6.231 Dynamic Programming and Optimal Control Midterm Exam, Fall 2011 Prof. Dimitri Bertsekas

Size: px
Start display at page:

Download "6.231 Dynamic Programming and Optimal Control Midterm Exam, Fall 2011 Prof. Dimitri Bertsekas"

Transcription

1 6.231 Dyamic Programmig ad Optimal Cotrol Midterm Exam, Fall 2011 Prof. Dimitri Bertsekas Prolem 1: (50 poits) Alexei plays a game that starts with a deck with lack cards ad r red cards. Alexie kows ad r. At each time period he draws a radom card ad decides etwee the followig two optios: (1) Without lookig at the card, predict that it is lack, i which case he wis the game if the predictio is correct ad loses if the predictio is icorrect. (2) Discard the card, after lookig at its color, ad cotiue the game with oe card less. If the deck has oly lack cards he wis the game, while if the deck has oly red cards he loses the game. Alexei wats to fid a policy that maximizes his proaility of a wi. (a) Formulate Alexei s prolem ito the format of the fiite-horizo asic prolem with perfect state iformatio. Idetify states, cotrols, disturaces, etc. () Write the DP algorithm. Use iductio to show that the optimal proaility of a wi startig with lack cards ad r red cards is. + r (c) Characterize the optimal policies. (d) Suppose that Alexei is give the additioal optio to radomize his decisio at each time period. I particular, he may choose a proaility p [0, 1], flip a coi that has proaility of head equal to p, ad decide upo optio 1 or 2 aove depedig o the outcome of the flip. What would the e the optimal policies? Solutio: (a) The state is the curret pair (, r) plus a termiatio state, to which we move upo selectig optio 1. If optio 2 is selected, the we move to state ( 1, r) with proaility /(+r) ad to state (, r 1) with proaility r/( + r). At states with either = 0 or r = 0, oly optio 1 is availale. The reward per stage is 1 if Alexei chooses optio 1 ad wis the game, ad 0 otherwise. (,c,d) The DP algorithm is J (, r) = [ mi p { + r p 0,1} ( + (1 p) + r J ( 1, r) + r J (, r 1) + r 1 )],

2 where p = 0 ad p = 1 correspod to optios 1 ad 2, respectively. We show y iductio that the optimal reward-to-go startig with lack ad r red cards is J (, r) =, + r ad that all strategies give the same proaility of a wi. This formula is correct for all (, r) with + r = 1, ased o the assumptio that Alexei wis whe the deck has oly lack cards ad loses if the deck has oly red cards. Assumig that the formula is correct for all (, r) with + r = k 1, we will show that it is true for all (, r) with + r = k. For ay p [0, 1], the right-had side of the DP algorithm is ( ) r p + (1 p) J ( 1, r) + J (, r 1) + r + r + r ( ) 1 r = p + (1 p) + + r + r + r 1 + r + r 1 = p + (1 p) + r + r =, + r where the secod equality makes use of the iductio hypothesis. Thus J (, r) =, + r ad the iductio is complete. For the case p [0, 1], this calculatio also yields the same formula for J, regardless of the value of p chose. Prolem 2: (50 poits) A amitious egieer, curretly employed i a recetly impoverished coutry at a salary c, seeks employmet at aother coutry. He receives a jo offer at each time period, which she may accept or reject. The offered salary takes oe of possile values w 1,..., w with give proailities ξ 1,..., ξ, idepedet of precedig offers. If she accepts the offer, she keeps the jo for the rest of her life. If she rejects, she cotiues at her curret salary c for oe more period ad is eligile to accept offers i future periods. Assume that icome is discouted y a factor α < 1. (a) Formulate the egieer s prolem as a discouted ifiite horizo prolem. Idetify states, cotrols, disturaces, etc. () Formulate the Bellma equatio ad characterize the optimal policy. 2

