.;/ ~F +> x; 5 / ++e! ^0+>,5 4!! 3 =+ 3 P\.;/ ~F +> ' ;0$ ;1!< `+> F5!,7 ME

7 15 V 3U. T, SK I C^+7, ~F 8PK C! ne0;0$ AX M 5, 5y! 6^\ /0 ; 0;' C! $ R0! x, $ I0 5 t0< ;2 $!A0 RK F5 4 i! A^0 ~F RK F5 ' /\, ;0$.(291 :1391 EA ; /) M;2 ~A UA ;2 4 RV p :*!5 MfGK MfRJ0 10! RK 6K TA* :+> /;K ]! 43 mps A M; `< K + M+eS U+ 7=7 +' M+4 Q;+ /;K * J#A 5 +> p S A Ž;\ F;S / / 4 3$ Ž;\ =* C^0 ^0+> 4 5 4! Q;$ 5 z E! p S 4 M82 ; p S V! w+m 3$ Ž;\ 4 AX M.4/ $ I0 ; j d;f! 3$ Ž;\ 4.,+0 Ž;\ C! 90 "0 j d;f ;X C^+7, /A+4`+> F5 ]; $ ~F ; C!.4/ $ I0 R0 m!g n7, 3,Š\ 4 ;2 `;5 s5\, [Š; ^0+> 3$ Ž;\ 4 8; F C! C # MU 4 8=+39 l7g J0 * M5 +2 C! "! 4 ^ \ U ;2 ;*; 80^!4 =+0 A4 Q;Z; +4 ;1 +> Q;Z; M5 4 M82 '.M $ ^0+> ' ;/ $ M mps < P* 4 4 +> /;K ]! 21 ( ) 3K 4 82 P* P0 /F5 M82 P* 4 < =+! P0 A4 C! ;1,$; 8+ M2 4 M82 P* E! p S., F5., ^0+> 3K 4 21 () A4 4 *; 4 ^0+> U! =4 8q<C+ V +6 : *, 5 ;/ i*; ;4 zy,7 $,+7; 5 /K;Z; E! /^!

8 6 '( )* +, ( ) 16 $ J0 4 C+4! F! `M5 $,7,+7;., RK /0 ;0$ U!P m!g /^! ;AK 4 Q;Z; C! C! U!P.4!/ mj C! U!P! ;! U!P C! U!P :m! S 4 3 U!P t0< 4/0!n>^ M $ ;4 /! 1 4 *; 4 /7 M $ J0 u+\ 3 U!P z< ]!., $ U+^! ++e F 5.;/ a 4/ C! ;! U!P 5 $ Q63 O!R?M +6 :+!5 83 $ M;k4 /$;J\! /AF U!q 4 ^0+> $ 6+cA 4, C^ ; E! ^0+>,!30 5 ;S 4.!0 n' E! 4 ;2 A5 ;P$ ;2,!Z 4 u7z Œk ' /0 ;0$ 292 A4 mps. ' $ ; C! 4!/ mj 3 U!P x!0! 3 C! M C+AX /7 M $ C^+7.,+0 ( F5) 7 3,!Z /;K /;K M+0 C+ M $ pm! x,+0!n>^ 90 F \ /AF,+\R \ ^0+> 8 P 4/ F5,!Z 4 (^0+> U!P) ;! U!P # 4 3 U!P C! 4A4 x, 3.4/0!n>^ (,7 ) C! As., 65\ F5,!Z 4 J0 ^ K K$ /0 M $ 4 '.0 +0 F5 mf; 4 q; 5, 4 M,5 4 $ n' K$ 4 4 M,5 «f» < 4,5 4 «[7» $ p S,5 : APK «[7» 4.4 m) «[7» 4 < 3 50 `+4 5 /!M,5.1. «f»,5. «[7», `+4 5 /5.2 «[7», `+4 5 /5.3

9 17 V 3U. T, SK I A F5 U4J M (+7UJA),5,5 5, 5y 4 q.(492 :1393 +) 0,+7; A_!,0 /),5 C+4,0 +7; p15 ^0+> $ 31 3 =* p S _K V! M $ C! mps., /A+4`+> Q;Z; C! =+0 /!> M;15 ;2 G$ "FA!= 83 /$! 04 /_J 5 "$; M 0;/ :!0 UJA! M,5 4, J $ C! i*; < A5, AM J0 5 /!M,5!,5.[7.4 AMJ0 A5, 5 /!M,5!,5.f (f)! ([7) ;5n M,5!,5 A5, 5 /!M,5!,5..A4 "FA,! s5 6+J +! 6+J,+^7, 8PK,5 V! A5 ;ca C! mps 5 /3 AMJ0 p S /7J0 C+AX 5, 5y!.,5 < 3. 5 M;k0 P p * w+m 4 3K 4 $ q :, 4 1 E! M,5 4 J0 U4J "+4 M $ F5 U4J 0 +'J0 4 AMJ0 +0z.; i5 J0 4 /AP F5,!Z 5 '/ PA +> /;K ]! 24 ([7) A4.4 /A_,+7; m\ =+0 F5,JF; 4 /\, Q;A E! 4 $ m)# n' ^0+> +\0 +> * n' C! (f) A4 /7.0 E! 4 $ n' ^0+> F5 C+4 $ 5 ; +, F!n> =* ^0+> 4 ^0+> +! 4 +0, l! G (,7 ) F5 ]; =* ^0+>,+\R +! =7 4.,+0 E! k 4 $ n' 4,7 * i5,+\r.;4 M;k0 ^0+>,+7; /F0 =* ^0+> 4 $ n' 5, 5y 4 q +> /;K ]! /0;0$ 8! 1,!K 4 $ /) ^0+> 5 /; =+0,7 q, [)^,7. /+7^ =* ^0+> P$!0 n' =* ^0+> 4

10 6 '( )* +, ( ) 18 z ' +0z.!0 /'+ pr2 4 =* ^0+> 4 /) ^0+> C+4 pr2 4 8; 5 /!M5 4 =* ^0+> i)s m\ F5 ; ^P)S =* ^0+> /'+ C!.!0,2 > ^0+> 8P7# U,,2 > ^0+> 4 <,+Z 8; ^0+> 3 8 P 5 /; +> /;K ]! 24 (f) A4 4 *; 4!0 $ $ * 4,P0 Gk, [)^ ^0+> 4 $ 90 =* ^0+> 4 $ n' ; C+AX.0 =* ^0+> 4 < n' m\ C! 4,P0 F5,!Z K 8; ;4 nf0 + /0 ;0$ 268 mps A^0 ;P$ F ' 8; 3 m\,7 ;4 M;k0,7 *; /+)^ n'.m 90 < /) ^0+> 3 ' x4 q5 U!; m!g ^)4 ;P > Q;Z; 5 ; Q;0!.;/ /J) F! 90 3 ; 90 /) ^0+> + E! Œk ; $ pm q5 U!; W 4, ;ca <,! pm 5, /K;Z; UK ; /) 4/0,+M E!! /) 3 ]; < 90 ;/ < 4 90,+7;, ; ; C! C! 4A4 x(241 :1391 EA ]; $ * K U+7 4 0;/0, M;2 ^0+> 4 4 ; ;2 83 * 3 Œk O!R?M +6 :*!5 4 / ;0$ 44 U * 5 /7 M30 MEA4 ;,7 83 J0 C! 4 'A!;0. N!,+M ;/ n' /;G2 `k4!.0 ;* ;G2 C! /! 6^\ =+0 8 J C+0;$ 02 > Q;Z; C+0;$ Q;9 ;/ C^+7., F E0 U^ ;G2 C! =+0 /2 C! 5 /!_$ Œk1 Q;Z; C! 6^\ ;15 82,!! ;0$ +> /;K ]! /0 /k M $,7 83 J0, q Q;Z; C! / 4 4.;0

