Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Size: px
Start display at page:

Download "Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19"

Transcription

1 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple model, yet surprisigly powerful. May importat probability distributios that are widely used to model real-world pheomea ca be derived from lookig at this basic coi tossig model. The first example, which we have see i Note 16, is the biomial distributio Bi(, p). This is the distributio of the umber of Heads, S, i tosses of a biased coi with probability p to be Heads. Recall that the distributio of S is Pr[S k] ( k) p k (1 p) k for k {0,1,...,}. The expected value is E(S ) p ad the variace is Var(S ) p(1 p). The biomial distributio frequetly appears to model the umber of successes i a repeated experimet. Geometric Distributio Cosider tossig a biased coi with Heads probability p repeatedly. Let X deote the umber of tosses util the first Head appears. The X is a radom variable that takes values i the set of positive itegers {1,2,3,...}. The evet that X i is equal to the evet of observig Tails for the first i 1 tosses ad gettig Heads i the i-th toss, which occurs with probability (1 p) i 1 p. Such a radom variable is called a geometric radom variable. The geometric distributio frequetly occurs i applicatios because we are ofte iterested i how log we have to wait before a certai evet happes: how may rus before the system fails, how may shots before oe is o target, how may poll samples before we fid a Democrat, how may retrasmissios of a packet before successfully reachig the destiatio, etc. Defiitio 19.1 (Geometric distributio). A radom variable X for which Pr[X i] (1 p) i 1 p for i 1,2,3,... is said to have the geometric distributio with parameter p. This is abbreviated as X Geom(p). As a saity check, we ca verify that the total probability of X is equal to 1: Pr[X i] (1 p) i 1 p p (1 p) i 1 p where i the secod-to-last step we have used the formula for geometric series. 1 1 (1 p) 1, If we plot the distributio of X (i.e., the values Pr[X i] agaist i) we get a curve that decreases mootoically by a factor of 1 p at each step, as show i Figure 1. Let us ow compute the expectatio E(X). Applyig the defiitio of expected value directly gives us: E(X) i Pr[X i] p i(1 p) i 1. CS 70, Sprig 2016, Note 19 1

2 Figure 1: The Geometric distributio. However, the fial summatio is difficult to evaluate ad requires some calculus trick. Istead, we will use the followig alterative formula for expectatio. Theorem Let X be a radom variable that takes values i {0,1,2,...}. The E(X) Pr[X i]. Proof. For otatioal coveiece, let s write p i Pr[X i], for i 0,1,2,... From the defiitio of expectatio, we have E(X) (0 p 0 ) + (1 p 1 ) + (2 p 2 ) + (3 p 3 ) + (4 p 4 ) + p 1 + (p 2 + p 2 ) + (p 3 + p 3 + p 3 ) + (p 4 + p 4 + p 4 + p 4 ) + (p 1 + p 2 + p 3 + p 4 + ) + (p 2 + p 3 + p 4 + ) + (p 3 + p 4 + ) + (p 4 + ) + Pr[X 1] + Pr[X 2] + Pr[X 3] + Pr[X 4] +. I the third lie, we have regrouped the terms ito coveiet ifiite sums, ad each ifiite sum is exactly the probability that X i for each i. You should check that you uderstad how the fourth lie follows from the third. Let us repeat the proof more formally, this time usig more compact mathematical otatio: E(X) j Pr[X j] j1 j1 j Pr[X j] ji Pr[X j] Pr[X i]. We ca ow use Theorem 19.1 to compute E(X) more easily. Theorem For a geometric radom variable X Geom(p), we have E(X) 1 p. Proof. The key observatio is that for a geometric radom variable X, Pr[X i] (1 p) i 1 for i 1,2,... (1) We ca obtai this simply by summig Pr[X j] for j i. Aother way of seeig this is to ote that the evet X i meas at least i tosses are required. This is equivalet to sayig that the first i 1 tosses are all CS 70, Sprig 2016, Note 19 2

