1 Statement of the Game

Size: px
Start display at page:

Download "1 Statement of the Game"

Transcription

1 ANALYSIS OF THE CHOW-ROBBINS GAME JON LU May 10, 2016 Abstract Flip a coi repeatedly ad stop wheever you wat. Your payoff is the proportio of heads ad you wish to maximize this payoff i expectatio. I this paper, we will derive upper ad lower bouds for the expected value of this game. We will also examie stoppig coditios for several differet strategies ad expected payoffs for these strategies. 1 Statemet of the Game Cosider the followig game: We flip a fair coi repeatedly util we wish to stop. Our payoff for the game is the proportio of heads we ve observed up to that poit. This game is a variatio of the Robbis s problem of optimal stoppig, or Secretary Problem, which was first itroduced by Yua-Shih Chow ad Herbert Robbis [2] i For the rest of this paper, we will aalyze strategies by their expected payoff. Occasioally we will also use the term expected payoff whe referrig to a state of the game, i which case we are referrig to the expected payoff uder optimal play give we are at that state. I the followig sectios, we will establish upper ad lower bouds o the optimal payoff of this game. 2 Recursive Relatio ad Lower Boud Let h, represet our positio, where is the total umber of times we have flipped the coi ad h is the umber of heads we have observed. 1

2 From h,, we have two choices: stop or cotiue. If we stop, we receive h/ i payoff. If we cotiue, with 1/2 probability we ed up at h, + 1 ad with 1/2 probability we ed up at h + 1, + 1. Thus, if we let V h, deote our expected payoff from h,, we have the followig recursive relatio: h V h, V h + 1, + 1 V h, = max,. 1 2 At first glace this may seem like a stadard recursio but upo closer ispectio we otice somethig strage: each V h, depeds o terms with successively larger, so the base case for this recursio is V h,, which we ca t compute! To get aroud this problem, we will choose a horizo N such that we fid lower bouds for all V h, N ad the recursively apply 1 to get lower bouds for all V h,, < N. We ca thik of N as the cutoff poit where we cease to use the recursive formula 1 ad as a result do t compute ay of the terms V h,, > N. To obtai a lower boud, otice that at positio h,, we ca guaratee h/ by stoppig. Moreover, if h/ < 1/2, we ca wait util the proportio of heads is at least 1/2 to stop which occurs with probability 1. 1 Thus, we attai the followig simple lower boud: h V h, max, While this lower boud holds i geeral, for smaller values of it is ot very tight ad so we will avoid usig it whe possible. Choosig a larger horizo N to apply the lower boud from 2 o gives a tighter boud o each of the V h, s after recursig. As N approaches ifiity, the lower boud we obtai for each V h, approaches the true value. Usig N = 10 7, Häggström ad Wästlud [1] compute the followig lower boud: V 0, 0 > Upper Boud o V h, The followig sectio is motivated by Häggström ad Wästlud [1]. Let Ṽ h, be the expected payoff from positio h, uder ifiite clairvoyace, 1 For a rigorous proof, see Theorem

3 i.e., we have complete kowledge of the results of all future coi flips ad Ṽ h, is the largest proportio of heads ever attaied. Sice we kow that V h, Ṽ h,, ay upper boud o Ṽ h, is ecessarily a upper bod o V h,. I order to establish a upper boud o Ṽ h,, we first prove the followig: Let P h,, p be the probability that m, m such that the proportio of heads i the first m flips exceeds p. P h,, p ca also be thought of as the probability that startig from h,, at some poit ow or i the future the overall proportio of heads exceeds p. Let k = kh,, p be the miimum umber of coi flips from h, for which it is possible to achieve a overall proportio of heads exceedig p i k more flips. For example, k1, 3, 0.5 = 2 ad k2, 3, 0.5 = 0. Lemma 3.1. P h,, p 1 2p k Proof. Oe ca check that if p maxa/, 1/2, the statemet holds. If p < a/ or p 1/2, the RHS 1/2p k 1. The case of p = a/ is left as a exercise for the reader. Cosider Prext k flips are heads proportio p will evetually be exceeded. O oe had, P rext k flips are heads proportio p evetually exceeded 4 P rext k flips are heads proportio p evetually exceeded = proportio p evetually exceeded = P rext k flips are heads proportio p evetually exceeded = 1/2k P h,, p, where the secod equality holds because the ext k flips beig heads guaratees that a proportio p of heads will evetually be exceeded. However, we ca also establish a lower boud for this probability. I 4, we coditio o the existece of a m for which the proportio of heads i the first m 3 5