11 19 V 3U. T, SK I.; / 4 0'* ;S 4 /;K 82 ^0+> M $ 4 /7,5! n' 4 :!], V O!R?M +6.l ar ;0$.; C!4 ;5n E $ A55 [+)^ /7 + `k4 ;3* / ;0$ 44 U /)5 M,+ * 3X 0 4 ;0$ ; 6W$ /7 + `k4 5 '/ PA < 16 N! f;g! /R /k $ 83 '/ A55 U+P$ C! 4,P0,7 83 J M A55 +)5, [)^ n' 8 +M mps. +'/ 3K 4,7 i0* < /E104 4,P0 {}.!0 +4 ^ n' `+>,5 f;g "!A ;0 4 ;0$ 10 9 ; mps 5!0 $ /0A55 < 4 mf; 4 C+AX6M.A4/ K; `+> /E104 ]! 1385 A55 {}.!0 $ 30<! 24 4,P0 x0! 24 4 U! 5 /0A AE4 n' ]! C!,Pz n' A n' U4$,5 M.00 `!;2 A55 `M5 m\ 5 n' M,5! 4 n' /7 MEA4 A55 /k P ;0$ M 31 m4# M;k0 3 C+k U+P$ C! P$,7 '/ "#$ ]4y /! * ME,+7; J0 C! 4 ;! U!P 7 4 C! J0 E! 8PK 4., i d 4 =+0 /!_$!. M;2 ]$ A55 U+P$ C! P$, ), 10 F!n> /k 83 P$,7,+7;,7,+F S 4 8 4k A55,!^,7K ;! 19 P 1393/3/17 I;.(, 10 F!n>,5! EA4 J0 4 : O!F Q63 V O!R?M +6.m C+0;$, JA ^0+> 4 5 /!M $ [+)^ /7 + `k4 4 /7,' ;/ /0 ;0$ ;G2 /;K 8 J 4 *; 4 C^+7.,! E0 Œk1

12 6 '( )* +, ( ) 20 * +7UJA ;AK 4 /7 \ /J 6W$ 4 /7 + `k4 J0 C! mj 4 *; 5 =+0 $ /0 83 [+7^ < "P 4 '/ $ $ /0 E! Ck 4.;/ UJA /;G2 `k4 4, ;4,7 ;4 M;2 /7 + `k4 *; 6M,+7; [+7^ n7 '/ n' /7 + `k4 4. '/ ]$ ;G2 C!,7,+7; C! 4A4 x( e7 +)F 6Ae7 7 C) ;2 4 M $ M+ M/'N! /7 + `k4 5, 5y!,7,+5\ U /;K,2 U 7 4 F M+ C!! x;4 M;k0. M;2 * U4$ + /7 `k4 Q=0 n' 4 5, /A+4`+> V I!?M :*Ri C+F S 5 ; =* $ U!,+5\ U 7 4 /;G2 M $ ; mps.;4 M;k0!n>^ A4 5 /A+4`+> $ U! ++e $ $ U!! ++e 4,P0,7K pg0 d 4 0;/0 =+0 d /0 ;0$! C+F S mf; d 4 $ U! ++e ^ 8 Z 4 A4 ; /2 4 C^+7.!0.(70 :1386!;5) ;* ;0$ 6^\ 4! ' 6+G 30< /^!,;2 4 C! $ U!! x4/0 ;E' u4 U C+F S mf; d 4 U!.0 /!e,+5\ U 4, C+F S 1 G$,;^\ /0 ; U+P$ < y;0 4 ;*,7 4 /JF; C+AX ^ ' =+0 M $ $!* $ J0 4,P0 C+1+> $ 7$ 4 C+F S "$!.0 ;*! /7 M+> $ U! /0;0$ U! z< ]!, q C^+7.A!0/.6+!0 / 4 0'* ;S 4 /!_$ U! V 66V I!?M :+!5 ++e!p0,+5\ U d 4 A4 ;2 J0 ;0$ "4!4 M $

13 21 V 3U. T, SK I $,+P /;K 6c0 ƒ\ /;K l7g d 4 CAJ ' C^+7.; 9! 30< $ 4!* ]! C++ 4,P0 0;/ M Œ+k1 Z q!* ;0$ PA* 5 M $.;4 M;2!* 8 J "4 $ 8; C!.!0 $ U! a 4 5 ;4 M;2 "! Q;Z; C! 4 $ /;K 6c0.6! >/ /k /0+> M $ ^0+> M $ /0;0$ /7 +> 4 ;4 8 J C+0;$ : Q63 V 66V I!?M.l *; +> U! /A+4`+> K 8; /7 M^0+> I 0 ++e 4 ne0;0$ 4 M $ C! /0;0$ U! A! ; C! ;/ 5, ;0 *;4 ;0$ (80) GP ar 4 "* /0;0$!q» \ ( ) A4 0;0 4. < ; [!Š /^! 5, /A+4`+> 1358/11/3 f;g «;15 U ;* =7 8; M+> I 0 c0!9, 8PK (*;4 0 4) /AF /7K 8+W=* 4 q /A+4`+> ;4 ]4;Z $ i7$ ^0< 4 1 /F5 +*; /0;0$ +3 C!., /0;0$ U! A4 C!.4 10 u4 82 A!=M P* «M+> I 0 c0!9» 8PK $ A ; 1+4 G$ ;\ QZ ++e G$ M 4 q; U!y 2 1 M GP C! 4 RK., /A+4`+> U4$ + ; 4 *; E '/ "* 4 /7 M+> I 0 c0!9 +2 /#!, \ ( ) A4 1., n' E! 8J 9 : 0 ;6% 78 & 4 % / $,-.١?% C. D +0 ED A F9?6 &./ & ED %20 A 3<= 0 A B% 2 3./ $ L MNK3.0?3 8.H I B I 5 B J8 A %15 A 3<= 0 A B% 9 : 0 9PO I J8 ; 9 %5 31 A Q & R- +SH0 TR A&?% C. D ED A F9?6 &./ & ED A&?% & ED %10 A V 2& C. D &?:U C. D

14 6 '( )* +, ( ) 22 M $ )P! /$;J\ c0 :!], 63 V 66V I!?M.m A0M /0;0$ ^\ i*; 4 /0+> /PK 4! /k +> /J) 4 *; 4. '/ U! F! `!=F ; I 0 4 ia,7 / A5 /0;0$ U! < ;/ $ ;AK 4 ;5n M $. < 4! M $, [Š;,7 5, ;0 J 1383 f;g ; 3X 0 4 ;0$ 150 / 4 M /S,7 E104 A55 ;0$ 125 =+0 Z\ \.M `!=F ; I 0 4 ia /)e M 6M=+ 6M ;GF i! Z 5 / J 1386 f;g ; M 5 ; I U$\ 4 M (;/ =+0 /0+> A55 U 5).4!/ `!=F '/ RK =5 V04 ; -3 V I!?M :*!5 C^+7 ;4 /A+4`+> $ U! ^ m4 +> /;K ]! 37 f;xx +> U! < * 4! ' ~0 /K C+AX \R $ U! ]! 8\R C! 4 C! 4A4. /A+4`+> +> /;G2 ]!!* +> 0,JF;.(391 :1392/!q;),! ' /0;0$ U! C!=E!* 29 (OM) A4 mps, 10 /A+4`+> +> 34 U! 4 /)J (1387) /;G2 ]! /A+4`+> ]! mps +> I 0 U!!* +> /;K ]! "4 /;K K$ V! ;AK 4 $ U!!* +> /;K ]! C! 4A4 x,., F E0 $ :!n> ; ^0+> M $ 4 ^! ]! ; /A+4`+> U! ^0+> $ V! /;G2 ]! 5 /; 9+0 J>% & X%.&) -0 & %.AH TR & & A&?W & R- +SH0 TR.0?3 8 ( Y- TR 03

15 23 V 3U. T, SK I, /A+4`+> /;G2 ]! 5 /P! Z mps 4 ( $) +> )P 8; C! $ 4!30 U! c0!9 4 9A G$ 8q; E! !/ U! 2 ;3 4 /A+4`+> U4$ + ; z,' ;/ {>.;/ $ /7 ; C! 4.(219 :1391 EA ; /), $ U! /7 (M+>) M $ +2 PA* /7 ^0+> M $ U! Z\ \ 5,' ;/ +P U4$ + ; 4 *; 4 K 5, +> /;G2 ]! /A+4`+> 4 ;5;.;/ 7 +> /A+4`+> V NV I!?M :*,!5 +';)* 4! JK CZ 4 A 4 d ^A!, 8PK /!_$ U! 5y!./ ]! 4 ia U! $ p S /^! Z /7K/4 0;' C!! x, 10 F!n> ;0 /$;J\ Mc0 $ /!_$ U! 5, w+m 4 d, CAJ,+\R +> C2 C+F S 83 ++e Mc0 C! 4.0 < 4 =F! C+F S 83 C5 m\,7k * 0 4 ;7 ;AK QZ /M'! x ;* $ U! ;G2 /!_$! M;15 /2 4 ;* A5/ ++e AX /A+4`+> U4$ + Ž;\ z 4 $ J0 4 65\ G$ ;\ F ' c0 $ EAM C+F S 5 '/ =+X < + $ /$ : 5.;/ a # d )2 7 ; C+AX 0;4 4 $ * 4 65\ ]! 4 *; 4 0 F /7 ; x 4 ' +_$ /;K 82 $ * 4 8K C+AX6M < `+>,$; 8R^1 "F!4,5 5 /2 ]! ; =+<,7 8; 4 A0;/ C+F S 5 ;0 J /7 ;,JF; K 8;.A!0,JF; M ;2,2 4 ]! < $, U 8+_J,)K 4,5 5 /2 C++ 4,P0 /Gk1 :1391 EA ; /).A5/.,+0 ;) $ U! ;G2

