Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

Size: px
Start display at page:

Download "Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15"

Transcription

1 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model realworld pheomea. The first of these which we already leared about i the last ote is the biomial distributio Bi(, p). This is the distributio of the umber of Heads, S, i tosses of a biased coi with probability p to be Heads. Its expected value is E[S ] = p, ad as we saw, P[S = k] = ( k) p k (1 p) k. Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the distributio ad the expected umber of tosses? As always, our first step i aswerig the questio must be to defie the sample space Ω. A momet s thought tells us that Ω = {H,TH,TTH,TTTH,...}, i.e, Ω cosists of all sequeces over the alphabet {H,T} that ed with H ad cotai o other Hs. This is our first example of a ifiite sample space (though it is still discrete). What is the probability of a sample poit, say ω = TTH? Sice successive coi tosses are idepedet (this is implicit i the statemet of the problem), we have Pr[TTH] = (1 p) (1 p) p = (1 p) 2 p. Ad geerally, for ay sequece ω Ω of legth i, we have Pr[ω] = (1 p) i 1 p. To be sure everythig is cosistet, we should check that the probabilities of all the sample poits add up to 1. Sice there is exactly oe sequece of each legth i 1 i Ω, we have ω Ω Pr[ω] = (1 p) i 1 p = p i=0 (1 p) i = p 1 1 (1 p) = 1, as expected. (I the secod-last step here, we used the formula for summig a geometric series.) Now let the radom variable X deote the umber of tosses i our sequece (so X(ω) is the legth of ω). Its distributio has a special ame: it is called the geometric distributio with parameter p (where p is the probability that the coi comes up Heads o each toss). Defiitio 15.1 (geometric distributio): A radom variable X for which Pr[X = i] = (1 p) i 1 p for i = 1,2,3,... is said to have the geometric distributio with parameter p. This is abbreviated as X Geom(p). If we plot the distributio of X (the values Pr[X = i] o oe axis ad i o the other) we get a curve that decreases mootoically by a factor of 1 p at each step. See Figure 1. Our ext goal is to compute E(X). Despite the fact that X couts somethig, there s o obvious way to write it as a sum of simple r.vs as we did i may examples i a earlier lecture ote. (Try it!) I a later lecture, CS 70, Summer 2014, Note 15 1

2 Figure 1: The Geometric distributio. we will give a slick way to do this calculatio. For ow, let s just dive i ad try a direct computatio of E(X). Note that the distributio of X is quite simple: So from the defiitio of expectatio we have Pr[X = i] = (1 p) i 1 p for i = 1,2,3,... E(X) = (1 p) + (2 (1 p)p) + (3 (1 p) 2 p) + = p i(1 p) i 1. This series is a bled of a arithmetic series (the i part) ad a geometric series (the (1 p) i 1 part). There are several ways to sum it. Here is oe way, usig a auxiliary trick (give i the followig Theorem) that is ofte very useful. Theorem 15.1: Let X be a radom variable that takes o oly o-egative iteger values. The E(X) = Pr[X i]. Proof: For otatioal coveiece, let s write p i = Pr[X = i], for i = 0,1,2,... From the defiitio of expectatio, we have E(X) = (0 p 0 ) + (1 p 1 ) + (2 p 2 ) + (3 p 3 ) + (4 p 4 ) + = p 1 + (p 2 + p 2 ) + (p 3 + p 3 + p 3 ) + (p 4 + p 4 + p 4 + p 4 ) + = (p 1 + p 2 + p 3 + p 4 + ) + (p 2 + p 3 + p 4 + ) + (p 3 + p 4 + ) + (p 4 + ) + = Pr[X 1] + Pr[X 2] + Pr[X 3] + Pr[X 4] +. I the third lie, we have regrouped the terms ito coveiet ifiite sums. You should check that you uderstad how the fourth lie follows from the third. Let us repeat the proof, this time usig more compact mathematical otatio: Pr[X i] = j i Pr[X = j] = j=1 i j Pr[X = j] = j Pr[X = j] = E[X] j=1 CS 70, Summer 2014, Note 15 2

