Computer Science 188 Artificial Intelligence. Introduction to Probability. Probability Ryan Waliany

Size: px
Start display at page:

Download "Computer Science 188 Artificial Intelligence. Introduction to Probability. Probability Ryan Waliany"

Transcription

1 Computer Siee 88 Artifiial Itelligee Rya Waliay Note: this is meat to be a simple referee sheet ad help studets uder the derivatios. If there s aythig that seems shaky or iorret do t hesitate to me at rwaliay@gmail.om Itrodutio to Radom Variables A radom variable is a arbitrary measuremet of the world whih may have some degree uertaity. For example, we a have the radom variable H = will the ext oi flip be heads or tails?, C = will the robot rash geerally deoted by apital letters where as a realized value are deoted by a lower-ase letter. Assume we are avigatig a robot i the Urba DARPA Grad Challege, robots are drive autoomously o real roads with traffi sigals. We a the represet probabilities depedig o what evidee we observe. For example, if we saw that P C = ras ACION = tur left, we ould probably argue that P(C = ras ACION = tur rigt) is greater sie, left turs are ofte more omplex ad more diffiult agaist traffi. If we also had evidee that there was a ar i your way, we kow that there s a higher likelihood of you rashig. hus, P C = ras ACION = tur left, CAR = true > P(C = ras ACION = tur_left ) Normalizatio x P x = Margializatio P X = P(X, X 2 = x 2 ) x 2 Coditioal Probabilities P a b = P a, b P b Normalizatio rik P x x 2 = P x, x 2 P x 2 = P x, x 2 P x, x 2 x Chai Rule P(A... Z) = P(A B... Z) P(B C... Z)... P(Y Z) P(Z)

2 Computer Siee 88 Artifiial Itelligee Rya Waliay Bayes Rule Idepedee P x y = P y x P x P y P A, B = P A P(B) Direted Graphial Models Represetatio Node Eah ode represets a radom variable Edges Represet a relatio of ausality A direted arrow from A to B represets that A auses B. C A B I this ase, B is oditioally idepedet of C or P(B A, C) = P(B A). More formally, we a represet the probability of a give ode oditioed o the world. P B π B, = P(B π B ) π X is a term that referees the parets of X ad π B = A i our example. hus, we a represet the joit distributio of ay diret graphial model as P x, x 2, = i= P(x i π x i What is the direted graphial model represetig N idepedet oi flips?

3 Computer Siee 88 Artifiial Itelligee Rya Waliay Probabilisti Part of Speeh aggig What is taggig? aggig is the proess of markig the words i a text orrespodig to their part of speeh. A tag a be a ou, verb, adjetive, adverb or a eve more desriptive subtype suh as a proper ou. he aïve Bayes probabilisti model C F F 2 F We eed to determie the probability that the lass is a ou give a set of features desribig the text, P(C F,, F ) P C F,, F = P C, F,, F P F, F = P C P F,, F C P F,, F However, sie we kow that P F,, F is ostat, we a drop the term whe takig a max over lasses. max P C F,, F = P C P F,, F C Sie F,, F are oditioally idepedet give C, max P C F,, F = P C i= P(F i C) Beause we do t kow the exat probabilities, we a estimate them. max P C F,, F = P C i= P(F i C)

4 Computer Siee 88 Artifiial Itelligee Rya Waliay P C = C C C P F i C = C F i, C C C Where we defie P as simply the frequey. I this example, we assume that C is the tag that we are tryig to lassify to a word. Ad the features that are otaied i the word are self-determied by us. his a simply be a Boolea flag suh that the first letter is apital. Or it a be simply the letters otaied i the word, or pairs of letters (bigram), or triples of letters (trigram). Some drawbaks of usig higher-order features is that it requires a substatial amout of more traiig data ad it requires more memory to store examples. w w 2 w Hidde Markov-Models A Markov model is distiguished by two properties.. Limited horizo: P X i+ = x X,, X = P X i+ = x X i 2. ime ivariat: P X i+ = x X i = P(X 2 = x X ) A hidde Markov model is a form of a markov hai whih otais a set of states X ad some observable harateristi Y. 2 3 W W 2 W 3 W 4

5 Computer Siee 88 Artifiial Itelligee Rya Waliay We wish to solve the equatio: arg max P, W, t, P W,, P, = arg max t, P W, Sie, P(W, ) is ostat for maximizig,, we a simply remove it from the maximizig equatio = arg max P W,, P, = arg max ( P(W i i )) P, = arg max P W i i P( i i ) For simpliity sake, we assume that P 0 =, ad we a simply alulate the maximum likelihood estimate (MLE) arg max P, W, = arg max t, P W i i P( i i ) We ould evaluate this equatio for all possible taggig, however, that would make taggig of expoetial legth. Oe might look at a more effiiet algorithm for HMM s suh as Viterbi to perform this omputatio. Viterbi is a dyami programmig algorithm that is for fidig the most likely sequee of hidde states.