16 6 '( )* +, ( ) 24! /!_$ /0;0$ U! 6K $ U! 4 5, 5y 4 q ' C!!> M,+7; 83 C!=E!*!*,+7; A5/ ++e,7,+7; $ ++e! x4!/ `!=F,7,+7; K $ U! P7. '/,7 /)P$ /;K,2 90 ^A! 4,7 $ * ^ K i*; ;\ QZ i*;,!30 C! 5 M4 $ p S !4 X0 4 ;10 [$;. '/,7,+7; `!=F 3U. JF V S :_g 0'* $ d 4! JK CZ mf; d 4 A0;/ C+F S,+7; 8JF; C! z / 4.A!0 ; ++e :;k 3 90 K P$.6! >/ Q;Z; C! a 4 5,+M,7 3U. q% T ( :+!5., F ' $! ; 5!=+4 3,+7; 4 5 /S y;0 :1386!;5) 4/ nf0 M $ U+P$ C! /0 ;0$ ; mps,+7; `!=F,3* MmF; C! PK y;0 89 ;0$ 381 C+AX6M.(275 d 4 M $,7,+7; `!=F ;G2 C^+7., F!n> 3.0 ;* /A l! ~> 0 $ C+F S mf;, $ /+* 8+2,7 M $ 5, 5y 4 q.4/0 U! U4$ =+0 C+F S mf; 4 /\ ;4 K M $ C! 4 65\ K;$ 4 "$ 0 F /7 ; ;3Š A+ C+M 9! ! 5 /!As 18_$,;^\ 30 {+,7 +2 < n7. 2A,+ 4 ;0/ ^0+> 4 [+)^ 1. Gouvernement des juges.

17 25 V 3U. T, SK I ١. /!A /;K "FA,!\ * A!0 ;AK 4 $ K $ C+AX ' 0 ;* $,7,+7; `!=F ^ / c0 4 ;0$ 17 A4 69A> 0 4 ;0$ M;k0 nf0 ; 6+cA `!=F i*; 5 /4;G i!;g /;A *;4 C+0;$ C+AX6M 1387 *;4 9! /7 m! S 4 n7., RK Q;A '/ PK 4! 83,7 83.;4 M;2 Q;A 4,7 /0;0$ /; $!> 4 / cA v+ 8; 4 M $ 5 C! 4 *; 4 =+0 UK.0 ;* /S C+AX ^ x +'/ $ /! * ME 3U. q& T ( :*!5 K / /K 5, C!,+7; `M5 ;ca 5y $ 5 /2 =+ 82 )P {} A5/ 8Pz $ * 4 $ J J `+4 /2 ' /\ ;/,2 > 4, q ; 5 '/ 3 U\ G s ;AK 4.4 4!4 73 8; C!.!0,2 > 82! ;+)+ V! )P U\ ; 5 ;4 M;2 /e)p M P7# U4$ )P s5\ {}!0 8Pz 82.4 ;5n )P `+4 82 =+ ' /\, < $, RK ^R4,+7; `M5 /;G2 M $ 0 < d 4 ;4 9 /S C+AX :!n> 0 F /0 ;0$ ' 5, J 436 =+0! /0 ;0$.4!/ `M5 3,+7; M C! 5 ;4 M;k0 ; q5 i+k U4J 4 5 P "+P f;+k "!4 9! /$;J\ c0 /;G2 M $ U+P$ C! n7,,+7; `M5 Z 4 5 /,7,+7; `M5 / c0 4 =+0 M $., 1. Dubouis Louis, 2001: p.4

18 6 '( )* +, ( ) 26 5 ; C^+7., ^R4 E0 /;K "0 P0 u7z k 4 9! < K;$ AP 4 /;K 6c0 7 4,7,+7;. `M5,7,+7; ;/ i*;,7 '5 ' /0,+7; ;0$ 12 mps s ;AK 4 ' /\ x!0 * 82 P*,3* (,7 ) F5 4 0;/!! ' nf0 M $ U+P$ C! C! 4A4.4,7,+7; `M5 ^0+> $,+7; `M5 ;/0 5 ;0$ 8 8 J,!K =7 4 *; 4 C+AX6M.;4 M;k0 m\!4,7 5 ; C+AX6M.;0 5 M $ F5 ;AK 4,7.4/0 l+,7,+7; `M5 }4 u7z k! U. T, T ( :*,!5 /2 4., 34! U 3,+7; i) /;G2 M $, $ C+F S mf; /0 82 P* AM J 0$;J\ ;0 4 S;4 82 P* ;/ =+0 mf; d 4 n7 3 "PA JK! x,+0 l+ /S C+AX y;0 0 :1386!;5) '/ JK =7 i*;,+7; K, =7 4 M 3, l+ /)5 ;S 4 3,+7; K C! 4A4., JK 8y _J pr2 4 1 :!n> U4$ /0 /0;0$.0/ US4 3,+7; K =+0 0 F /!_$! 4/ *; 4,+7; K s ;AK 4., RK US4,+7; K 8 J > C^+7., ;5n /0;0$ ^\.4/ US4 3,+7;! x! /!! ;0$ ; C^+7,+0 US4,+7; 5 ;0 PA ;/ 1 4 f;+k 4! 5 i) ;2 f;+k 3K ^A! P "+P f;+k "!4 '.1 M 4,P0 ]JF 4 5 P /2 i+k "!4 ', M;k0 "!4 4 Q;* m\ xi+k ;3Š 8;.0 * m\ i+k

19 27 V 3U. T, SK I.;4 M;k0 P,+7; K, ]P /;K 6c0 4 Q;Z; /+* 8+2 /;K "FA ƒf\ A!0 ;AK 4,7 M $ `!=F pr2 4,7,+7; K 5 ;/ i*; 8+2 C! ;* n7, ;J n7 /J),7 8$ /+* 8+2,3*,7,+7; ; 90 A0 /3 5, 5y 4 q.4 P 9,7,+7; x5,+a C+ ^0^+> 5 4 Q 4 < $ +2 V) V),7 4 ;5n ;,+7; K 4/ /;K 6c0 4 ;4 ; m!g.;4 M;k0 ;P$ U4$ : U!q 5 4/ $ ~F,7 $,+7; ;J zy U;K /^! /M' C+AX6M.!0/ 6M F,7 4 $ ~F ^ ^0+> ;G$ [)k ;X6M., M;2 ~F m\,7 ]! < 5 ;/ 3*; /2 /$;J\,+Z 4 ^0+>,7 x^0+>,5 /E^! R0 4 5, /A+4`+> +> /;K ]! U+7 4 $ ~F /M' E! p S. $ ~F m\ /;K "FA ƒ\ 4 ;*; ;+$ ]!,!K 4,7 5 4/,7 /+5\ K )* l7g.!0 ~F $ 0;/ +> /;K ]! 48 K U+7 4 $ R#4,7 $,+7; ;J zy U;K E! /^! /^! I0.4/ /0 ;0$ 190 mps JK J0 ) /) ]! ;*,+K;A U $ I0.,,7 $,+7; ;J ; E! A^0 =+0 ~F RK F5 ' /\ n7, ;0$ 6^\ /0 x4/ ^0+> /0;0$.4/ $ I0 U;K =+0 3$ Ž;\.; / ~A UA ;2 4 ;2 $ Q;+ /;K MfGK MfRJ0 TA* :+> /;K ]! 43 mps 5 5 +> p S A Ž;\ U+ 7=7 +' M+4