3 Usig Theorem 15.1, it is easy to compute E(X). The key observatio is that, for our coi-tossig r.v. X, Pr[X i] = (1 p) i 1. (1) Why is this? Well, the evet X i meas that at least i tosses are required. This is exactly equivalet to sayig that the first i 1 tosses are all Tails. Ad the probability of this evet is precisely (1 p) i 1. Now, pluggig equatio (1) ito Theorem 15.1, we get E(X) = Pr[X i] = (1 p) i 1 = 1 1 (1 p) = 1 p. So, the expected umber of tosses of a biased coi util the first Head appears is 1 p. For a fair coi, the expected umber of tosses is 2. For posterity, let s record two importat facts we ve leared about the geometric distributio: Theorem 15.2: For a radom variable X havig the geometric distributio with parameter p, 1. E(X) = 1 p ; ad 2. Pr[X i] = (1 p) i 1 for i = 1,2,... The ext sectio discusses a rather more ivolved applicatio, which is importat i its ow right. The Coupo Collector s Problem Questio: We are tryig to collect a set of differet baseball cards. We get the cards by buyig boxes of cereal: each box cotais exactly oe card, ad it is equally likely to be ay of the cards. How may boxes do we eed to buy util we have collected at least oe copy of every card? The sample space here is similar i flavor to that for our previous coi-tossig example, though rather more complicated. It cosists of all sequeces ω over the alphabet {1,2,...,}, such that 1. ω cotais each symbol 1,2,..., at least oce; ad 2. the fial symbol i ω occurs oly oce. (Check that you uderstad this!) For ay such ω, the probability is just Pr[ω] = 1 i, where i is the legth of ω (why?). However, it is very hard to figure out how may sample poits ω are of legth i (try it for the case = 3). So we will have a hard time figurig out the distributio of the radom variable X, which is the legth of the sequece (i.e, the umber of boxes bought). Fortuately, we ca compute the expectatio E(X) very easily, usig (guess what?) liearity of expectatio, plus the fact we have just leared about the expectatio of the geometric distributio. As usual, we would like to write X = X 1 + X X (2) for suitable simple radom variables X i. But what should the X i be? A atural thig to try is to make X i equal to the umber of boxes we buy while tryig to get the ith ew card (startig immediately after we ve got the (i 1)st ew card). With this defiitio, make sure you believe equatio (2) before proceedig. What does the distributio of X i look like? Well, X 1 is trivial: o matter what happes, we always get a ew card i the first box (sice we have oe to start with). So Pr[X 1 = 1] = 1, ad thus E(X 1 ) = 1. CS 70, Summer 2014, Note 15 3