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 for BST 695: Speial Topis i Statistial Theory Kui Zhag, Chapter 8 Hypothesis Testig Setio 8 Itrodutio Defiitio 8 A hypothesis is a statemet about a populatio parameter Defiitio 8 The two omplemetary

More information

Observer Design with Reduced Measurement Information

Observer Design with Reduced Measurement Information Observer Desig with Redued Measuremet Iformatio I pratie all the states aot be measured so that SVF aot be used Istead oly a redued set of measuremets give by y = x + Du p is available where y( R We assume

More information

Sx [ ] = x must yield a

Sx [ ] = x must yield a Math -b Leture #5 Notes This wee we start with a remider about oordiates of a vetor relative to a basis for a subspae ad the importat speial ase where the subspae is all of R. This freedom to desribe vetors

More information

Digital Signal Processing. Homework 2 Solution. Due Monday 4 October Following the method on page 38, the difference equation

Digital Signal Processing. Homework 2 Solution. Due Monday 4 October Following the method on page 38, the difference equation Digital Sigal Proessig Homework Solutio Due Moda 4 Otober 00. Problem.4 Followig the method o page, the differee equatio [] (/4[-] + (/[-] x[-] has oeffiiets a0, a -/4, a /, ad b. For these oeffiiets A(z

More information

2.4 - Sequences and Series

2.4 - Sequences and Series 2.4 - Sequeces ad Series Sequeces A sequece is a ordered list of elemets. Defiitio 1 A sequece is a fuctio from a subset of the set of itegers (usually either the set 80, 1, 2, 3,... < or the set 81, 2,

More information

SYNTHESIS OF SIGNAL USING THE EXPONENTIAL FOURIER SERIES

SYNTHESIS OF SIGNAL USING THE EXPONENTIAL FOURIER SERIES SYNTHESIS OF SIGNAL USING THE EXPONENTIAL FOURIER SERIES Sadro Adriao Fasolo ad Luiao Leoel Medes Abstrat I 748, i Itrodutio i Aalysi Ifiitorum, Leohard Euler (707-783) stated the formula exp( jω = os(

More information

The beta density, Bayes, Laplace, and Pólya

The beta density, Bayes, Laplace, and Pólya The beta desity, Bayes, Laplae, ad Pólya Saad Meimeh The beta desity as a ojugate form Suppose that is a biomial radom variable with idex ad parameter p, i.e. ( ) P ( p) p ( p) Applyig Bayes s rule, we

More information

Generalized Semi- Markov Processes (GSMP)

Generalized Semi- Markov Processes (GSMP) Geeralized Semi- Markov Processes (GSMP) Summary Some Defiitios Markov ad Semi-Markov Processes The Poisso Process Properties of the Poisso Process Iterarrival times Memoryless property ad the residual

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Explicit and closed formed solution of a differential equation. Closed form: since finite algebraic combination of. converges for x x0

Explicit and closed formed solution of a differential equation. Closed form: since finite algebraic combination of. converges for x x0 Chapter 4 Series Solutios Epliit ad losed formed solutio of a differetial equatio y' y ; y() 3 ( ) ( 5 e ) y Closed form: sie fiite algebrai ombiatio of elemetary futios Series solutio: givig y ( ) as

More information

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2 Beroulli Numbers Beroulli umbers are amed after the great Swiss mathematiia Jaob Beroulli5-705 who used these umbers i the power-sum problem. The power-sum problem is to fid a formula for the sum of the

More information

Machine Learning 4771

Machine Learning 4771 Machie Learig 4771 Istructor: Toy Jebara Topic 14 Structurig Probability Fuctios for Storage Structurig Probability Fuctios for Iferece Basic Graphical Models Graphical Models Parameters as Nodes Structurig