3 (c) Cosider the variat of the prolem where there is a give proaility p i that the worker will e fired from her jo at ay oe period if the salary is w i. Oce fired, she returs to her ow coutry ad resumes her former employmet ad is eligile to accept offers i future periods. Formulate the Bellma equatio ad characterize the optimal policy. (d) Do part (c) for the case whe icome is ot discouted ad the worker maximizes the average icome per period. (e) Assume that for the jo with salary w i, the expected umer of periods for keepig that jo is t i, ad afterwards she returs to her former employmet as i part (c). Formulate the Bellma equatio for the prolem of maximizig her average retur usig t i istead of p i. Characterize the optimal policy. Solutio: (a) Let the states e s i, i = 1,...,, correspodig to the worker eig uemployed ad eig offered a salary w i, ad s i, i = 1,...,, correspodig to the worker eig employed at a salary level w i. Suppose the curret state is s i, the cotrol is to either accept ad go to state s i, or to reject ad wait for the ext offer. The reward is w i if she accepts, or c if she rejects. Suppose the state is s i, there is o more decisio to make ad the reward is always w i. () The Bellma equatio is J(s i ) = max c + α ξ j J(s j ), w i + αj(s i), i = 1,...,, (1) From Eq. (2), we have J(s i) = w i + αj(s i), i = 1,...,. (2) w i J(s i) = i = 1,...,, 1 α so that from Eq. (1) we otai J(s i ) = max c + α ξ j J(s j ), w i 1 α, Thus it is optimal to accept salary w i if w i (1 α) c + α ξ j J(s j ). 3

4 The right-had side of the aove relatio gives the threshold for acceptace of a offer. (c) I this case the Bellma equatio ecomes J(s i ) = max c + α ξ j J(s j ), w i + α (1 p i )J(s i) + p i ξ j J(s j ) J(s i) = w i + α (1 p i )J(s i) + p i ξjj( s j ). (4) Let us assume without loss of geerality that w 1 < w 2 < < w. Let us assume further that p i = p for all i. From Eq. (4), we have so it follows that w i + p J(s i) = ξj J(s j ), 1 α(1 p) (3) J(s 1) < J(s 2) < < J(s ). (5) We thus otai that the secod term i the maximizatio of Eq. (3) is mootoically icreasig i i, implyig that there is a salary threshold aove which the offer is accepted. I the case where p i is ot idepedet of i, salary level is ot the oly criterio of choice. There must e cosideratio for jo security (the value of p i ). However, if p i ad w i are such that Eq. (5) holds, the there still is a salary threshold aove which the offer is accepted. (d) The Bellma equatio has the form λ+h(s i ) = max c + ξ j h(s i ), w i + (1 p i )h(s i) + p i ξ j h(s j ), i = 1,...,, (3) λ + h(s i) = w i + (1 p i )h(s i) + p i ξ j h(s j ), i = 1,...,. (4) From these equatios, we have λ + h(s i ) = max c + ξ j h(s j ), λ + h(s i), i = 1,...,, 4

5 so it is optimal to accept a salary offer w i if h(s i) is o less that the threshold c λ + ξ j h(s j ). Here λ is the optimal average salary per period (over a ifiite horizo). If p i = p for all i ad w 1 < w 2 < < w, the from Eq. (4) it follows that h(s i) is mootoically icreasig i i, ad the optimal policy is to accept a salary offer if it exceeds a certai threshold. (e) Let us deote y i the state correspodig to the offer (w i, t i ). We have the followig Bellma s equatio: h(i) = max wi t i λt i + p j h(j), c λ + p j h(j) The optimal policy is to accept offer (w i, t i ) if c w i λ, t i where λ is the optimal average icome per uit time. 5

6 MIT OpeCourseWare Dyamic Programmig ad Stochastic Cotrol Fall 2015 For iformatio aout citig these materials or our Terms of Use, visit:

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Optimization Methods MIT 2.098/6.255/ Final exam

Optimization Methods MIT 2.098/6.255/ Final exam Optimizatio Methods MIT 2.098/6.255/15.093 Fial exam Date Give: December 19th, 2006 P1. [30 pts] Classify the followig statemets as true or false. All aswers must be well-justified, either through a short