20 6 '( )* +, ( ) 28. / 4 3$ Ž;\ =* C^0 ^0+> 4!n>^ M $ ;4 /! 1 4 *; 4 /7 M $ C! U!P pm C+AX6M., $ U+^! ++e F 5 t0< 4/ ^0+> 8 P 4/ /;K M+0 C+ M $ U!P # 4 3 U!P C! 4A4., 3 90 F \ /AF,+\R \.4/0!n>^ (,7 ) F5,!Z 4 (^0+> U!P) ;! 6W$ x/7 + `k4,7 83 J0 4 5 ;/ PA C+0;$ /7,5! EA4 J0 4 C+AX6M. '/ /k M $,7 83 J * +7UJA ;AK 4 /7 \ /J 6W$ 4 /7 + `k4 /7 + `k4 4 M/'N! /7 + `k4 5, 5y!. '/ $ /0 M;k0 ;2 4 M $ M+!* ;0$ $,+P /;K 6c0 ƒ\ /;K l7g d 4 CAJ '.!0 $ $ 4!* ]! C++ 4,P0 0;/ M Œ+k1 Z q nf0 $ C+AX 0.;4 M;2!* 8 J "4 $ 8; C! ;* $,7,+7; `!=F ^ P0 u7z k Z 4 5 /,7,+7; `M5 C+AX 6M.;4 M;k0 7 4,7,+7; 5 ; C^+7., ^R4 E0 /;K "0,+7; ;/0 4 9! < K;$ AP 4 /;K 6c0. `M5,7

21 r5, R :, +A4 : 3 bx x(1391) EA ; : ;5 / Mc0 / ;0$.1.=+ /$;J\.$;J\ 10 : 3 bx M 8+)5 x(1380) /7 G0.=+ 10 : 3 x(1393) C+7PK +., : 3 69A> x(1378) 3X;A /AY /!PSPS. 1A34 : 3 ; )* M $ /;K K;$ /0 M $ ;,+M /0P /J+P# x(1386) 0!;5 x(1392),!< /!q;./ E «! )E0 0 F /$;J\ :O 436V.+> /;K ]! U /)5 M,+ * 3X 0 4 ;0$ ; ar ;0$.1.2! /R ;3* ; 69A> 0 4 ;0$ 3X 0 4 ;0$.89 ;0$! /!! ;0$ 5 ;0$ /0 ;0$ ;15 82,!! ;0$ /0,+7; ;0$ /7 ME 4 ),7 A5 {)9 'A!0 )2 "A ;0$.10 ;15 U *;4 ;0$ (80) GP ar 4 "* /0;0$!q EC/1930/ Chantjers du midi :, 3Y

22 6 '( )* +, ( ) Laubade`re A. (1984); du Tratie de Droit Administratf, 9em Edition, Paris, Dalloz. 3. Dubouis Louis et gustave peiser Droit publique paris DaLLoz, 2001

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C! 393/09/0 393//07 :,F! ::!n> b]( a.q 5 O +D5 S ١ ; ;* :'!3Qi C+0;$ < "P 4 ; M V! M V! ; a 4 / ;0$ f;g,7k ;! / C+!< 8R+^ ;0$ Z\ \ K S;4 "* < 8c0 5 *

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

PRISON POLICY INITIATIVE ANNUAL REPORT

PRISON POLICY INITIATIVE ANNUAL REPORT PRISON POLICY INITIATIVE 2015-2016 2016-2017 ANNUAL REPORT N 2016 2017 PO Bx 127 N MA 01061 :// (413) 527-0845 1 T Ex D 1 W 3 P k 4 C R - 7 S j 8 B j 10 P x 12 P j 14 P 16 Wk 18 C x 19 Y P Nk S R 15 B

More information

`G 12 */" T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S.

`G 12 */ T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S. 01(( +,-. ()*) $%&' "#! : : % $& - "#$ :, (!" -&. #0 12 + 34 2567 () *+ '!" #$%& ; 2 "1? + @)&2 A5&2 () 25& 89:2 *2 72, B97I J$K

More information

FULL PRESCRIBING INFORMATION

FULL PRESCRIBING INFORMATION HIGHLIGHTS OF PRESCRIBING INFORMATION T gg f G f ffv S f pbg f f G G (p p j) INJECTION, GEL f INTRAMUSCULAR SUBCUTANEOUS I US Appv: 192 ---------------------------------------INDICATIONS AND USAGE ---------------------------------------

More information

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib, #4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0

More information

STANDARDISED MOUNTINGS

STANDARDISED MOUNTINGS STANDARDISED MOUNTINGS for series 449 cylinders conforming to ISO 21287 standard Series 434 MOUNTINGS CONFORMING TO ISO 21287 - ISO 15552 - AFNOR NF ISO 15552 - DIN ISO 15552 STANDARDS applications Low

More information

The Evolution of Outsourcing

The Evolution of Outsourcing Uvy f R I DCmm@URI S H Pj H Pm Uvy f R I 2009 T Ev f O M L. V Uvy f R I, V99@m.m Fw wk : ://mm../ P f B Cmm Rmm C V, M L., "T Ev f O" (2009). S H Pj. P 144. ://mm..//144://mm..//144 T A b y f f by H Pm

More information

Assignment. Name. Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz. 3) uv p u pv 4) w a w x k w a k w x

Assignment. Name. Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz. 3) uv p u pv 4) w a w x k w a k w x Assignment ID: 1 Name Date Period Factor each completely. 1) a w a yk a k a yw 2) m z mnc m c mnz 3) uv p u pv 4) w a w x k w a k w x 5) au xv av xu 6) xbz x c xbc x z 7) a w axk a k axw 8) mn xm m xn

More information

Remote Sensing Applications for the Historic Environment

Remote Sensing Applications for the Historic Environment m S App H Em L H Em m S 4 C B P m k m m. B m S App H Em L H Em m S 4 m C A Im H Em. B m m H Lp U S D m S C U P m k B m S App H Em L H Em m S 4 m A m A W k? A pp :. Tpp. Px. mk.. S S mk.. Cp S mk B m m

More information

CHAPTER 4. Chapter Opener PQ (3, 3) Lesson 4.1

CHAPTER 4. Chapter Opener PQ (3, 3) Lesson 4.1 CHAPTER 4 Chapter Opener Chapter Readiness Quiz (p. 17) 1. D. H; PQ **** is horizontal, so subtract the x-coordinates. PQ 7 5 5. B; M 0 6, 4 (, ) Lesson 4.1 4.1 Checkpoint (pp. 17 174) 1. Because this

More information

FULBRIGHT ADVISORY. Australian-American Fulbright Scholarship Information Day for SA

FULBRIGHT ADVISORY. Australian-American Fulbright Scholarship Information Day for SA ULBRIGHT ADVIORY A-Am p Im Dy A T A-Am Cmm w A m p 2 My 205. T Uvy A w p w Cmm Uvy H A Dy. I pp p y v Uvy A mp, pp v k m m vy. T Cmm w w : pm p mp A D; k / y y pp D; pp m U.. p pm M., D C - p m m- p pv,

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

!" #$% & $' ()$'* Javid_

! #$% & $' ()$'*   Javid_ 1367-1386 1367-1386 :!" #$% & $' ()$'* 87/12/20 : 87/9/30 : * VAR &' # ()! "!# $ % 1367-1386 " 8! ', +% 7 %./ ' 0 *#1,# +! 2 3 '4 5( %+% #,-. C D% / 5(: / % / 5(: 2" / #9% # : % ;- 0 #( /?> 4@ AB0

More information

95 Holt McDougal Geometry

95 Holt McDougal Geometry 1. It is given that KN is the perpendicular bisector of J and N is the perpendicular bisector of K. B the Perpendicular Bisector Theorem, JK = K and K =. Thus JK = b the Trans. Prop. of =. B the definition

More information

TESA IP40 protection against dust (TLC) Connector for a forward thinking approach to your overall quality control system

TESA IP40 protection against dust (TLC) Connector for a forward thinking approach to your overall quality control system V : 30.0.20 P x VA www.p. V 22 - EN N P p k, Cp y w A V IP0: A IP0, E b p y, y 7, E! P I v p b A E k w p b f 3 p, w IP7, w-c p. A b PC k w EA IP7 B IP7 p q - I EA Lk C (LC) f fw k pp y v qy y A w y w p