More information

COMP26120: Introducing Complexity Analysis (2018/19) Lucas Cordeiro

COMP26120: Introducing Complexity Analysis (2018/19) Lucas Cordeiro COMP60: Itroduig Complexity Aalysis (08/9) Luas Cordeiro luas.ordeiro@mahester.a.uk Itroduig Complexity Aalysis Textbook: Algorithm Desig ad Appliatios, Goodrih, Mihael T. ad Roberto Tamassia (hapter )

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

5. Likelihood Ratio Tests

5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

B. Maddah ENMG 622 ENMG /20/09

B. Maddah ENMG 622 ENMG /20/09 B. Maddah ENMG 6 ENMG 5 5//9 Queueig Theory () Distributio of waitig time i M/M/ Let T q be the waitig time i queue of a ustomer. The it a be show that, ( ) t { q > } =. T t e Let T be the total time of

More information

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution Chapter V ODE V.4 Power Series Solutio Otober, 8 385 V.4 Power Series Solutio Objetives: After the ompletio of this setio the studet - should reall the power series solutio of a liear ODE with variable

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Solutios to Quiz : Sprig 006 Problem : Each of the followig statemets is either True or False. There will be o partial credit give for the True False questios, thus ay explaatios will ot be graded. Please

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence. Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

More information

Basic Probability/Statistical Theory I

Basic Probability/Statistical Theory I Basi Probability/Statistial Theory I Epetatio The epetatio or epeted values of a disrete radom variable X is the arithmeti mea of the radom variable s distributio. E[ X ] p( X ) all Epetatio by oditioig

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

More information

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes. Term Test 3 (Part A) November 1, 004 Name Math 6 Studet Number Directio: This test is worth 10 poits. You are required to complete this test withi miutes. I order to receive full credit, aswer each problem

More information

Computing the output response of LTI Systems.

Computing the output response of LTI Systems. Computig the output respose of LTI Systems. By breaig or decomposig ad represetig the iput sigal to the LTI system ito terms of a liear combiatio of a set of basic sigals. Usig the superpositio property

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

Recurrences: Methods and Examples

Recurrences: Methods and Examples Reurrees: Methods ad Examples CSE 30 Algorithms ad Data Strutures Alexadra Stefa Uiversity of exas at Arligto Updated: 308 Summatios Review Review slides o Summatios Reurrees Reursive algorithms It may

More information

11 Hidden Markov Models

11 Hidden Markov Models Hidde Markov Models Hidde Markov Models are a popular machie learig approach i bioiformatics. Machie learig algorithms are preseted with traiig data, which are used to derive importat isights about the

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

Class #25 Wednesday, April 19, 2018

Class #25 Wednesday, April 19, 2018 Cla # Wedesday, April 9, 8 PDE: More Heat Equatio with Derivative Boudary Coditios Let s do aother heat equatio problem similar to the previous oe. For this oe, I ll use a square plate (N = ), but I m

More information

Bayesian networks are graphical models that characterize how variables are independent of each other.

Bayesian networks are graphical models that characterize how variables are independent of each other. Ali Tomescu, http://people.csail.mit.edu/~aliush 6.867 Machie learig Prof. Tommi Jaakkola Week 12, Tuesday, November 19th, 2013 Lecture 21 Lecture 21: Hidde Markov Models Fial exam: Eveig of December 10

More information

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model Back to Maximum Likelihood Give a geerative model f (x, y = k) =π k f k (x) Usig a geerative modellig approach, we assume a parametric form for f k (x) =f (x; k ) ad compute the MLE θ of θ =(π k, k ) k=

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency Math 152. Rumbos Fall 2009 1 Solutios to Review Problems for Exam #2 1. I the book Experimetatio ad Measuremet, by W. J. Youde ad published by the by the Natioal Sciece Teachers Associatio i 1962, the

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

ε > 0 N N n N a n < ε. Now notice that a n = a n.

ε > 0 N N n N a n < ε. Now notice that a n = a n. 4 Sequees.5. Null sequees..5.. Defiitio. A ull sequee is a sequee (a ) N that overges to 0. Hee, by defiitio of (a ) N overges to 0, a sequee (a ) N is a ull sequee if ad oly if ( ) ε > 0 N N N a < ε..5..