3 Tails, ad the probability of this evet is precisely (1 p) i 1. Now, pluggig equatio (1) ito Theorem 19.1, we get E(X) Pr[X i] (1 p) i (1 p) 1 p, where we have used the formula for geometric series. So, the expected umber of tosses of a biased coi util the first Head appears is 1 p. Ituitively, if i each coi toss we expect to get p Heads, the we eed to toss the coi 1 p times to get 1 Head. So for a fair coi, the expected umber of tosses is 2, but remember that the actual umber of coi tosses that we eed ca be ay positive itegers. Remark: Aother way of derivig E(X) 1 p is to use the iterpretatio of a geometric radom variable X as the umber of coi tosses util we get a Head. Cosider what happes i the first coi toss: If the first toss comes up Heads, the X 1. Otherwise, we have used oe toss, ad we repeat the coi tossig process agai; the umber of coi tosses after the first toss is agai a geometric radom variable with parameter p. Therefore, we ca calculate: Solvig for E(X) yields E(X) 1 p, as claimed. Let us ow compute the variace of X. E(X) p 1 }{{} + (1 p) (1 + E(X)). }{{} first toss is H first toss is T, the toss agai Theorem For a geometric radom variable X Geom(p), we have Var(X) 1 p p 2. Proof. We will show that E(X(X 1)) 2(1 p). Sice we already kow E(X) 1 p 2 p, this will imply the desired result: Var(X) E(X 2 ) E(X) 2 E(X(X 1)) + E(X) E(X) 2 2(1 p) p p 1 2(1 p) + p 1 p2 p 2 1 p p 2. Now to show E(X(X 1)) 2(1 p), we begi with the followig idetity of geometric series: p 2 i0 (1 p) i 1 p. Differetiatig the idetity above with respect to p yields (the i 0 term is equal to 0 so we omit it): i(1 p) i 1 1 p 2. Differetiatig both sides with respect to p agai gives us (the i 1 term is equal to 0 so we omit it): i2 i(i 1)(1 p) i 2 2 p 3. (2) CS 70, Sprig 2016, Note 19 3

4 Now usig the geometric distributio of X ad idetity (2), we ca calculate: E(X(X 1)) i2 p(1 p) i(i 1) Pr[X i] i(i 1)(1 p) i 1 p i2 i(i 1)(1 p) i 2 p(1 p) 2 p 3 (usig idetity (2)) (the i 1 term is equal to 0 so we omit it) as desired. 2(1 p) p 2, Applicatio: The Coupo Collector s Problem Suppose we are tryig to collect a set of differet baseball cards. We get the cards by buyig boxes of cereal: each box cotais exactly oe card, ad it is equally likely to be ay of the cards. How may boxes do we eed to buy util we have collected at least oe copy of every card? Let X deote the umber of boxes we eed to buy i order to collect all cards. The distributio of X is difficult to compute directly (try it for 3). But if we are oly iterested i its expected value E(X), the we ca evaluate it easily usig liearity of expectatio ad what we have just leared about the geometric distributio. As usual, we start by writig X X 1 + X X (3) for suitable simple radom variables X i. What should the X i be? Naturally, X i is the umber of boxes we buy while tryig to get the i-th ew card (startig immediately after we ve got the (i 1)-st ew card). With this defiitio, make sure you believe equatio (3) before proceedig. What does the distributio of X i look like? Well, X 1 is trivial: o matter what happes, we always get a ew card i the first box (sice we have oe to start with). So Pr[X 1 1] 1, ad thus E(X 1 ) 1. How about X 2? Each time we buy a box, we ll get the same old card with probability 1, ad a ew card with probability 1 1. So we ca thik of buyig boxes as flippig a biased coi with Heads probability p ; the X 2 is just the umber of tosses util the first Head appears. So X 2 has the geometric distributio with parameter p 1, ad E(X 2 ) 1. How about X 3? This is very similar to X 2 except that ow we oly get a ew card with probability 2 (sice there are ow two old oes). So X 3 has the geometric distributio with parameter p 2, ad E(X 3 ) 2. Arguig i the same way, we see that, for i 1,2,...,, X i has the geometric distributio with parameter p i+1, ad hece that E(X i ) i + 1. CS 70, Sprig 2016, Note 19 4