More information

UCM DEPARTMENT OF THEATRE & DANCE PRESENTS SEASON

UCM DEPARTMENT OF THEATRE & DANCE PRESENTS SEASON UCM DEPARTMENT OF THEATRE & DANCE PRESENTS BECOME A SEASON SUBSCRIBER! Dh m wh ym : UCM Dm f Th D Uvy f C M PO Bx 800 M 113 Wbg, MO 64093 A Cv Sy M A bb, y y k F bf h bx ff. T v y k f F g wh y k, h f h

More information

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES ON MY HONOR, I WILL TRY.. DAISI ES AMBASSADORS BROWNI ES I JUNIORS 2017-2018 GIRL SCOUTS! CAD E TTES SENIORS Wm! W' I? W'v Pm G, v, m m G S x. I, y' m w x m, v, v v G S G W M. T v wm.. I y v y q q m, 888.474.9686

More information

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k Qu V vu P O B x 1361, Bu QLD 4575 C k N 96 N EWSLEE NOV/ DECE MBE 2015 E N u uu L O C 21 Nv, 2 QV v Py Cu Lv Su, 23 2 5 N v, 4 2015 u G M v y y : y quu u C, u k y Bu k v, u u vy v y y C k! u,, uu G M u

More information

interns ~ Bi ll Dr ay to n Dawn Sonnenb Te g ro n S ta ff in g

interns ~ Bi ll Dr ay to n Dawn Sonnenb Te g ro n S ta ff in g 2014 ? f I f 4 1 20 V -P T ff f v x? H k? f k f v f k F? H f? H? T xv j Iv E x v f q F f -M v v f j v E T f f f z v v ~ A f j T L H T f v v L L H 4 K z f x f f z j J ff V -P K - k v T M M k P J k k V v

More information

Information furnished in conformity with the Convention on Registration of Objects Launched into Outer Space

Information furnished in conformity with the Convention on Registration of Objects Launched into Outer Space United Nations Secretariat Distr.: General 29 March 2000 Original: English Committee on the Peaceful Uses of Outer Space Information furnished in conformity with the Convention on Registration of Objects

More information

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea G Blended L ea r ni ng P r o g r a m R eg i o na l C a p a c i t y D ev elo p m ent i n E -L ea r ni ng H R K C r o s s o r d e r u c a t i o n a n d v e l o p m e n t C o p e r a t i o n 3 0 6 0 7 0 5

More information

5. Introduction to Euclid s Geometry

5. Introduction to Euclid s Geometry 5. Introduction to Euclid s Geometry Multiple Choice Questions CBSE TREND SETTER PAPER _ 0 EXERCISE 5.. If the point P lies in between M and N and C is mid-point of MP, then : (A) MC + PN = MN (B) MP +

More information

+ 2 S!"#$ %&' ()*+,-./ %581 9:; 2 < :; 5 B7 CCCD>E * = FG H I2JK <LMBN 23O567 +.P QR>SA TUVW)XY > * N Z<LMB23O567[\9]:^9:; H_`a9bc *

+ 2 S!#$ %&' ()*+,-./ %581 9:; 2 < :; 5 B7 CCCD>E * = FG H I2JK <LMBN 23O567 +.P QR>SA TUVW)XY > * N Z<LMB23O567[\9]:^9:; H_`a9bc * )! "##$%& "##%&) ' & # (!"#$ %&' '' * +, -. / 0 1 * % ' 2345678 % ' 9:; %% $# % # ) 6 %'(%)*+,+'-.$,,,,! "#/# ?@ADE G ?HIJKL M )N/ O DE '#

More information

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth 6 6 0 x J 8 0 J 0 z (0 8 z x x J x 6 000 X j x "" "" " " x " " " x " " " J " " " " " " " " x : 0 z j ; J K 0 J K q 8 K K J x 0 j " " > J x J j z ; j J q J 0 0 8 K J 60 : K 6 x 8 K J :? 0 J J K 0 6% 8 0

More information

ALGEBRA HW 4. M 0 is an exact sequence of R-modules, then M is Noetherian if and only if M and M are.

ALGEBRA HW 4. M 0 is an exact sequence of R-modules, then M is Noetherian if and only if M and M are. ALGEBRA HW 4 CLAY SHONKWILER (a): Show that if 0 M f M g M 0 is an exact sequence of R-modules, then M is Noetherian if and only if M and M are. Proof. ( ) Suppose M is Noetherian. Then M injects into

More information

Gaylord, Michigan, Thursday, May 17, 1945

Gaylord, Michigan, Thursday, May 17, 1945 » BCMV J &KJ V 70 N 0 B Q f $6 B U CCN K V F M M M J MCK %&«~ f - M K M B C M M B B f q z f q b f 7 b z f j f f C Nb f b f f M M J M f f B C f b J V f B C b b M M - q B M M M M ff b ; b b b b j f b b M

More information

ON THE CHEBYSHEV METHOD FOR APPROXIMATING THE EIGENVALUES OF LINEAR OPERATORS

ON THE CHEBYSHEV METHOD FOR APPROXIMATING THE EIGENVALUES OF LINEAR OPERATORS REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 25, N os 1-2, 1996, pp 43 56 ON THE CHEBYSHEV METHOD FOR APPROXIMATING THE EIGENVALUES OF LINEAR OPERATORS EMIL CĂTINAŞ and ION PĂVĂLOIU

More information

Chapter 30 Design and Analysis of

Chapter 30 Design and Analysis of Chapter 30 Design and Analysis of 2 k DOEs Introduction This chapter describes design alternatives and analysis techniques for conducting a DOE. Tables M1 to M5 in Appendix E can be used to create test

More information

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts I k E M C k C C EN CN INI & NYU CN EN INI @ y @ Lzz M M zz@ M y IDE I - y W y W q : y; y y y; yz y ; y q j W I y y /y y /k W W j - y W - CCCk M y C O y C j D D [D q]: D G D q/ D D q D4 / V D5 D G D D E

More information

Tornado, Squalls Strike Kinston Area

Tornado, Squalls Strike Kinston Area q k K A V N 28 #/K N /WANE CO A AON-CHEY ON A N F W N H W D M D H U x 30 M k k M D 945 E M A A k - A k k k A C M D C 030 D H C C 0645 000 200 W j A D M D k F E- HAUNNG CALL - A A x U M D M j A A 9000 k

More information

W= -b'e + af + cg + dh, X= a'e + bf + dg' - ch', Y = -d'e - cf+ ag' - bh, Z = e'e - df + bg + ah',

W= -b'e + af + cg + dh, X= a'e + bf + dg' - ch', Y = -d'e - cf+ ag' - bh, Z = e'e - df + bg + ah', PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 88, Number 4. August 1983 LAGRANGE IDENTITY FOR POLYNOMIALS AND Ô-CODES OF LENGTHS It AND 13/ C. H. YANG Abstract. It is known that application of

More information

~fw. urning Desire. lean ul. «sw. Final Extinction NEW QUIRK 69, N. Q., TUESDAY, APR^FCX^^W. ted:

~fw. urning Desire. lean ul. «sw. Final Extinction NEW QUIRK 69, N. Q., TUESDAY, APR^FCX^^W. ted: EK» - - - u I» -? NE QUIRK 69 N Q UEDY PRFCX F Ex X!E - - - ; - - - ; & P --?!R» u \ u CCNY -C C j pp N up - [ P-up p upu >j u D CC F 9u - x pu x pp p p p u p & K I? - >

More information

-15V R36 2.7K. BLUE HW2 Power RED HW1 DDT AGND AGND 50V C35 100N 50V C40 U N 50V U11 SET 9 C30 12 CLK Q RST 100N 50V CD N 50V AGND

-15V R36 2.7K. BLUE HW2 Power RED HW1 DDT AGND AGND 50V C35 100N 50V C40 U N 50V U11 SET 9 C30 12 CLK Q RST 100N 50V CD N 50V AGND A C REV Eng ate: Revision escription ECN# A C E F VR 0K INEX VR SEE ESCRIPION Power/ecoupling Preamp Octave ivider P O POER AMP RK PRE_OU V V OCAVE_EFEA R0.K RE E_SP.0 efeat S PPP S PPP V V R.K UE Power

More information

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University A Gentle Introduction to Gradient Boosting Cheng Li chengli@ccs.neu.edu College of Computer and Information Science Northeastern University Gradient Boosting a powerful machine learning algorithm it can

More information

); 5 units 5. x = 3 6. r = 5 7. n = 2 8. t =

); 5 units 5. x = 3 6. r = 5 7. n = 2 8. t = . Sample answer: dilation with center at the origin and a scale factor of 1 followed b a translation units right and 1 unit down 5. Sample answer: reflection in the -axis followed b a dilation with center

More information

RIGHT SPECTRUM AND TRACE FORMULA OF SUBNORMAL TUPLE OF OPERATORS OF FINITE TYPE

RIGHT SPECTRUM AND TRACE FORMULA OF SUBNORMAL TUPLE OF OPERATORS OF FINITE TYPE RIGHT SPECTRUM AND TRACE FORMULA OF SUBNORMAL TUPLE OF OPERATORS OF FINITE TYPE Daoxing Xia Abstract. This paper studies pure subnormal k-tuples of operators S = (S 1,, S k ) with finite rank of self-commutators.