4 How about X 2? Each time we buy a box, we ll get the same old card with probability 1, ad a ew card with probability 1 1. So we ca thik of buyig boxes as flippig a biased coi with Heads probability p = ; the X 1 is just the umber of tosses util the first Head appears. So X 2 has the geometric distributio with parameter p = 1, ad E(X 2 ) = 1. How about X 3? This is very similar to X 2 except that ow we oly get a ew card with probability 2 (sice there are ow two old oes). So X 3 has the geometric distributio with parameter p = 2, ad E(X 3 ) = 2. Arguig i the same way, we see that, for i = 1,2,...,, X i has the geometric distributio with parameter p = i+1, ad hece that E(X i ) = i + 1. Fially, applyig liearity of expectatio to equatio (2), we get E(X) = E(X i ) = = 1 i. (3) This is a exact expressio for E(X). We ca obtai a tidier form by otig that the sum i it actually has a very good approximatio 1, amely: 1 l + γ, i where γ = is Euler s costat. Thus the expected umber of cereal boxes eeded to collect cards is about (l +γ). This is a excellet approximatio to the exact formula (3) eve for quite small values of. So for example, for = 100, we expect to buy about 518 boxes. The Poisso distributio Cosider the umber of clicks of a Geiger couter, which measures radioactive emissios. The average umber of such clicks per secod,, is a measure of radioactivity, but the actual umber of clicks fluctuates accordig to a certai distributio called the Poisso distributio. What is remarkable is that the average value,, completely determies the probability distributio of the umber of clicks X. Defiitio 15.2 (Poisso distributio): A radom variable X for which Pr[X = i] = i i! e for i = 0,1,2,... (4) is said to have the Poisso distributio with parameter. This is abbreviated as X Poiss(). The Poisso distributio is also a very widely accepted model for so-called rare evets, such as miscoected phoe calls, radioactive emissios, crossovers i chromosomes, the umber of cases of disease, the umber of births per hour, etc. This model is appropriate wheever the occurreces ca be assumed to happe radomly with some costat desity i a cotiuous regio (of time or space), such that occurreces i 1 This is aother of the little tricks you might like to carry aroud i your toolbox. CS 70, Summer 2014, Note 15 4

5 disjoit subregios are idepedet. Oe ca the show that the umber of occurreces i a regio of uit size should obey the Poisso distributio with parameter. To make sure this defiitio is valid, we had better check that (4) is i fact a distributio, i.e, that the probabilities sum to 1. We have i i=0 i! e = e i i=0 i! = e e = 1. (I the secod-last step here, we used the Taylor series expasio e x = 1 + x + x2 2! + x3 3! +.) What is the expectatio of a Poisso radom variable X? This is a simple hads-o calculatio, startig from the defiitio of expectatio: E(X) = i=0 i Pr[X = i] = i=0 i i i! e = e i (i 1)! = e i 1 (i 1)! = e e =. So the expectatio of a Poisso r.v. X with parameter is E(X) =. A plot of the Poisso distributio reveals a curve that rises mootoically to a sigle peak ad the decreases mootoically. The peak is as close as possible to the expected value without exceedig it, i.e, at i =. Poisso ad Coi Flips To see this i a cocrete settig, suppose we wat to model the umber of cell phoe users iitiatig calls i a etwork durig a time period, of duratio say 1 miute. There are may payig customers i the etwork, ad all of them ca potetially make a call durig this time period. However, oly a very small fractio of them actually will. Uder this sceario, it seems reasoable to make two assumptios: The probability of havig more tha 1 customer iitiatig a call i ay small time iterval is egligible. The iitiatio of calls i disjoit time itervals are idepedet evets. The if we divide the oe-miute time period ito disjoit itervals, tha the umber of calls X i that time period ca be modeled as biomially distributed with parameter ad probability of success p, the probability of havig a call iitiated i a time iterval of legth 1/. But what should p be i terms of the relevat parameters of the problem? If calls are iitiated at a average rate of calls per miute, the E(X) = ad so p =, i.e. p = /. So X Bi(,/). As we shall see below, as we let ted to ifiity, this distributio teds to the Poisso distributio with parameter. We ca also see why the Poisso distributio is a model for rare evets. We are thikig of it as a sequece of a large umber,, of coi flips, where we expect oly a fiite umber of Heads. Now we will prove that the Poisso distributio is the limit of the biomial distributio as. Let s look i more detail at the distributio of X as defied above. Recall that X is defied to be a special case of the biomial distributio, with p = ad. For coveiece, we ll write p i = Pr[X = i] for i = 0,1,2,... We will first determie what the distributio is (i.e. the values of p i ) ad the show that the expectatio is. CS 70, Summer 2014, Note 15 5