5 Fially, applyig liearity of expectatio to equatio (3), we get E(X) E(X i ) i. (4) This is a exact expressio for E(X). We ca obtai a tidier form by otig that the sum i it actually has a very good approximatio, 1 amely: 1 l + γ, i where γ is kow as Euler s costat. Thus, the expected umber of cereal boxes eeded to collect cards is about (l + γ). This is a excellet approximatio to the exact formula (4) eve for quite small values of. So for example, for 100, we expect to buy about 518 boxes. Poisso Distributio Cosider the umber of clicks of a Geiger couter, which measures radioactive emissios. The average umber of such clicks per uit time, λ, is a measure of radioactivity, but the actual umber of clicks fluctuates accordig to a certai distributio called the Poisso distributio. What is remarkable is that the average value, λ, completely determies the probability distributio o the umber of clicks X. Defiitio 19.2 (Poisso distributio). A radom variable X for which Pr[X i] λ i i! e λ for i 0,1,2,... (5) is said to have the Poisso distributio with parameter λ. This is abbreviated as X Poiss(λ). To make sure this is a valid defiitio, let us check that (5) is i fact a distributio, i.e., that the probabilities sum to 1. We have λ i i0 i! e λ e λ λ i i0 i! e λ e λ 1. I the secod-to-last step, we used the Taylor series expasio e x 1 + x + x2 2! + x3 3! +. The Poisso distributio is also a very widely accepted model for so-called rare evets," such as miscoected phoe calls, radioactive emissios, crossovers i chromosomes, the umber of cases of disease, the umber of births per hour, etc. This model is appropriate wheever the occurreces ca be assumed to happe radomly with some costat desity i a cotiuous regio (of time or space), such that occurreces i disjoit subregios are idepedet. Oe ca the show that the umber of occurreces i a regio of uit size should obey the Poisso distributio with parameter λ. Example: Suppose whe we write a article, we make a average of 1 typo per page. We ca model this with a Poisso radom variable X with λ 1. So the probability that a page has 5 typos is Pr[X 5] 15 5! e e This is aother of the little tricks you might like to carry aroud i your toolbox. CS 70, Sprig 2016, Note 19 5

6 Now suppose the article has 200 pages. If we assume the umber of typos i each page is idepedet, the the probability that there is at least oe page with exactly 5 typos is Pr[ a page with exactly 5 typos] 1 Pr[every page has 5 typos] k1 Pr[page k has 5 typos] (1 Pr[page k has exactly 5 typos]) 1 k1 ( 1 1 ) 200, 120 e where i the last step we have used our earlier calculatio for Pr[X 5]. Let us ow calculate the expectatio ad variace of a Poisso radom variable. As we oted before, the expected value is simply λ. Here we see that the variace is also equal to λ. Theorem For a Poisso radom variable X Poiss(λ), we have E(X) λ ad Var(X) λ. Proof. We ca calculate E(X) directly from the defiitio of expectatio: E(X) i0 i Pr[X i] i λ i i! e λ (the i 0 term is equal to 0 so we omit it) λe λ (i 1)! λ i 1 λe λ e λ (sice e λ j0 λ j j! λ. Similarly, we ca calculate E(X(X 1)) as follows: E(X(X 1)) Therefore, as desired. i0 i2 i(i 1) Pr[X i] i(i 1) λ i λ 2 e λ (i 2)! i2 with j i 1) i! e λ (the i 0 ad i 1 terms are equal to 0 so we omit them) λ i 2 λ 2 e λ e λ (sice e λ j0 λ j j! λ 2. with j i 2) Var(X) E(X 2 ) E(X) 2 E(X(X 1)) + E(X) E(X) 2 λ 2 + λ λ 2 λ, CS 70, Sprig 2016, Note 19 6

7 A plot of the Poisso distributio reveals a curve that rises mootoically to a sigle peak ad the decreases mootoically. The peak is as close as possible to the expected value, i.e., at i λ. Figure 2 shows a example for λ Figure 2: The Poisso distributio with λ 5. Poisso ad Coi Flips To see a cocrete example of how Poisso distributio arises, suppose we wat to model the umber of cell phoe users iitiatig calls i a etwork durig a time period, of duratio (say) 1 miute. There are may customers i the etwork, ad all of them ca potetially make a call durig this time period. However, oly a very small fractio of them actually will. Uder this sceario, it seems reasoable to make two assumptios: The probability of havig more tha 1 customer iitiatig a call i ay small time iterval is egligible. The iitiatio of calls i disjoit time itervals are idepedet evets. The if we divide the oe-miute time period ito disjoit itervals, the the umber of calls X i that time period ca be modeled as a biomial radom variable with parameter ad probability of success p, i.e., p is the probability of havig a call iitiated i a time iterval of legth 1/. But what should p be i terms of the relevat parameters of the problem? If calls are iitiated at a average rate of λ calls per miute, the E(X) λ ad so p λ, i.e., p λ/. So X Bi(, λ ). As we shall see below, as we let ted to ifiity, this distributio teds to the Poisso distributio with parameter λ. We ca also see why the Poisso distributio is a model for rare evets. We are thikig of it as a sequece of a large umber,, of coi flips, where we expect oly a fiite umber λ of Heads. Now we will prove that the Poisso distributio Poiss(λ) is the limit of the biomial distributio Bi(, λ ), as teds to ifiity. Theorem Let X Bi(, λ ) where λ > 0 is a fixed costat. The for every i 0,1,2,..., Pr[X i] λ i i! e λ as. That is, the probability distributio of X coverges to the Poisso distributio with parameter λ. CS 70, Sprig 2016, Note 19 7