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Math 36Q Fall 25 Professor Hoh Below is a list of practice questios for the Fial Exam. I would suggest also goig over the practice problems ad exams for Exam ad Exam 2 to

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Probability theory and mathematical statistics:

Probability theory and mathematical statistics: N.I. Lobachevsky State Uiversity of Nizhi Novgorod Probability theory ad mathematical statistics: Law of Total Probability. Associate Professor A.V. Zorie Law of Total Probability. 1 / 14 Theorem Let H

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) Problem Set 8: Solutios. (a) We cosider a Markov chai with states 0,,, 3,, 5, where state i idicates that there are i shoes available at the frot door i

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

On forward improvement iteration for stopping problems

On forward improvement iteration for stopping problems O forward improvemet iteratio for stoppig problems Mathematical Istitute, Uiversity of Kiel, Ludewig-Mey-Str. 4, D-24098 Kiel, Germay irle@math.ui-iel.de Albrecht Irle Abstract. We cosider the optimal

More information

Generalized Semi- Markov Processes (GSMP)

Generalized Semi- Markov Processes (GSMP) Geeralized Semi- Markov Processes (GSMP) Summary Some Defiitios Markov ad Semi-Markov Processes The Poisso Process Properties of the Poisso Process Iterarrival times Memoryless property ad the residual

More information

Markov Decision Processes

Markov Decision Processes Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

Homework 5 Solutions

Homework 5 Solutions Homework 5 Solutios p329 # 12 No. To estimate the chace you eed the expected value ad stadard error. To do get the expected value you eed the average of the box ad to get the stadard error you eed the

More information

Induction: Solutions

Induction: Solutions Writig Proofs Misha Lavrov Iductio: Solutios Wester PA ARML Practice March 6, 206. Prove that a 2 2 chessboard with ay oe square removed ca always be covered by shaped tiles. Solutio : We iduct o. For

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3 Exam Problems (x. Give the series (, fid the values of x for which this power series coverges. Also =0 state clearly what the radius of covergece is. We start by settig up the Ratio Test: x ( x x ( x x

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES 9 SEQUENCES AND SERIES INTRODUCTION Sequeces have may importat applicatios i several spheres of huma activities Whe a collectio of objects is arraged i a defiite order such that it has a idetified first

More information

Lecture 2 Appendix B: Some sample problems from Boas, Chapter 1. Solution: We want to use the general expression for the form of a geometric series

Lecture 2 Appendix B: Some sample problems from Boas, Chapter 1. Solution: We want to use the general expression for the form of a geometric series Lecture Appedix B: ome sample problems from Boas, Chapter Here are some solutios to the sample problems assiged for Chapter, 6 ad 9 : 5 olutio: We wat to use the geeral expressio for the form of a geometric

More information

CS 70 Second Midterm 7 April NAME (1 pt): SID (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt):

CS 70 Second Midterm 7 April NAME (1 pt): SID (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt): CS 70 Secod Midter 7 April 2011 NAME (1 pt): SID (1 pt): TA (1 pt): Nae of Neighbor to your left (1 pt): Nae of Neighbor to your right (1 pt): Istructios: This is a closed book, closed calculator, closed

More information

PROPERTIES OF AN EULER SQUARE

PROPERTIES OF AN EULER SQUARE PROPERTIES OF N EULER SQURE bout 0 the mathematicia Leoard Euler discussed the properties a x array of letters or itegers ow kow as a Euler or Graeco-Lati Square Such squares have the property that every

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

The Comparison Tests. Examples. math 131 infinite series, part iii: comparison tests 18

The Comparison Tests. Examples. math 131 infinite series, part iii: comparison tests 18 math 3 ifiite series, part iii: compariso tests 8 The Compariso Tests The idea behid the compariso tests is pretty simple. Suppose we have a series such as which we kow coverges by the p-series test. Now