6 Begiig with p 0, we have ( p 0 = 1 ) e as. What about the other p i? Well, we kow from the biomial distributio that p i = ( ) i ( )i (1 ) i. Sice we kow how p 0 behaves, let s look at the ratio p 1 p 0 : p 1 p 0 = (1 ) 1 (1 ) = 1 = as. (Recall that we are assumig is a costat.) So, sice p 0 e, we see that p 1 e as. Now let s look at the ratio p 2 p 1 : ( ) p 2 2 ( = )2 (1 ) 2 p 1 ( ) (1 = 1 ) (1 ) = as. So p e as. For each value of i, somethig very similar happes to the ratio p i p i 1 : p i p i 1 = ( ) i ( ) ( ( i 1 )i (1 ) i )i 1 (1 = i + 1 ) i+1 i Puttig this together, we see that, for each fixed value i, = i + 1 i i as. p i i i! e as. This is exactly accordig to our defiitio of the Poisso distributio, where Pr[X = i] = i i! e. We have see that the Poisso distributio arises as the limit of the umber of balls i bi 1 whe balls are throw ito bis. I other words, it is the limit of the biomial distributio with parameters ad p = as, beig a fixed costat. CS 70, Summer 2014, Note 15 6

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) = PROBABILITY MODELS 35 10. Discrete probability distributios I this sectio, we discuss several well-ow discrete probability distributios ad study some of their properties. Some of these distributios, lie

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Solutios to Quiz : Sprig 006 Problem : Each of the followig statemets is either True or False. There will be o partial credit give for the True False questios, thus ay explaatios will ot be graded. Please

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Math 10A final exam, December 16, 2016

Math 10A final exam, December 16, 2016 Please put away all books, calculators, cell phoes ad other devices. You may cosult a sigle two-sided sheet of otes. Please write carefully ad clearly, USING WORDS (ot just symbols). Remember that the

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Understanding Samples

Understanding Samples 1 Will Moroe CS 109 Samplig ad Bootstrappig Lecture Notes #17 August 2, 2017 Based o a hadout by Chris Piech I this chapter we are goig to talk about statistics calculated o samples from a populatio. We

More information

2 Definition of Variance and the obvious guess

2 Definition of Variance and the obvious guess 1 Estimatig Variace Statistics - Math 410, 11/7/011 Oe of the mai themes of this course is to estimate the mea µ of some variable X of a populatio. We typically do this by collectig a sample of idividuals

More information

Probability theory and mathematical statistics:

Probability theory and mathematical statistics: N.I. Lobachevsky State Uiversity of Nizhi Novgorod Probability theory ad mathematical statistics: Law of Total Probability. Associate Professor A.V. Zorie Law of Total Probability. 1 / 14 Theorem Let H

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probability that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c}) Pr(X c) = Pr({s S X(s)

More information

CS 171 Lecture Outline October 09, 2008

CS 171 Lecture Outline October 09, 2008 CS 171 Lecture Outlie October 09, 2008 The followig theorem comes very hady whe calculatig the expectatio of a radom variable that takes o o-egative iteger values. Theorem: Let Y be a radom variable that

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

Lecture 4 The Simple Random Walk

Lecture 4 The Simple Random Walk Lecture 4: The Simple Radom Walk 1 of 9 Course: M36K Itro to Stochastic Processes Term: Fall 014 Istructor: Gorda Zitkovic Lecture 4 The Simple Radom Walk We have defied ad costructed a radom walk {X }

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p).

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p). Limit Theorems Covergece i Probability Let X be the umber of heads observed i tosses. The, E[X] = p ad Var[X] = p(-p). L O This P x p NM QP P x p should be close to uity for large if our ituitio is correct.