More information

I can use properties of similar triangles to find segment lengths. I can apply proportionality and triangle angle bisector theorems.

I can use properties of similar triangles to find segment lengths. I can apply proportionality and triangle angle bisector theorems. Page! 1 of! 8 Attendance Problems. Solve each proportion. 12 1. 2. 3. 15 = AB 9.5 20 QR = 3.8 4.2 x 5 20 = x + 3 30 4.! y + 7 2y 4 = 3.5 2.8 I can use properties of similar triangles to find segment lengths.

More information

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3 - - - - ff ff - - - - - - B B BB f f f f f f f 6 96 f f f f f f f 6 f LF LZ f 6 MM f 9 P D RR DD M6 M6 M6 M. M. M. M. M. SL. E 6 6 9 ZB Z EE RC/ RC/ RC/ RC/ RC/ ZM 6 F FP 6 K KK M. M. M. M. M M M M f f

More information

Geometry 3 SIMILARITY & CONGRUENCY Congruency: When two figures have same shape and size, then they are said to be congruent figure. The phenomena between these two figures is said to be congruency. CONDITIONS

More information

Solutions to CRMO-2003

Solutions to CRMO-2003 Solutions to CRMO-003 1. Let ABC be a triangle in which AB AC and CAB 90. Suppose M and N are points on the hypotenuse BC such that BM + CN MN. Prove that MAN 45. Solution: Draw CP perpendicular to CB

More information

MTH5102 Spring 2017 HW Assignment 1: Prob. Set; Sec. 1.2, #7, 8, 12, 13, 20, 21 The due date for this assignment is 1/18/17.

MTH5102 Spring 2017 HW Assignment 1: Prob. Set; Sec. 1.2, #7, 8, 12, 13, 20, 21 The due date for this assignment is 1/18/17. MTH5102 Spring 2017 HW Assignment 1: Prob. Set; Sec. 1.2, #7, 8, 12, 13, 20, 21 The due date for this assignment is 1/18/17. 7. Let S = {0, 1} and F = R. In F (S, R), show that f = g and f + g = h, where

More information

Circle the letters only. NO ANSWERS in the Columns! (3 points each)

Circle the letters only. NO ANSWERS in the Columns! (3 points each) Chemistry 1304.001 Name (please print) Exam 4 (100 points) April 12, 2017 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

BAXTER ALGEBRAS AND COMBINATORIAL IDENTITIES. II BY GIAN-CARLO ROTA. Communicated August 20, 1968

BAXTER ALGEBRAS AND COMBINATORIAL IDENTITIES. II BY GIAN-CARLO ROTA. Communicated August 20, 1968 BAXTER ALGEBRAS AND COMBINATORIAL IDENTITIES. II BY GIAN-CARLO ROTA Communicated August 20, 1968 1. Introduction. The problem of obtaining an analog of the Baxter- Bohnenblust-Spitzer formula for cyclic

More information

2 v g vg mm u p qu xg g u u u u - m m g v O u m p m m - qu v Vg p p O gv W mp uu v u u u W k g uu p u mm m O m W m G p v Op u - Qu E p g W Gvm $80 mg

2 v g vg mm u p qu xg g u u u u - m m g v O u m p m m - qu v Vg p p O gv W mp uu v u u u W k g uu p u mm m O m W m G p v Op u - Qu E p g W Gvm $80 mg Qu m Vg P mg P O B x 1361 Bu QD 4575 P : 0424 251 646 pqv@gm m vggu J W P O B x 1361 Bu QD 4575 P : 07 5478 0443 qv@ g m m N 89 N EWEE F u 2014 E & p O u Fu N pg mm uuu v k - mm mm v g: O W m m V) Dm B

More information

GERHARD HERZBERG Fonds

GERHARD HERZBERG Fonds Canadian Archives Direction des archives Branch canadiennes GERHARD HERZBERG Fonds MG 31 J 4 Finding Aid No. 932 / Instrument de recherche no 932 Prepared in 1974 by Art Grenke and in 1992 and 2002 by

More information

GEOMETRY HW 8. 1 x z

GEOMETRY HW 8. 1 x z GEOMETRY HW 8 CLAY SHONKWILER Consider the Heisenberg group x z 0 y which is a Lie group diffeomorphic to R 3 a: Find the left invariant vector fields X, Y, Z on R 3 whose value at the identity is the

More information

Capacitance range: 0.01 mf to 2.2 mf Rated voltages: 630 VDC 1000 VDC 1600 VDC 2000 VDC 3000 VDC 4000 VDC

Capacitance range: 0.01 mf to 2.2 mf Rated voltages: 630 VDC 1000 VDC 1600 VDC 2000 VDC 3000 VDC 4000 VDC WIMA Snubber FKP Snubber FKP Capacitors for High Pulse Applications with Metal Foil Electrodes, Schoopage Contacts and Self-Healing Internal Series Connection Special Features High pulse duty Self-healing

More information

Early Years in Colorado

Early Years in Colorado Rp m H V I 6 p - Bb W M M M B L W M b w b B W C w m p w bm 7 Nw m m m p b p m w p E Y C W m D w w Em W m 7- A m m 7 w b m p V A Gw C M Am W P w C Am H m C q Dpm A m p w m m b W I w b-w C M B b m p W Nw

More information

Capacitance range: 0.01 mf to 2.2 mf Rated voltages: 630 VDC 1000 VDC 1600 VDC 2000 VDC 3000 VDC 4000 VDC

Capacitance range: 0.01 mf to 2.2 mf Rated voltages: 630 VDC 1000 VDC 1600 VDC 2000 VDC 3000 VDC 4000 VDC WIMA Snubber FKP Snubber FKP Capacitors for High Pulse Applications with Metal Foil Electrodes, Schoopage Contacts and Self-Healing Internal Series Connection Special Features High pulse duty Self-healing

More information

Recursive Determination of the Generalized Moore Penrose M-Inverse of a Matrix

Recursive Determination of the Generalized Moore Penrose M-Inverse of a Matrix journal of optimization theory and applications: Vol. 127, No. 3, pp. 639 663, December 2005 ( 2005) DOI: 10.1007/s10957-005-7508-7 Recursive Determination of the Generalized Moore Penrose M-Inverse of

More information

CHAPTER 5 : THE STRAIGHT LINE

CHAPTER 5 : THE STRAIGHT LINE EXERCISE 1 CHAPTER 5 : THE STRAIGHT LINE 1. In the diagram, PQ is a straight line. P 4 2 4 3 2 1 0 1 2 2 2. Find (a) the -intercept, (b) the gradient, of the straight line. Q (5,18) Q Answer :a).. b) 3

More information

FAIR FOOD GRADE 5 SOCIAL STUDIES FRIED FOOD FRENZY: SHOULD CONSUMERS EAT THE FAIR?

FAIR FOOD GRADE 5 SOCIAL STUDIES FRIED FOOD FRENZY: SHOULD CONSUMERS EAT THE FAIR? FAIR FOO GRAE 5 SOCIA IES FRIE FOO FRENZY: SHOU CONSUMERS EAT HEATHIER @ THE FAIR? F F G Fv F F Fzy: S C E H @ F? I w: Appy k k z f q f vy f F F v y F fk T S f Tx, w v p C v f y y b w f y k y q B T f?