4 flips exceeds p. Sice we assumed p > 1/2, we kow by the Weak Law of Large Numbers that with probability 1 there exists a maximal m = M for which the first m coi flips have a proportio greater tha p of heads. Because we are operatig uder ifiite clairvoyace, we kow the value of M ad so we also kow the exact umber of heads H i flips + 1, + 2,..., M. Furthermore, we kow that all permutatios of those M flips cotaiig H heads are equally likely by symmetry. Cosider flip + 1. If k > 1, the proportio of heads up to this poit is less tha or equal to p but at flip M exceeds p so the proportio of heads q 1 amog flips + 1,..., M ecessarily exceeds p. Sice flip + 1 is just as likely as ay of flips + 2,..., M of beig amog the q 1 > p that are heads, the probability that flip +1 is heads is q 1 > p. Similarly, cosider flip + 2. Coditioed o flip + 1 beig heads, the proportio of heads up to this poit is still at most p but exceeds p at flip M. If we let q 2 be the proportio of heads amog flips + 2,..., M, we kow q 2 > p ad cosequetly the probability of flip + 2 beig heads give flip + 1 is heads is greater tha p. Cotiuig this argumet for i = 3,..., k, we have that flip x+i has a probability greater tha p of beig heads give flips x + 1,..., x + i 1 were heads. Thus, the coditioal probability of flips x + 1,..., x + k beig heads P rext k flips are heads proportio p evetually exceeded p k. 6 Combiig 5 ad 6 ad rearragig gives the desired result. Theorem 3.2. h Ṽ h, max, 1 1 π + mi 2 4, h Proof. The followig derivatio is reproduced from Häggström ad Wästlud [1]. From the iverse-cdf defiitio of expected value, we have: By defiitio, k satisfies which reduces to 1 Ṽ h, = P h,, pdp 0 h = max, P h,, pdp 2 max h, 2 1 h + k 1 + k 1 p k 1 + p h 1 p. 8 4

5 Furthermore, k is the largest iteger that satisfies 8 so we have: Substitutig 9 ito Lemma 3.1. yields: k p h 1 p. 9 P h,, p 1 2p p h 1 p It follows that h Ṽ h, max, max h, 1 2 dp 2p p h 1 p Substitutig p = 1 + t/2 ad usig the well-kow iequality. 10 log1 + t 1 t t, 10 simplifies to h Ṽ h, max, h = max, h max, max 2h 1,0 dt exp max 2h,0 1 Usig the substitutio u = t, we obtai: h Ṽ h, max, 1 2 h max, t 1+t 2h 1 t 1 + t 2h log1 + t 1 t exp 1 + tt + 2htdt max 2h, exp max 2h,0 exp max 2h,0 Usig the substitutio w = u 2h /, exp u 2 + 2h u du = 2h From 11 ad 12, we ca check that h Ṽ h, max, h 5 0 dt u 2 + 2h u du u 2 + 2h u du 11 exp w 2 2h w dw 12 exp u 2 2h u du. 13