More information

Vector Quantization: a Limiting Case of EM

Vector Quantization: a Limiting Case of EM . Itroductio & defiitios Assume that you are give a data set X = { x j }, j { 2,,, }, of d -dimesioal vectors. The vector quatizatio (VQ) problem requires that we fid a set of prototype vectors Z = { z

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 18.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 15 Scribe: Zach Izzo Oct. 27, 2015 Part III Olie Learig It is ofte the case that we will be asked to make a sequece of predictios,

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A) REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

Skip Lists. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 S 3 S S 1

Skip Lists. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 S 3 S S 1 Presetatio for use with the textbook, Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 2015 Skip Lists S 3 15 15 23 10 15 23 36 Skip Lists 1 What is a Skip List A skip list for

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Math 36Q Sprig 25 Professor Hoh Below is a list of practice questios for the Fial Exam. I would suggest also goig over the practice problems ad exams for Exam ad Exam 2

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Keywords: Last-Success-Problem; Odds-Theorem; Optimal stopping; Optimal threshold AMS 2010 Mathematics Subject Classification 60G40, 62L15

Keywords: Last-Success-Problem; Odds-Theorem; Optimal stopping; Optimal threshold AMS 2010 Mathematics Subject Classification 60G40, 62L15 CONCERNING AN ADVERSARIAL VERSION OF THE LAST-SUCCESS-PROBLEM arxiv:8.0538v [math.pr] 3 Dec 08 J.M. GRAU RIBAS Abstract. There are idepedet Beroulli radom variables with parameters p i that are observed

More information

II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation

II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation II. Descriptive Statistics D. Liear Correlatio ad Regressio I this sectio Liear Correlatio Cause ad Effect Liear Regressio 1. Liear Correlatio Quatifyig Liear Correlatio The Pearso product-momet correlatio

More information

Chapter 5: Hypothesis testing

Chapter 5: Hypothesis testing Slide 5. Chapter 5: Hypothesis testig Hypothesis testig is about makig decisios Is a hypothesis true or false? Are wome paid less, o average, tha me? Barrow, Statistics for Ecoomics, Accoutig ad Busiess

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

ARITHMETIC PROGRESSIONS

ARITHMETIC PROGRESSIONS CHAPTER 5 ARITHMETIC PROGRESSIONS (A) Mai Cocepts ad Results A arithmetic progressio (AP) is a list of umbers i which each term is obtaied by addig a fixed umber d to the precedig term, except the first

More information

Spring Information Theory Midterm (take home) Due: Tue, Mar 29, 2016 (in class) Prof. Y. Polyanskiy. P XY (i, j) = α 2 i 2j

Spring Information Theory Midterm (take home) Due: Tue, Mar 29, 2016 (in class) Prof. Y. Polyanskiy. P XY (i, j) = α 2 i 2j Sprig 206 6.44 - Iformatio Theory Midterm (take home) Due: Tue, Mar 29, 206 (i class) Prof. Y. Polyaskiy Rules. Collaboratio strictly prohibited. 2. Write rigorously, prove all claims. 3. You ca use otes

More information

1 Statement of the Game

1 Statement of the Game ANALYSIS OF THE CHOW-ROBBINS GAME JON LU May 10, 2016 Abstract Flip a coi repeatedly ad stop wheever you wat. Your payoff is the proportio of heads ad you wish to maximize this payoff i expectatio. I this

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

Power and Type II Error

Power and Type II Error Statistical Methods I (EXST 7005) Page 57 Power ad Type II Error Sice we do't actually kow the value of the true mea (or we would't be hypothesizig somethig else), we caot kow i practice the type II error

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

GRAPHING LINEAR EQUATIONS. Linear Equations ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Quadrat II Quadrat I ORDERED PAIR: The first umer i the ordered pair is the -coordiate ad the secod umer i the ordered pair is the y-coordiate. (,1 ) Origi ( 0, 0 ) _-ais Liear

More information

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1.