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probablity that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c} Pr(X c) = Pr({s S X(s)

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1 . Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

Probability and Statistics

Probability and Statistics robability ad Statistics rof. Zheg Zheg Radom Variable A fiite sigle valued fuctio.) that maps the set of all eperimetal outcomes ito the set of real umbers R is a r.v., if the set ) is a evet F ) for

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

The Binomial Theorem

The Binomial Theorem The Biomial Theorem Robert Marti Itroductio The Biomial Theorem is used to expad biomials, that is, brackets cosistig of two distict terms The formula for the Biomial Theorem is as follows: (a + b ( k

More information

Sequences, Series, and All That

Sequences, Series, and All That Chapter Te Sequeces, Series, ad All That. Itroductio Suppose we wat to compute a approximatio of the umber e by usig the Taylor polyomial p for f ( x) = e x at a =. This polyomial is easily see to be 3

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Sequeces ad 6 Sequeces Ad SEQUENCES AND SERIES Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives rise to what is called a sequece. Sequeces

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Part I: Covers Sequence through Series Comparison Tests

Part I: Covers Sequence through Series Comparison Tests Part I: Covers Sequece through Series Compariso Tests. Give a example of each of the followig: (a) A geometric sequece: (b) A alteratig sequece: (c) A sequece that is bouded, but ot coverget: (d) A sequece

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Confidence Intervals for the Population Proportion p

Confidence Intervals for the Population Proportion p Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:

More information

MA131 - Analysis 1. Workbook 7 Series I

MA131 - Analysis 1. Workbook 7 Series I MA3 - Aalysis Workbook 7 Series I Autum 008 Cotets 4 Series 4. Defiitios............................... 4. Geometric Series........................... 4 4.3 The Harmoic Series.........................

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Statisticians use the word population to refer the total number of (potential) observations under consideration

Statisticians use the word population to refer the total number of (potential) observations under consideration 6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

More information

Sample Midterm This midterm consists of 10 questions. The rst seven questions are multiple choice; the remaining three

Sample Midterm This midterm consists of 10 questions. The rst seven questions are multiple choice; the remaining three CS{74 Combiatorics & Discrete Probability, Fall 97 Sample Midterm :30{:00pm, 7 October Read these istructios carefully. This is a closed book exam. Calculators are permitted.. This midterm cosists of 0

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Math 36Q Fall 25 Professor Hoh Below is a list of practice questios for the Fial Exam. I would suggest also goig over the practice problems ad exams for Exam ad Exam 2 to

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Poisson approximations

Poisson approximations The Bi, p) ca be thought of as the distributio of a sum of idepedet idicator radom variables X +...+ X, with {X i = } deotig a head o the ith toss of a coi. The ormal approximatio to the Biomial works

More information

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency Math 152. Rumbos Fall 2009 1 Solutios to Review Problems for Exam #2 1. I the book Experimetatio ad Measuremet, by W. J. Youde ad published by the by the Natioal Sciece Teachers Associatio i 1962, the

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Topic 8: Expected Values

Topic 8: Expected Values Topic 8: Jue 6, 20 The simplest summary of quatitative data is the sample mea. Give a radom variable, the correspodig cocept is called the distributioal mea, the epectatio or the epected value. We begi

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

Lecture 6: Coupon Collector s problem

Lecture 6: Coupon Collector s problem Radomized Algorithms Lecture 6: Coupo Collector s problem Sotiris Nikoletseas Professor CEID - ETY Course 2017-2018 Sotiris Nikoletseas, Professor Radomized Algorithms - Lecture 6 1 / 16 Variace: key features

More information

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

More information

Lecture 6: Integration and the Mean Value Theorem

Lecture 6: Integration and the Mean Value Theorem Math 8 Istructor: Padraic Bartlett Lecture 6: Itegratio ad the Mea Value Theorem Week 6 Caltech - Fall, 2011 1 Radom Questios Questio 1.1. Show that ay positive ratioal umber ca be writte as the sum of

More information

Lecture 6: Integration and the Mean Value Theorem. slope =

Lecture 6: Integration and the Mean Value Theorem. slope = Math 8 Istructor: Padraic Bartlett Lecture 6: Itegratio ad the Mea Value Theorem Week 6 Caltech 202 The Mea Value Theorem The Mea Value Theorem abbreviated MVT is the followig result: Theorem. Suppose

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information