6 Furthermore, by discardig terms from the itegral i 13, we have 1 2 exp u 2 2h u du 1 2h 2 exp u 2 du 2h = 1 π 4 ad 1 2 exp u 2 2h u du 1 2h 2 1 = 2h 2h exp u du h. 15 Combiig 14 ad 15, we have 1 2 exp u 2 2h u 2h du mi 1 π 4, 1 2 2h 16 Substitutig 16 ito 13 gives the desired result. To compute a upper boud o Ṽ 0, 0, we tur to the a similar strategy to the oe we used to calculate a lower boud. I particular, we will use Theorem 3.2 to compute upper bouds o terms of the form Ṽ h, N for some large N, from which we also have upper bouds o the V h, Ns. We will the apply our fudametal recursive relatio from 1 to compute upper bouds o all V h,, < N. Usig N = 10 7 gives the upper boud [1]: V 0, 0 < Lastly, combiig the lower boud 3 we derived earlier with this upper boud 17 gives us fairly tight bouds o the expected value of the game uder optimal play: < V 0, 0 < Strategies for Playig the Game Now that we ve derived bouds o the expected payoff of this game, it s worth examiig some differet strategies ad to see how they fare i compariso. We will fid the followig results helpful i our aalysis of these strategies: 6

7 Lemma 4.1. If we flip a fair coi forever, the probability of at some poit obtaiig k more heads tha tails or k more tails tha heads is 1 for all values of k. Proof. Let h be the umber of heads ad t be the umber of tails we observe i the first flips respectively. Let d = h t be the heads-tails differetial after flips. We are tryig to show that with probability 1, d = k for some. The key realizatio we make is that if d N < k, flippig 2k heads or 2k tails i a row causes d N+2k > k, which meas for some value of {N + 1,..., N + 2k 1}, d = k. Thus, i order for the coditio of d < k to hold for all, we ca ever flip 2k heads or 2k tails cosecutively. We ow cosider blocks of 2k flips at a time. The probability that we avoid flippig 2k cosecutive heads or 2k cosecutive tails withi the first 2k flips is simply 2k 2. 2 k Likewise, this is also true for the ext 2k flips, the 2k flips after that, etc. Thus, the probability that i the first b blocks of 2k flips each, o idividual block cotais all heads or all tails is b 2 2k k As b goes to ifiity, this expressio goes to 0, so the probability that some block cotais 2k heads or 2k tails is 1, completig the proof. Theorem 4.2. [Simple Radom Walks] If we flip a fair coi forever, the probability of at some poit obtaiig k more heads tha tails is 1 for all values of k. Proof. Reusig our otatio from Lemma 4.1, we seek to show that with probability 1, d = k for some. From Lemma 4.1, we kow that with probability 1, d = k for some. By symmetry, d is equally likely to reach k or k first. Thus, with probability 1/2, d reaches k first ad we are doe. With probability 1/2, d reaches k first. However, reapplyig this argumet, the heads-tails differetial startig from the + 1-th flip is equally likely to reach 2k or 2k. With probability 1/2, it reaches 2k first, resultig i d = k +2k = k, i which case we are doe. With probability 1/2, it reaches 2k first, causig d = k 2k = 3k, i which case we repeat the argumet agai. Thus, the probability of d = k at some poit is: This completes the proof = 1. 7

8 The first strategy we will cosider is a very simple strategy: Strategy If the first flip is heads, stop. of heads equals the umber of tails. If it is tails, flip util the umber Aalysis. With probability 1/2, we flip heads ad our payoff is 1 ad with probability 1/2 we flip tails ad evetually receive a payoff of 1/2 we ca guaratee termiatio because of Theorem 4.2. Thus the expected payoff of this strategy is just E = = Notice that this simple strategy actually does reasoably well compared to the boud obtaied i 18. We ow cosider a more iterestig strategy: Strategy Stop whe the umber of heads first exceeds the umber of tails. Aalysis. We first ote that termiatio is guarateed sice this correspods to k = 1 from Theorem 4.2. We also ote that termiatio will always occur o a odd umbered flip. With this i mid, the expected payoff of this strategy is the E = + 1 p , =0 where p 2+1 is the probability we termiate o the th flip ad + 1/2 + 1 is our payoff from termiatig o the th flip. We ow try to compute p 2+1 : p 2+1 = # of ways to termiate o th flip # of possibilities for first flips 20 Clearly, the deomiator of 20 is just To compute the umerator, otice that the termiatig flip will always be a head sice if it were tails we would have termiated sooer. Thus, computig the umerator reduces to fidig the umber of sequeces X 1,..., X 2 cotaiig exactly heads ad tails such that for o i {1,..., 2} does X 1,..., X i cotai more heads tha tails this last coditio prevets early termiatio. 8