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Chapter 13: Tests of Hypothesis Section 13.1 Introduction

Chapter 13: Tests of Hypothesis Section 13.1 Introduction Chapter 13: Tests of Hypothesis Sectio 13.1 Itroductio RECAP: Chapter 1 discussed the Likelihood Ratio Method as a geeral approach to fid good test procedures. Testig for the Normal Mea Example, discussed

More information

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments LECTURE NOTES 9 Poit Estimatio Uder the hypothesis that the sample was geerated from some parametric statistical model, a atural way to uderstad the uderlyig populatio is by estimatig the parameters of

More information

(8) 1f = f. can be viewed as a real vector space where addition is defined by ( a1+ bi

(8) 1f = f. can be viewed as a real vector space where addition is defined by ( a1+ bi Geeral Liear Spaes (Vetor Spaes) ad Solutios o ODEs Deiitio: A vetor spae V is a set, with additio ad salig o elemet deied or all elemets o the set, that is losed uder additio ad salig, otais a zero elemet

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

Lecture 2 Linear and Time Invariant Systems

Lecture 2 Linear and Time Invariant Systems EE3054 Sigals ad Systems Lecture 2 Liear ad Time Ivariat Systems Yao Wag Polytechic Uiversity Most of the slides icluded are extracted from lecture presetatios prepared by McClella ad Schafer Licese Ifo

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

Solutions 3.2-Page 215

Solutions 3.2-Page 215 Solutios.-Page Problem Fid the geeral solutios i powers of of the differetial equatios. State the reurree relatios ad the guarateed radius of overgee i eah ase. ) Substitutig,, ad ito the differetial equatio

More information

Entropy Rates and Asymptotic Equipartition

Entropy Rates and Asymptotic Equipartition Chapter 29 Etropy Rates ad Asymptotic Equipartitio Sectio 29. itroduces the etropy rate the asymptotic etropy per time-step of a stochastic process ad shows that it is well-defied; ad similarly for iformatio,

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

MATH/STAT 352: Lecture 15

MATH/STAT 352: Lecture 15 MATH/STAT 352: Lecture 15 Sectios 5.2 ad 5.3. Large sample CI for a proportio ad small sample CI for a mea. 1 5.2: Cofidece Iterval for a Proportio Estimatig proportio of successes i a biomial experimet

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) Problem Set 8: Solutios. (a) We cosider a Markov chai with states 0,,, 3,, 5, where state i idicates that there are i shoes available at the frot door i

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

Lecture 8. Dirac and Weierstrass

Lecture 8. Dirac and Weierstrass Leture 8. Dira ad Weierstrass Audrey Terras May 5, 9 A New Kid of Produt of Futios You are familiar with the poitwise produt of futios de ed by f g(x) f(x) g(x): You just tae the produt of the real umbers

More information

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019 Outlie CSCI-567: Machie Learig Sprig 209 Gaussia mixture models Prof. Victor Adamchik 2 Desity estimatio U of Souther Califoria Mar. 26, 209 3 Naive Bayes Revisited March 26, 209 / 57 March 26, 209 2 /

More information

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Some Basic Probability Cocepts 2. Experimets, Outcomes ad Radom Variables A radom variable is a variable whose value is ukow util it is observed. The value of a radom variable results from a experimet;

More information

Sums, products and sequences

Sums, products and sequences Sums, products ad sequeces How to write log sums, e.g., 1+2+ (-1)+ cocisely? i=1 Sum otatio ( sum from 1 to ): i 3 = 1 + 2 + + If =3, i=1 i = 1+2+3=6. The ame ii does ot matter. Could use aother letter

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

ECE 308 Discrete-Time Signals and Systems

ECE 308 Discrete-Time Signals and Systems ECE 38-5 ECE 38 Discrete-Time Sigals ad Systems Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa ECE 38-5 1 Additio, Multiplicatio, ad Scalig of Sequeces Amplitude Scalig: (A Costat

More information

Société de Calcul Mathématique SA Mathematical Modelling Company, Corp.

Société de Calcul Mathématique SA Mathematical Modelling Company, Corp. oiété de Calul Mathéatique A Matheatial Modellig Copay, Corp. Deisio-aig tools, sie 995 iple Rado Wals Part V Khihi's Law of the Iterated Logarith: Quatitative versios by Berard Beauzay August 8 I this

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

Introduction to Computational Molecular Biology. Gibbs Sampling

Introduction to Computational Molecular Biology. Gibbs Sampling 18.417 Itroductio to Computatioal Molecular Biology Lecture 19: November 16, 2004 Scribe: Tushara C. Karuarata Lecturer: Ross Lippert Editor: Tushara C. Karuarata Gibbs Samplig Itroductio Let s first recall