More information

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2 Internal Innovation @ C is c o 2 0 0 6 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. C i s c o C o n f i d e n t i a l 1 Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

w = X ^ = ^ ^, (i*i < ix

w = X ^ = ^ ^, (i*i < ix A SUMMATION FORMULA FOR POWER SERIES USING EULERIAN FRACTIONS* Xinghua Wang Math. Department, Zhejiang University, Hangzhou 310028, China Leetsch C. Hsu Math. Institute, Dalian University of Technology,

More information

Baby Beauty Contest Judging Today In WR Recreation Halt

Baby Beauty Contest Judging Today In WR Recreation Halt MO BOOM JO R 7OM OJJM JC 20 946 MG 2 O H K F C O Ck C U VMR B G DON U M L H Y v C M G 2 v COMMNDNG MG-2 R R5-C k k C G - R k < v : L C B Z - v C R L C D H - v M -2 - «v G z F - MG-2 v j v v K O G - C

More information

P = 1 F m(p ) = IP = P I = f(i) = QI = IQ = 1 F m(p ) = Q, so we are done.

P = 1 F m(p ) = IP = P I = f(i) = QI = IQ = 1 F m(p ) = Q, so we are done. Section 1.6: Invertible Matrices One can show (exercise) that the composition of finitely many invertible functions is invertible. As a result, we have the following: Theorem 6.1: Any admissible row operation

More information

arxiv: v1 [math.pr] 4 Nov 2016

arxiv: v1 [math.pr] 4 Nov 2016 Perturbations of continuous-time Markov chains arxiv:1611.1254v1 [math.pr 4 Nov 216 Pei-Sen Li School of Mathematical Sciences, Beijing Normal University, Beijing 1875, China E-ma: peisenli@ma.bnu.edu.cn

More information

(2) ^max^lpm g M/?"[l - ^-(l - /T1)2}

(2) ^max^lpm g M/?[l - ^-(l - /T1)2} PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 56, April 1976 SOME INEQUALITIES FOR POLYNOMIALS Q. I. RAHMAN Abstract. Let pn(z) be a polynomial of degree n. Given that pn(z) has a zero on the

More information

Erlkönig. t t.! t t. t t t tj "tt. tj t tj ttt!t t. e t Jt e t t t e t Jt

Erlkönig. t t.! t t. t t t tj tt. tj t tj ttt!t t. e t Jt e t t t e t Jt Gsng Po 1 Agio " " lkö (Compl by Rhol Bckr, s Moifi by Mrk S. Zimmr)!! J "! J # " c c " Luwig vn Bhovn WoO 131 (177) I Wr Who!! " J J! 5 ri ris hro' h spä h, I urch J J Nch rk un W Es n wil A J J is f

More information

GalCiv Quick Reference ( )

GalCiv Quick Reference ( ) GCv k Rf (1.22.101) 1. R Tgy Rqd Tgy R T R Aby j y j 1D g I Cmm 200 1170 Wp Df 2D g 1D g 400 1570 Wp Df Hmy G V Ry C N N 3D g 2D g Cd Gvy 1000 3120 Wp Df N N 4D 4D p g 22200 112630 N N N 4D g p Rf 3D g

More information

arxiv: v1 [math.gm] 20 Jul 2017

arxiv: v1 [math.gm] 20 Jul 2017 arxiv:1707.06986v1 [math.gm] 20 Jul 2017 The m-th root Finsler geometry of the Bogoslovsky-Goenner metric Mircea Neagu Abstract In this paper we present the m-th root Finsler geometries of the three and

More information

Solutions 1F and 2F. 1) correct 12) 2 8 = 4 13) Q = 22 4Q = 13 Q = 13/4 = 3 1/4. 2) correct R 6 S 9. 13) R 6 S -9 or 2) 1 YX YX.

Solutions 1F and 2F. 1) correct 12) 2 8 = 4 13) Q = 22 4Q = 13 Q = 13/4 = 3 1/4. 2) correct R 6 S 9. 13) R 6 S -9 or 2) 1 YX YX. F F ) ) ) 7 ) Q Q Q Q / / ) correct ) correct ) ) ) R S or R S ) ()P P P ) 0 ) ( 0 ) 0 ) 7) 7 ) A D C ) [ 0 7] 00 0 00 ) 7Q( ) ) A B( A B) ) ) ) 0 () () 0 Z() () Z ) [ 0 07C] 000 ) 0 70C 7 70C C 7/70 7/70

More information

ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES

ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 86, Number 3, November 1982 ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES A. KROÓ Abstract. We study the unicity of best polynomial

More information

«-» ()». :., , «-»..... «-».., mathcad: -, -.. :,. 8. -,. -,,, -,,..,.,

«-» ()». :., , «-»..... «-».., mathcad: -, -.. :,. 8. -,. -,,, -,,..,., .,. MATHCAD», 45.65 4 «,» . 45.65 «-» ()». :.,......., «-»..... «-»..,... - - mathcad: -, -.. :,. 8. -,. -,,, -,,..,., . 5.. 5... -.... 4.. -. 6.4. -, - -.... 5.. 6 4. 4.. 4.. 5 4.., 6 4.4., - 8 5. - 4

More information

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a)

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a) Chapter 6 Chapter 6 opener A. B. C. D. 6 E. 5 F. 8 G. H. I. J.. 7. 8 5. 6 6. 7. y 8. n 9. w z. 5cd.. xy z 5r s t. (x y). (a b) 5. (a) (x y) = x (y) = x 6y x 6y = x (y) = (x y) 6. (a) a (5 a+ b) = a (5

More information

Pushbutton Units and Indicator Lights

Pushbutton Units and Indicator Lights Insert labels and insert caps Clear, illuminated and indicator lights can be fitted with insert labels and caps for identification purposes. These labels and caps are made of a semi-transparent molded

More information

XX Asian Pacific Mathematics Olympiad

XX Asian Pacific Mathematics Olympiad XX Asian Pacific Mathematics Olympiad March, 008 Problem 1. Let ABC be a triangle with A < 60. Let X and Y be the points on the sides AB and AC, respectively, such that CA + AX = CB + BX and BA + AY =

More information

Collinearity/Concurrence

Collinearity/Concurrence Collinearity/Concurrence Ray Li (rayyli@stanford.edu) June 29, 2017 1 Introduction/Facts you should know 1. (Cevian Triangle) Let ABC be a triangle and P be a point. Let lines AP, BP, CP meet lines BC,

More information

!"#$%-&'%'()*(+!$,- +.!*/"(!%0'##1- *#,0'(!,%'%!" #$"%"& $'()#*+* ).2.%,# /3,%(,-!'(+''0,4

!#$%-&'%'()*(+!$,- +.!*/(!%0'##1- *#,0'(!,%'%! #$%& $'()#*+* ).2.%,# /3,%(,-!'(+''0,4 "#$%-&'%'()*(+$,- +.*/"(%0'##1- *#,0'(,%'% " #$"%"& $'()#*+* ).2.%,# /3,%(,- '(+''0,4 #*$2'.5,26#.' &(,.'/,#'#,' "3,/.$,3.0 $ #,%(,2"3, "$%,0,(.0"##13 &2"%,#.- /7889:;," +)*+(",*- './,)0 +1-#-,* (",2*2"1"

More information

Chapter 3. Matrices. 3.1 Matrices

Chapter 3. Matrices. 3.1 Matrices 40 Chapter 3 Matrices 3.1 Matrices Definition 3.1 Matrix) A matrix A is a rectangular array of m n real numbers {a ij } written as a 11 a 12 a 1n a 21 a 22 a 2n A =.... a m1 a m2 a mn The array has m rows

More information

DUALITY AND INTEGER PROGRAMMING. Jean B. LASSERRE

DUALITY AND INTEGER PROGRAMMING. Jean B. LASSERRE LABORATOIRE d ANALYSE et d ARCHITECTURE des SYSTEMES DUALITY AND INTEGER PROGRAMMING Jean B. LASSERRE 1 Current solvers (CPLEX, XPRESS-MP) are rather efficient and can solve many large size problems with

More information

Explicit inverse of a tridiagonal (p, r) Toeplitz matrix

Explicit inverse of a tridiagonal (p, r) Toeplitz matrix Explicit inverse of a tridiagonal (p, r Toeplitz matrix A.M. Encinas, M.J. Jiménez Dpt. Matemàtiques, Universitat Politècnica de Catalunya - BarcelonaTech Abstract Tridiagonal matrices appears in many

More information

SYLPH E D I T I O N S 2016

SYLPH E D I T I O N S 2016 SYLPH EDITIONS 2016 A WORD FROM THE PUBLISHER J k, z b bk: J Pk T P Hz, v z P b Hz b J Pk. I, bk z b v : b. Sbq b v v vv b v vb. W k b bk, bk b b. T bk b v bj : v T C S Rk v - bk. N b T M,, 29, T C S v.