9 However, this is equivalet to the umber of Dyck paths 2 of legth 2, which is kow to be the -th Catala umber C. Thus, we have: + 1 E = p =0 C = =0 = =0 = 1 2 arcsi1 = π 4. Note that π/ , so this is remarkably close to the bouds obtaied i 18. Commet: Because of Theorem 4.2, all strategies of the form stop whe the umber of heads first exceeds the umber of by tails by k are valid, i.e., termiate with probability 1. It turs out that the strategy above k = 1 has the highest expected value out of all strategies i this family. Questio to the reader: Ituitively why does this make sese? 5 Further Exploratio As of today, o kow strategy has a expected payoff withi the bouds we derived 18 ad so a optimal strategy has ot yet bee discovered. To my kowledge, the tightest kow bouds for the expected value of this game are give by Julia Wisema [3], who used a larger horizo of N = Possible areas for research would be improvig these bouds either through icreased computatioal power or by usig a more computatioally efficiet boudig strategy. Aother possible extesio of this problem which was suggested by a classmate was to repeat the same aalysis we performed but for biased cois with probability p 1/2 of ladig heads. 2 Sequeces cotaiig equal umbers of up ad dow steps i which every prefix has at least as may up steps as dow steps. 9

10 Refereces [1] Olle Häggtröm ad Joha Wästlud, Rigorous computer aalysis of the Chow- Robbis game, The America Mathematical Mothly 12010: [2] Yua-Shih Chow ad Herbert Robbis, O optimal stoppig rules for s /, Ill. J. Math., 9: , [3] Julia D. A. Wisema, The Chow & Robbis Problem: Stop at h=5, t=3, web page, robbis.html 10

Analysis of the Chow-Robbins Game with Biased Coins

Analysis of the Chow-Robbins Game with Biased Coins Aalysis of the Chow-Robbis Game with Biased Cois Arju Mithal May 7, 208 Cotets Itroductio to Chow-Robbis 2 2 Recursive Framework for Chow-Robbis 2 3 Geeralizig the Lower Boud 3 4 Geeralizig the Upper Boud

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

MA131 - Analysis 1. Workbook 10 Series IV

MA131 - Analysis 1. Workbook 10 Series IV MA131 - Aalysis 1 Workbook 10 Series IV Autum 2004 Cotets 4.19 Rearragemets of Series...................... 1 4.19 Rearragemets of Series If you take ay fiite set of umbers ad rearrage their order, their

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Sequences. Notation. Convergence of a Sequence

Sequences. Notation. Convergence of a Sequence Sequeces A sequece is essetially just a list. Defiitio (Sequece of Real Numbers). A sequece of real umbers is a fuctio Z (, ) R for some real umber. Do t let the descriptio of the domai cofuse you; it

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

18.440, March 9, Stirling s formula

18.440, March 9, Stirling s formula Stirlig s formula 8.44, March 9, 9 The factorial fuctio! is importat i evaluatig biomial, hypergeometric, ad other probabilities. If is ot too large,! ca be computed directly, by calculators or computers.