More information

11 Correlation and Regression

11 Correlation and Regression 11 Correlatio Regressio 11.1 Multivariate Data Ofte we look at data where several variables are recorded for the same idividuals or samplig uits. For example, at a coastal weather statio, we might record

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

6.231 Dynamic Programming and Optimal Control Midterm Exam, Fall 2011 Prof. Dimitri Bertsekas

6.231 Dynamic Programming and Optimal Control Midterm Exam, Fall 2011 Prof. Dimitri Bertsekas 6.231 Dyamic Programmig ad Optimal Cotrol Midterm Exam, Fall 2011 Prof. Dimitri Bertsekas Prolem 1: (50 poits) Alexei plays a game that starts with a deck with lack cards ad r red cards. Alexie kows ad

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

The Poisson Distribution

The Poisson Distribution MATH 382 The Poisso Distributio Dr. Neal, WKU Oe of the importat distributios i probabilistic modelig is the Poisso Process X t that couts the umber of occurreces over a period of t uits of time. This

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

Probability & Statistics Chapter 8

Probability & Statistics Chapter 8 I. Estimatig with Large Samples Probability & Statistis Poit Estimate of a parameter is a estimate of a populatio parameter give by a sigle umber. Use x (the sample mea) as a poit estimate for (the populatio

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Agnostic Learning and Concentration Inequalities

Agnostic Learning and Concentration Inequalities ECE901 Sprig 2004 Statistical Regularizatio ad Learig Theory Lecture: 7 Agostic Learig ad Cocetratio Iequalities Lecturer: Rob Nowak Scribe: Aravid Kailas 1 Itroductio 1.1 Motivatio I the last lecture

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 3 January 29, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 3 January 29, 2003 Prof. Yannis A. Korilis TCOM 5: Networkig Theory & Fudametals Lecture 3 Jauary 29, 23 Prof. Yais A. Korilis 3-2 Topics Markov Chais Discrete-Time Markov Chais Calculatig Statioary Distributio Global Balace Equatios Detailed Balace

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

THE MEASUREMENT OF THE SPEED OF THE LIGHT

THE MEASUREMENT OF THE SPEED OF THE LIGHT THE MEASUREMENT OF THE SPEED OF THE LIGHT Nyamjav, Dorjderem Abstrat The oe of the physis fudametal issues is a ature of the light. I this experimet we measured the speed of the light usig MihelsoÕs lassial

More information

Lecture 3: MLE and Regression

Lecture 3: MLE and Regression STAT/Q SCI 403: Itroductio to Resamplig Methods Sprig 207 Istructor: Ye-Chi Che Lecture 3: MLE ad Regressio 3. Parameters ad Distributios Some distributios are idexed by their uderlyig parameters. Thus,

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Summation Method for Some Special Series Exactly

Summation Method for Some Special Series Exactly The Iteratioal Joural of Mathematis, Siee, Tehology ad Maagemet (ISSN : 39-85) Vol. Issue Summatio Method for Some Speial Series Eatly D.A.Gismalla Deptt. Of Mathematis & omputer Studies Faulty of Siee

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Bayesian Belief Network

Bayesian Belief Network Bayesia Belief Network a b) = a) b) toothache, catch, cavity, Weather = cloudy) = = Weather = cloudy) toothache, catch, cavity) The decompositio of large probabilistic domais ito weakly coected subsets

More information

Elementary manipulations of probabilities

Elementary manipulations of probabilities Elemetary maipulatios of probabilities Set probability of multi-valued r.v. {=Odd} = +3+5 = /6+/6+/6 = ½ X X,, X i j X i j Multi-variat distributio: Joit probability: X true true X X,, X X i j i j X X

More information

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1 Parameter Estimatio Samples from a probability distributio F () are: [,,..., ] T.Theprobabilitydistributio has a parameter vector [,,..., m ] T. Estimator: Statistic used to estimate ukow. Estimate: Observed

More information

Math 113 Exam 4 Practice

Math 113 Exam 4 Practice Math Exam 4 Practice Exam 4 will cover.-.. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for

More information

Certain inclusion properties of subclass of starlike and convex functions of positive order involving Hohlov operator

Certain inclusion properties of subclass of starlike and convex functions of positive order involving Hohlov operator Iteratioal Joural of Pure ad Applied Mathematial Siees. ISSN 0972-9828 Volume 0, Number (207), pp. 85-97 Researh Idia Publiatios http://www.ripubliatio.om Certai ilusio properties of sublass of starlike

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information