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1. Math 7 Sprig 06 PROBLEM SET 5 SOLUTIONS Notatios. Give a real umber x, we will defie sequeces (a k ), (x k ), (p k ), (q k ) as i lecture.. (a) (5 pts) Fid the simple cotiued fractio represetatios of 6

More information

Response Variable denoted by y it is the variable that is to be predicted measure of the outcome of an experiment also called the dependent variable

Response Variable denoted by y it is the variable that is to be predicted measure of the outcome of an experiment also called the dependent variable Statistics Chapter 4 Correlatio ad Regressio If we have two (or more) variables we are usually iterested i the relatioship betwee the variables. Associatio betwee Variables Two variables are associated

More information

CS 171 Lecture Outline October 09, 2008

CS 171 Lecture Outline October 09, 2008 CS 171 Lecture Outlie October 09, 2008 The followig theorem comes very hady whe calculatig the expectatio of a radom variable that takes o o-egative iteger values. Theorem: Let Y be a radom variable that

More information

Dynamic Policy Programming with Function Approximation: Supplementary Material

Dynamic Policy Programming with Function Approximation: Supplementary Material Dyamic Policy Programmig with Fuctio pproximatio: Supplemetary Material Mohammad Gheshlaghi zar Radboud Uiversity Nijmege Geert Grooteplei Noord 21 6525 EZ Nijmege Netherlads m.azar@sciece.ru.l Viceç Gómez

More information

If, for instance, we were required to test whether the population mean μ could be equal to a certain value μ

If, for instance, we were required to test whether the population mean μ could be equal to a certain value μ STATISTICAL INFERENCE INTRODUCTION Statistical iferece is that brach of Statistics i which oe typically makes a statemet about a populatio based upo the results of a sample. I oesample testig, we essetially

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

1036: Probability & Statistics

1036: Probability & Statistics 036: Probability & Statistics Lecture 0 Oe- ad Two-Sample Tests of Hypotheses 0- Statistical Hypotheses Decisio based o experimetal evidece whether Coffee drikig icreases the risk of cacer i humas. A perso

More information

6.041/6.431 Spring 2009 Final Exam Thursday, May 21, 1:30-4:30 PM.

6.041/6.431 Spring 2009 Final Exam Thursday, May 21, 1:30-4:30 PM. 6.041/6.431 Sprig 2009 Fial Exam Thursday, May 21, 1:30-4:30 PM. Name: Recitatio Istructor: Questio Part Score Out of 0 2 1 all 18 2 all 24 3 a 4 b 4 c 4 4 a 6 b 6 c 6 5 a 6 b 6 6 a 4 b 4 c 4 d 5 e 5 7

More information

Lecture 25 (Dec. 6, 2017)

Lecture 25 (Dec. 6, 2017) Lecture 5 8.31 Quatum Theory I, Fall 017 106 Lecture 5 (Dec. 6, 017) 5.1 Degeerate Perturbatio Theory Previously, whe discussig perturbatio theory, we restricted ourselves to the case where the uperturbed

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

TEMASEK JUNIOR COLLEGE, SINGAPORE JC One Promotion Examination 2014 Higher 2

TEMASEK JUNIOR COLLEGE, SINGAPORE JC One Promotion Examination 2014 Higher 2 TEMASEK JUNIOR COLLEGE, SINGAPORE JC Oe Promotio Eamiatio 04 Higher MATHEMATICS 9740 9 Septemer 04 Additioal Materials: Aswer paper 3 hours List of Formulae (MF5) READ THESE INSTRUCTIONS FIRST Write your

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term.

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term. 0. Sequeces A sequece is a list of umbers writte i a defiite order: a, a,, a, a is called the first term, a is the secod term, ad i geeral eclusively with ifiite sequeces ad so each term Notatio: the sequece

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2013 Aat Sahai Lecture 18 Iferece Oe of the major uses of probability is to provide a systematic framework to perform iferece uder ucertaity. A

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Integer Linear Programming

Integer Linear Programming Iteger Liear Programmig Itroductio Iteger L P problem (P) Mi = s. t. a = b i =,, m = i i 0, iteger =,, c Eemple Mi z = 5 s. t. + 0 0, 0, iteger F(P) = feasible domai of P Itroductio Iteger L P problem

More information

Lecture 9: Hierarchy Theorems

Lecture 9: Hierarchy Theorems IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture

More information

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1).