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

Advanced Analysis. Min Yan Department of Mathematics Hong Kong University of Science and Technology

Advanced Analysis. Min Yan Department of Mathematics Hong Kong University of Science and Technology Advaced Aalysis Mi Ya Departmet of Mathematics Hog Kog Uiversity of Sciece ad Techology September 3, 009 Cotets Limit ad Cotiuity 7 Limit of Sequece 8 Defiitio 8 Property 3 3 Ifiity ad Ifiitesimal 8 4

More information

Roberto s Notes on Series Chapter 2: Convergence tests Section 7. Alternating series

Roberto s Notes on Series Chapter 2: Convergence tests Section 7. Alternating series Roberto s Notes o Series Chapter 2: Covergece tests Sectio 7 Alteratig series What you eed to kow already: All basic covergece tests for evetually positive series. What you ca lear here: A test for series

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

7 Sequences of real numbers

7 Sequences of real numbers 40 7 Sequeces of real umbers 7. Defiitios ad examples Defiitio 7... A sequece of real umbers is a real fuctio whose domai is the set N of atural umbers. Let s : N R be a sequece. The the values of s are

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n.

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n. 0_0905.qxd //0 :7 PM Page SECTION 9.5 Alteratig Series Sectio 9.5 Alteratig Series Use the Alteratig Series Test to determie whether a ifiite series coverges. Use the Alteratig Series Remaider to approximate

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

a 3, a 4, ... are the terms of the sequence. The number a n is the nth term of the sequence, and the entire sequence is denoted by a n

a 3, a 4, ... are the terms of the sequence. The number a n is the nth term of the sequence, and the entire sequence is denoted by a n 60_090.qxd //0 : PM Page 59 59 CHAPTER 9 Ifiite Series Sectio 9. EXPLORATION Fidig Patters Describe a patter for each of the followig sequeces. The use your descriptio to write a formula for the th term

More information

Notes on Snell Envelops and Examples

Notes on Snell Envelops and Examples Notes o Sell Evelops ad Examples Example (Secretary Problem): Coside a pool of N cadidates whose qualificatios are represeted by ukow umbers {a > a 2 > > a N } from best to last. They are iterviewed sequetially

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

End-of-Year Contest. ERHS Math Club. May 5, 2009

End-of-Year Contest. ERHS Math Club. May 5, 2009 Ed-of-Year Cotest ERHS Math Club May 5, 009 Problem 1: There are 9 cois. Oe is fake ad weighs a little less tha the others. Fid the fake coi by weighigs. Solutio: Separate the 9 cois ito 3 groups (A, B,

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES Peter M. Maurer Why Hashig is θ(). As i biary search, hashig assumes that keys are stored i a array which is idexed by a iteger. However, hashig attempts to bypass

More information

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n = 60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1 . Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely

More information

Math 10A final exam, December 16, 2016

Math 10A final exam, December 16, 2016 Please put away all books, calculators, cell phoes ad other devices. You may cosult a sigle two-sided sheet of otes. Please write carefully ad clearly, USING WORDS (ot just symbols). Remember that the

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

Keywords: Last-Success-Problem; Odds-Theorem; Optimal stopping; Optimal threshold AMS 2010 Mathematics Subject Classification 60G40, 62L15

Keywords: Last-Success-Problem; Odds-Theorem; Optimal stopping; Optimal threshold AMS 2010 Mathematics Subject Classification 60G40, 62L15 CONCERNING AN ADVERSARIAL VERSION OF THE LAST-SUCCESS-PROBLEM arxiv:8.0538v [math.pr] 3 Dec 08 J.M. GRAU RIBAS Abstract. There are idepedet Beroulli radom variables with parameters p i that are observed

More information

Math 19B Final. Study Aid. June 6, 2011

Math 19B Final. Study Aid. June 6, 2011 Math 9B Fial Study Aid Jue 6, 20 Geeral advise. Get plety of practice. There s a lot of material i this sectio - try to do as may examples ad as much of the homework as possible to get some practice. Just

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

The Poisson Distribution

The Poisson Distribution MATH 382 The Poisso Distributio Dr. Neal, WKU Oe of the importat distributios i probabilistic modelig is the Poisso Process X t that couts the umber of occurreces over a period of t uits of time. This

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1 460_0906.qxd //04 :8 PM Page 69 SECTION 9.6 The Ratio ad Root Tests 69 Sectio 9.6 EXPLORATION Writig a Series Oe of the followig coditios guaratees that a series will diverge, two coditios guaratee that