More information

Geometry - Review for Final Chapters 5 and 6

Geometry - Review for Final Chapters 5 and 6 Class: Date: Geometry - Review for Final Chapters 5 and 6 1. Classify PQR by its sides. Then determine whether it is a right triangle. a. scalene ; right c. scalene ; not right b. isoceles ; not right

More information

arxiv: v1 [math.qa] 22 May 2015

arxiv: v1 [math.qa] 22 May 2015 ON THE MINIMAL AFFINIZATIONS OVER THE QUANTUM AFFINE ALGEBRAS OF TYPE C n XIN-YANG FENG JIAN-RONG LI YAN-FENG LUO arxiv:1505.05928v1 [math.qa] 22 May 2015 Abstract. In this paper we study the minimal affinizations

More information

Help us transform the Central Suburbs bus network Tell us what you think

Help us transform the Central Suburbs bus network Tell us what you think Hv F p p 1 p 2 p 3 b pp cg p f vc pg 5 6 Cc f vc f pg 3 T v: Fp fbc f pg 8, fbc f AT.gv.z/NN c f AT.gv.z/NN? C v ( pg 4) c (09) 366 6400. Hp f C Sbb b T Fbc p f 1 Ocb 10 Dcb 2015 vg pbc p f Ac f fg Ac

More information

Properties of Regular Languages. BBM Automata Theory and Formal Languages 1

Properties of Regular Languages. BBM Automata Theory and Formal Languages 1 Properties of Regular Languages BBM 401 - Automata Theory and Formal Languages 1 Properties of Regular Languages Pumping Lemma: Every regular language satisfies the pumping lemma. A non-regular language

More information

Olimpiada Matemática de Centroamérica y el Caribe

Olimpiada Matemática de Centroamérica y el Caribe Olimpiada Matemática de Centroamérica y el Caribe 1st Centromerican 1999 Problem A1 A, B, C, D, E each has a unique piece of news. They make a series of phone calls to each other. In each call, the caller

More information

Th e E u r o p e a n M ig r a t io n N e t w o r k ( E M N )

Th e E u r o p e a n M ig r a t io n N e t w o r k ( E M N ) Th e E u r o p e a n M ig r a t io n N e t w o r k ( E M N ) H E.R E T h em at ic W o r k sh o p an d Fin al C o n fer en ce 1 0-1 2 Ju n e, R agu sa, It aly D avid R eisen zein IO M V ien n a Foto: Monika

More information

IN HIS PRESENCE UNITE YOUR PRAYERS WITH THE PRAYERS OF JESUS

IN HIS PRESENCE UNITE YOUR PRAYERS WITH THE PRAYERS OF JESUS IN HIS PRESENCE UNITE YOUR PRAYERS WITH THE PRAYERS OF ESUS 9 I p m m 10 A I d m Ad m m m 11 H F p m b pw m m m m b w 14 I m wd d wd d m wd m I m wd 15 M p m wd b p m m 16 T wd I m 17 S m b ; wd 18 A m

More information

In this chapter trusses, frames and machines will be examines as engineering structures.

In this chapter trusses, frames and machines will be examines as engineering structures. In the previous chapter we have employed the equations of equilibrium in order to determine the support / joint reactions acting on a single rigid body or a system of connected members treated as a single

More information

y = F (x) = x n + c dy/dx = F`(x) = f(x) = n x n-1 Given the derivative f(x), what is F(x)? (Integral, Anti-derivative or the Primitive function).

y = F (x) = x n + c dy/dx = F`(x) = f(x) = n x n-1 Given the derivative f(x), what is F(x)? (Integral, Anti-derivative or the Primitive function). Integration Course Manual Indefinite Integration 7.-7. Definite Integration 7.-7.4 Jacques ( rd Edition) Indefinite Integration 6. Definite Integration 6. y F (x) x n + c dy/dx F`(x) f(x) n x n- Given

More information

A Holder condition for Brownian local time

A Holder condition for Brownian local time J. Math. Kyoto Univ. 1- (196) 195-1. A Holder condition for Brownian local time By H. P. MCKEAN, JR.' (Communicated by Prof. K. Ito, November, 1961) Given a standard Brownian motion on l e beginning at,

More information

EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE. An abridged version of the Cochrane review of exercise therapy for chronic fatigue syndrome

EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE. An abridged version of the Cochrane review of exercise therapy for chronic fatigue syndrome EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE EDIZIONI MINERVA MEDICA T PDF. A. T j. A C L LARUN J ODGAARD-JENSEN J R PRICE Kj G BRURBERG E J P R M S 6 [E ] EUROPEAN JOURNAL OF PHYSICAL AND

More information

Geometry CP Semester 1 Review Packet. answers_december_2012.pdf

Geometry CP Semester 1 Review Packet.  answers_december_2012.pdf Geometry CP Semester 1 Review Packet Name: *If you lose this packet, you may print off your teacher s webpage. If you can t find it on their webpage, you can find one here: http://www.hfhighschool.org/assets/1/7/sem_1_review_packet

More information

Assessment / audit system

Assessment / audit system h I f Thg IT Sh Wk Th Th/D 2004 m / m Nh B Fw h wk : h://hwk../h mm B, Nh, "m / m" (2004). Th. h I f Thg. fm Th M' j gh f f h Th/D IT Sh Wk. I h f Th hz m f IT Sh Wk. F m fm, hwk@.. h I f Thg g f M S m

More information

Circle the letters only. NO ANSWERS in the Columns!

Circle the letters only. NO ANSWERS in the Columns! Chemistry 1304.001 Name (please print) Exam 5 (100 points) April 18, 2018 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

Probe fire that killed 23

Probe fire that killed 23 V ' ( WUY J Y JUY 88 P k z ' ' F x k J K Y - P k k k Pz Pk k k 'J Pk k U k k - - k k Pz " " k x k k k W k k k ' z " x - " z k k k x j k k k k x k zz "' ' k " k k k» «K VU G k - k z k U k x (P) - P z

More information

ConnectJuly Heartily Congratulations

ConnectJuly Heartily Congratulations cjy 2017 Oy F h Mmb f F Lc S Gp Awd f FL Id - B Hy M. Ahk Km A G, mmc Hd Id f h cb whch d h c d h wd. I h h mk cmp whch v-ch; h chvm vy dcv. I mm cb d hw h cmmm wk h pd ff d h j h b. W cfd w m, d m dp

More information

Maharashtra State Board Class X Mathematics Geometry Board Paper 2015 Solution. Time: 2 hours Total Marks: 40

Maharashtra State Board Class X Mathematics Geometry Board Paper 2015 Solution. Time: 2 hours Total Marks: 40 Maharashtra State Board Class X Mathematics Geometry Board Paper 05 Solution Time: hours Total Marks: 40 Note:- () Solve all questions. Draw diagrams wherever necessary. ()Use of calculator is not allowed.

More information

(3) t<r3 bjk"k + 3 cjkvk = 3 bjkuk + 3 cjkvkv

(3) t<r3 bjkk + 3 cjkvk = 3 bjkuk + 3 cjkvkv PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 57, Number 2, June 1976 COMBINATORIAL FUNCTIONS AND INDECOMPOSABLE CARDINALS ERIK ELLENTUCK Abstract. Combinatorial functions are used to replace

More information

Ferronnerie d ameublement

Ferronnerie d ameublement Cb fg F d mbm Smm C 144 F Fh 152 B Kb 156 Pgé P 162 Eé Eh 168 Pd, b à v & h Pd p, pbd & hk 169 Fh à d & fh à Cb hg & m hg 170 P & hè Hg 143 F Fh FER / SOLID STEEL P g qé pm d pd, q d méx ( ) gm éé. C g

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

SMT 2018 Geometry Test Solutions February 17, 2018

SMT 2018 Geometry Test Solutions February 17, 2018 SMT 018 Geometry Test Solutions February 17, 018 1. Consider a semi-circle with diameter AB. Let points C and D be on diameter AB such that CD forms the base of a square inscribed in the semicircle. Given

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

CANADIAN MATHEMATICAL OLYMPIAD 2010 PROBLEMS AND SOLUTIONS

CANADIAN MATHEMATICAL OLYMPIAD 2010 PROBLEMS AND SOLUTIONS CANADIAN MATHEMATICAL OLYMPIAD 2010 PROBLEMS AND SOLUTIONS (1) For a positive integer n, an n-staircase is a figure consisting of unit squares, with one square in the first row, two squares in the second

More information