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1). 6896 Quatum Complexity Theory Sept 23, 2008 Lecturer: Scott Aaroso Lecture 6 Last Time: Quatum Error-Correctio Quatum Query Model Deutsch-Jozsa Algorithm (Computes x y i oe query) Today: Berstei-Vazirii

More information

STAT431 Review. X = n. n )

STAT431 Review. X = n. n ) STAT43 Review I. Results related to ormal distributio Expected value ad variace. (a) E(aXbY) = aex bey, Var(aXbY) = a VarX b VarY provided X ad Y are idepedet. Normal distributios: (a) Z N(, ) (b) X N(µ,

More information

Support vector machine revisited

Support vector machine revisited 6.867 Machie learig, lecture 8 (Jaakkola) 1 Lecture topics: Support vector machie ad kerels Kerel optimizatio, selectio Support vector machie revisited Our task here is to first tur the support vector

More information

Sample Size Determination (Two or More Samples)

Sample Size Determination (Two or More Samples) Sample Sie Determiatio (Two or More Samples) STATGRAPHICS Rev. 963 Summary... Data Iput... Aalysis Summary... 5 Power Curve... 5 Calculatios... 6 Summary This procedure determies a suitable sample sie

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

Combinatorics and Newton s theorem

Combinatorics and Newton s theorem INTRODUCTION TO MATHEMATICAL REASONING Key Ideas Worksheet 5 Combiatorics ad Newto s theorem This week we are goig to explore Newto s biomial expasio theorem. This is a very useful tool i aalysis, but

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

Chapter 13: Tests of Hypothesis Section 13.1 Introduction

Chapter 13: Tests of Hypothesis Section 13.1 Introduction Chapter 13: Tests of Hypothesis Sectio 13.1 Itroductio RECAP: Chapter 1 discussed the Likelihood Ratio Method as a geeral approach to fid good test procedures. Testig for the Normal Mea Example, discussed

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

Notes on Snell Envelops and Examples

Notes on Snell Envelops and Examples Notes o Sell Evelops ad Examples Example (Secretary Problem): Coside a pool of N cadidates whose qualificatios are represeted by ukow umbers {a > a 2 > > a N } from best to last. They are iterviewed sequetially

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Sequeces ad 6 Sequeces Ad SEQUENCES AND SERIES Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives rise to what is called a sequece. Sequeces

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigevalues ad Eigevectors 5.3 DIAGONALIZATION DIAGONALIZATION Example 1: Let. Fid a formula for A k, give that P 1 1 = 1 2 ad, where Solutio: The stadard formula for the iverse of a 2 2 matrix yields

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

More information

Lecture 6 Simple alternatives and the Neyman-Pearson lemma

Lecture 6 Simple alternatives and the Neyman-Pearson lemma STATS 00: Itroductio to Statistical Iferece Autum 06 Lecture 6 Simple alteratives ad the Neyma-Pearso lemma Last lecture, we discussed a umber of ways to costruct test statistics for testig a simple ull

More information

Introduction to Probability. Ariel Yadin. Lecture 2

Introduction to Probability. Ariel Yadin. Lecture 2 Itroductio to Probability Ariel Yadi Lecture 2 1. Discrete Probability Spaces Discrete probability spaces are those for which the sample space is coutable. We have already see that i this case we ca take

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

Abstract Vector Spaces. Abstract Vector Spaces

Abstract Vector Spaces. Abstract Vector Spaces Astract Vector Spaces The process of astractio is critical i egieerig! Physical Device Data Storage Vector Space MRI machie Optical receiver 0 0 1 0 1 0 0 1 Icreasig astractio 6.1 Astract Vector Spaces

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Aalysis ad Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasii/teachig.html Suhasii Subba Rao Review of testig: Example The admistrator of a ursig home wats to do a time ad motio

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information