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

P1 Chapter 8 :: Binomial Expansion

P1 Chapter 8 :: Binomial Expansion P Chapter 8 :: Biomial Expasio jfrost@tiffi.kigsto.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 6 th August 7 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Sequences III. Chapter Roots

Sequences III. Chapter Roots Chapter 4 Sequeces III 4. Roots We ca use the results we ve established i the last workbook to fid some iterestig limits for sequeces ivolvig roots. We will eed more techical expertise ad low cuig tha

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

(I.C) THE DISTRIBUTION OF PRIMES

(I.C) THE DISTRIBUTION OF PRIMES I.C) THE DISTRIBUTION OF PRIMES I the last sectio we showed via a Euclid-ispired, algebraic argumet that there are ifiitely may primes of the form p = 4 i.e. 4 + 3). I fact, this is true for primes of

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or Topic : Sequeces ad Series A sequece is a ordered list of umbers, e.g.,,, 8, 6, or,,,.... A series is a sum of the terms of a sequece, e.g. + + + 8 + 6 + or... Sigma Notatio b The otatio f ( k) is shorthad

More information

Square-Congruence Modulo n

Square-Congruence Modulo n Square-Cogruece Modulo Abstract This paper is a ivestigatio of a equivalece relatio o the itegers that was itroduced as a exercise i our Discrete Math class. Part I - Itro Defiitio Two itegers are Square-Cogruet

More information

Series Review. a i converges if lim. i=1. a i. lim S n = lim i=1. 2 k(k + 2) converges. k=1. k=1

Series Review. a i converges if lim. i=1. a i. lim S n = lim i=1. 2 k(k + 2) converges. k=1. k=1 Defiitio: We say that the series S = Series Review i= a i is the sum of the first terms. i= a i coverges if lim S exists ad is fiite, where The above is the defiitio of covergece for series. order to see

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2013 Aat Sahai Lecture 18 Iferece Oe of the major uses of probability is to provide a systematic framework to perform iferece uder ucertaity. A

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

MA131 - Analysis 1. Workbook 7 Series I

MA131 - Analysis 1. Workbook 7 Series I MA3 - Aalysis Workbook 7 Series I Autum 008 Cotets 4 Series 4. Defiitios............................... 4. Geometric Series........................... 4 4.3 The Harmoic Series.........................

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES 11.4 The Compariso Tests I this sectio, we will lear: How to fid the value of a series by comparig it with a kow series. COMPARISON TESTS

More information

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3 Exam Problems (x. Give the series (, fid the values of x for which this power series coverges. Also =0 state clearly what the radius of covergece is. We start by settig up the Ratio Test: x ( x x ( x x

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

Linear chord diagrams with long chords

Linear chord diagrams with long chords Liear chord diagrams with log chords Everett Sulliva Departmet of Mathematics Dartmouth College Haover New Hampshire, U.S.A. everett..sulliva@dartmouth.edu Submitted: Feb 7, 2017; Accepted: Oct 7, 2017;

More information

~W I F

~W I F A FIBONACCI PROPERTY OF WYTHOFF PAIRS ROBERT SILBER North Carolia State Uiversity, Raleigh, North Carolia 27607 I this paper we poit out aother of those fasciatig "coicideces" which are so characteristically

More information

Assignment 5: Solutions

Assignment 5: Solutions McGill Uiversity Departmet of Mathematics ad Statistics MATH 54 Aalysis, Fall 05 Assigmet 5: Solutios. Let y be a ubouded sequece of positive umbers satisfyig y + > y for all N. Let x be aother sequece

More information

Lecture 4 The Simple Random Walk

Lecture 4 The Simple Random Walk Lecture 4: The Simple Radom Walk 1 of 9 Course: M36K Itro to Stochastic Processes Term: Fall 014 Istructor: Gorda Zitkovic Lecture 4 The Simple Radom Walk We have defied ad costructed a radom walk {X }

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information