8 Proof. Fix i {0,1,2,...}, ad assume i (because we will let ). The, because X has biomial distributio with parameter ad p λ, Pr[X i] Let us collect the factors ito Pr[X i] λ i The first parethesis above becomes, as, ( ) ( ) p i (1 p) i! λ i ( 1 λ ) i. i i!( i)!! ( i)! 1 ( 1) ( i + 1) ( i)! i ( i)! i! (! ( i)! 1 ) ( i 1 λ ) ( 1 λ ) i. (6) 1 i From calculus, the secod parethesis i (6) becomes, as, ( 1 λ ) e λ. Ad sice i is fixed, the third parethesis i (6) becomes, as, Substitutig these results back to (6) gives us ( 1 λ ) i (1 0) i 1. ( 1) ( i + 1) 1. as desired. Pr[X i] λ i i! 1 e λ 1 λ i i! e λ, CS 70, Sprig 2016, Note 19 8

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probability that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c}) Pr(X c) = Pr({s S X(s)

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probablity that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c} Pr(X c) = Pr({s S X(s)

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p).

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p). Limit Theorems Covergece i Probability Let X be the umber of heads observed i tosses. The, E[X] = p ad Var[X] = p(-p). L O This P x p NM QP P x p should be close to uity for large if our ituitio is correct.

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) = PROBABILITY MODELS 35 10. Discrete probability distributios I this sectio, we discuss several well-ow discrete probability distributios ad study some of their properties. Some of these distributios, lie

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Final Solutions

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Final Solutions CS 70 Discrete Mathematics ad Probability Theory Fall 2016 Seshia ad Walrad Fial Solutios CS 70, Fall 2016, Fial Solutios 1 1 TRUE or FALSE?: 2x8=16 poits Clearly put your aswers i the aswer box o the

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

2 Definition of Variance and the obvious guess

2 Definition of Variance and the obvious guess 1 Estimatig Variace Statistics - Math 410, 11/7/011 Oe of the mai themes of this course is to estimate the mea µ of some variable X of a populatio. We typically do this by collectig a sample of idividuals

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Solutios to Quiz : Sprig 006 Problem : Each of the followig statemets is either True or False. There will be o partial credit give for the True False questios, thus ay explaatios will ot be graded. Please

More information

Discrete Mathematics and Probability Theory Fall 2016 Walrand Probability: An Overview

Discrete Mathematics and Probability Theory Fall 2016 Walrand Probability: An Overview CS 70 Discrete Mathematics ad Probability Theory Fall 2016 Walrad Probability: A Overview Probability is a fasciatig theory. It provides a precise, clea, ad useful model of ucertaity. The successes of

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learig Theory: Lecture Notes Kamalika Chaudhuri October 4, 0 Cocetratio of Averages Cocetratio of measure is very useful i showig bouds o the errors of machie-learig algorithms. We will begi with a basic

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Introduction to Probability and Statistics Twelfth Edition

Introduction to Probability and Statistics Twelfth Edition Itroductio to Probability ad Statistics Twelfth Editio Robert J. Beaver Barbara M. Beaver William Medehall Presetatio desiged ad writte by: Barbara M. Beaver Itroductio to Probability ad Statistics Twelfth

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2013 Aat Sahai Lecture 18 Iferece Oe of the major uses of probability is to provide a systematic framework to perform iferece uder ucertaity. A

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Confidence Intervals for the Population Proportion p

Confidence Intervals for the Population Proportion p Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY Structure 2.1 Itroductio Objectives 2.2 Relative Frequecy Approach ad Statistical Probability 2. Problems Based o Relative Frequecy 2.4 Subjective Approach

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Lecture 16

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Lecture 16 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Lecture 16 Variace Questio: Let us retur oce agai to the questio of how may heads i a typical sequece of coi flips. Recall that we

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency Math 152. Rumbos Fall 2009 1 Solutios to Review Problems for Exam #2 1. I the book Experimetatio ad Measuremet, by W. J. Youde ad published by the by the Natioal Sciece Teachers Associatio i 1962, the

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Module 1 Fundamentals in statistics

Module 1 Fundamentals in statistics Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

Lecture 6: Integration and the Mean Value Theorem. slope =

Lecture 6: Integration and the Mean Value Theorem. slope = Math 8 Istructor: Padraic Bartlett Lecture 6: Itegratio ad the Mea Value Theorem Week 6 Caltech 202 The Mea Value Theorem The Mea Value Theorem abbreviated MVT is the followig result: Theorem. Suppose

More information

Topic 8: Expected Values

Topic 8: Expected Values Topic 8: Jue 6, 20 The simplest summary of quatitative data is the sample mea. Give a radom variable, the correspodig cocept is called the distributioal mea, the epectatio or the epected value. We begi

More information

STAT 516 Answers Homework 6 April 2, 2008 Solutions by Mark Daniel Ward PROBLEMS

STAT 516 Answers Homework 6 April 2, 2008 Solutions by Mark Daniel Ward PROBLEMS STAT 56 Aswers Homework 6 April 2, 28 Solutios by Mark Daiel Ward PROBLEMS Chapter 6 Problems 2a. The mass p(, correspods to either o the irst two balls beig white, so p(, 8 7 4/39. The mass p(, correspods

More information

Math 10A final exam, December 16, 2016

Math 10A final exam, December 16, 2016 Please put away all books, calculators, cell phoes ad other devices. You may cosult a sigle two-sided sheet of otes. Please write carefully ad clearly, USING WORDS (ot just symbols). Remember that the

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Lecture 16. Multiple Random Variables and Applications to Inference

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Lecture 16. Multiple Random Variables and Applications to Inference CS 70 Discrete Mathematics ad Probability Theory Fall 2009 Satish Rao,David Tse Lecture 16 Multiple Radom Variables ad Applicatios to Iferece I may probability problems, we have to deal with multiple r.v.

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen) Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

More information

Series: Infinite Sums

Series: Infinite Sums Series: Ifiite Sums Series are a way to mae sese of certai types of ifiitely log sums. We will eed to be able to do this if we are to attai our goal of approximatig trascedetal fuctios by usig ifiite degree

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

Lecture 2: Poisson Sta*s*cs Probability Density Func*ons Expecta*on and Variance Es*mators

Lecture 2: Poisson Sta*s*cs Probability Density Func*ons Expecta*on and Variance Es*mators Lecture 2: Poisso Sta*s*cs Probability Desity Fuc*os Expecta*o ad Variace Es*mators Biomial Distribu*o: P (k successes i attempts) =! k!( k)! p k s( p s ) k prob of each success Poisso Distributio Note

More information

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1 . Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

The coalescent coalescence theory

The coalescent coalescence theory The coalescet coalescece theory Peter Beerli September 1, 009 Historical ote Up to 198 most developmet i populatio geetics was prospective ad developed expectatios based o situatios of today. Most work

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Probability and Statistics

Probability and Statistics robability ad Statistics rof. Zheg Zheg Radom Variable A fiite sigle valued fuctio.) that maps the set of all eperimetal outcomes ito the set of real umbers R is a r.v., if the set ) is a evet F ) for

More information

The Poisson Distribution

The Poisson Distribution MATH 382 The Poisso Distributio Dr. Neal, WKU Oe of the importat distributios i probabilistic modelig is the Poisso Process X t that couts the umber of occurreces over a period of t uits of time. This

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Sequences, Series, and All That

Sequences, Series, and All That Chapter Te Sequeces, Series, ad All That. Itroductio Suppose we wat to compute a approximatio of the umber e by usig the Taylor polyomial p for f ( x) = e x at a =. This polyomial is easily see to be 3

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Part I: Covers Sequence through Series Comparison Tests

Part I: Covers Sequence through Series Comparison Tests Part I: Covers Sequece through Series Compariso Tests. Give a example of each of the followig: (a) A geometric sequece: (b) A alteratig sequece: (c) A sequece that is bouded, but ot coverget: (d) A sequece

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS Cotets 1. A few useful discrete radom variables 2. Joit, margial, ad

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

5. Likelihood Ratio Tests

5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Mathematics 170B Selected HW Solutions.

Mathematics 170B Selected HW Solutions. Mathematics 17B Selected HW Solutios. F 4. Suppose X is B(,p). (a)fidthemometgeeratigfuctiom (s)of(x p)/ p(1 p). Write q = 1 p. The MGF of X is (pe s + q), sice X ca be writte as the sum of idepedet Beroulli

More information

Probability theory and mathematical statistics:

Probability theory and mathematical statistics: N.I. Lobachevsky State Uiversity of Nizhi Novgorod Probability theory ad mathematical statistics: Law of Total Probability. Associate Professor A.V. Zorie Law of Total Probability. 1 / 14 Theorem Let H

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information