1 Introduction to reducing variance in Monte Carlo simulations

Size: px
Start display at page:

Download "1 Introduction to reducing variance in Monte Carlo simulations"

Transcription

1 Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by collectig iid samples from the distributio, X 1,, X ad usig the sample mea (1) X() = 1 X j This is justified by the strog law of large umbers (SLLN), which asserts that this estimate coverges with probability oe (wp1) to the desired µ = E(X), as But the SLLN does ot tell us how good the approximatio is; we cosider this ext Lettig σ = V ar(x) deote the variace of the distributio, we coclude that () V ar(x()) = σ The cetral limit theorem asserts that as, the distributio of def Z = σ (X() µ) teds to N(0, 1), the uit ormal distributio Lettig Z deote a N(0, 1) rv, we coclude that for sufficietly large, Z Z i distributio From here we obtai for ay z 0, P ( X() µ > z σ ) P ( Z > z) = P (Z > z) (We ca obtai ay value of P (Z > z) by referrig to tables, etc) For ay α > 0 o matter how small (such as α = 005), lettig z α/ be such that P (Z > z α/ ) = α/, we thus have P ( X() µ > z α/ σ ) α, which implies that the ukow mea µ lies withi the iterval X() ± z α/ σ with (approximately) probability 1 α This allows us to costruct cofidece itervals for our estimate: we say that the iterval X() ± z α/ σ is a 100(1 α)% cofidece iterval for the mea µ Typically, we would use (say) α = 005 i which case z α/ = z 005 = 196, ad we thus obtai a 95% cofidece iterval X() ± (196) σ The legth of the cofidece iterval is (196) σ which of course teds to 0 as the sample size gets larger I practice we would ot actually kow the value of σ ; it would be ukow (just as µ is) But this is ot really a problem: we istead use a estimate for it, the sample variace s () defied by s () = 1 (X j X ) 1 1

2 It ca be show that s () σ, with probability 1, as ad that E(s ()) = σ, So, i practice we would use s() is place of σ whe costructig our cofidece itervals For example, a 95% cofidece iterval is give by X() ± (196) s() The followig recursios ca be derived; they are useful whe implemetig a simulatio requirig a cofidece iterval: X( + 1) = X() + X +1 X(), + 1 ( S( + 1) = 1 1 ) S() + ( + 1)(X( + 1) X()) 1 Applicatio to Mote Carlo simulatio I Mote Carlo simulatio, istead of collectig the iid data X 1,, X, we simulate it Moreover, we ca choose as large as we wat; = 10, 000 for example, so the cetral limit theorem justificatio for costructig cofidece itervals ca safely be used (eg, i statistics out i the field applicatios, oe might oly have = 5 or = 50 samples!) Thus we ca immediately obtai cofidece itervals for Mote Carlo estimates But simulatio also allows us to be clever: We ca purposely try to iduce egative correlatio amog the variables X 1,, X, or geerate copies that while havig the same mea, have a smaller variace, so that the variace of the estimator i (1) becomes smaller tha σ resultig i a smaller cofidece iterval The idea is to try to get eve better estimates by reducig the ucertaity i our estimate I the ext sectios, we explore ways of doig this 13 Atithetic variates method Let X i deote our copies of X Let = m, for some m 1, that is, is eve Note that (3) X() = 1 m where m X j = 1 m m Y j = Y (m), Y 1 = X 1 + X Y = X 3 + X 4 Y m = X 1 + X, ad E(Y i ) = E(X) = µ This meas that for purpose of estimatig µ = E(X), we ca view each Y i as the ed copy that we wish to simulate from (istead of the X i ) We let Y = X 1+X deote a geeric Y i The problem of estimatio ca be re-cast as we are tryig to estimate µ = E(Y )

3 Computig variaces, (4) (5) (6) (7) (8) V ar(y ) = (1/4)(σ + σ + Cov(X 1, X )) = (1/)(σ + Cov(X 1, X )), hece V ar(y (m)) = 1 (σ + Cov(X 1, X )) = σ / + Cov(X 1, X ))/ = V ar(x()) + Cov(X 1, X ))/ I the case whe the X i are iid, Cov(X 1, X ) = 0 ad thus V ar(y (m)) = σ = V ar(x()), ad we get back to where we started i () But if Cov(X 1, X ) < 0, the V ar(y (m)) < σ ; variace is reduced So it is i our iterest to somehow create some egative correlatio withi each pair (X 1, X ), (X 3, X 4 ),, but keep the pairs iid so that the Y i are iid (ad thus the CLT still applies); for the V ar(y (m)) will be lowered from what it would be if we simply used iid copies of the X i To motivate how we might create the desired egative correlatio, recall that we ca geerate a expoetially distributed rv X 1 = (1/λ) l (U) with U uiformly distributed o (0, 1) Now istead of usig a ew idepedet uiform to geerate a secod such copy, use 1 U which we well kow is also uiformly distributed o (0, 1); that is, defie X = (1/λ) l (1 U) Clearly X 1 ad X are egatively correlated sice if U icreases, the 1 U decreases ad the fuctio l(y) is a icreasig fuctio of y: X 1 icreases iff U icreases iff 1 U decreases iff X decreases More geerally, for ay distributio F (x) = P (X x) with iverse F 1 (y) we could geerate a egatively correlated pair via X 1 = F 1 (U), X = F 1 (1 U) sice F 1 (y) is a mootoe icreasig fuctio of y The radom variables U ad 1 U have a correlatio coefficiet ρ = 1, they are egatively correlated (to the largest extet), thus the mootoicity preserves the property of egative correlatio; ρ X1,X < 0 (ot ecessarily 1 though) I a geeral Mote Carlo simulatio our X is of the form X = h(u 1,, U k ), for some (perhaps very complicated) fuctio h, ad some k (perhaps large), that is, we eed k iid U i to geerate each copy of X For example, if we are cosiderig X = D for the FIFO GI/GI/1 queue, by usig the iverse trasform method for the service (G 1 ) ad iterarrival times (A 1 ), the we eed k = 4 because we eed to geerate service times ad iterarrival times; assumig D 0 = 0 we ca write this as D 1 = (S 0 T 0 ) + = (G 1 (U 1 ) A 1 (U )) + ad the D = (D 1 + S 1 T 1 ) + or D = Thus D = h(u 1, U, U 3, U 4 ) where h(y 1, y, y 3, y 4 ) = [ (G 1 (U 1 ) A 1 (U )) + + G 1 (U 3 ) A 1 (U 4 )] + [ (G 1 (y 1 ) A 1 (y )) + + G 1 (y 3 ) A 1 (y 4 )] + As log as the fuctio h is mootoe (either icreasig or decreasig) i each variable, the it ca be show that X 1 = h(u 1,, U k ) ad X 1 = h(1 U 1,, 1 U k ) are ideed egatively correlated, ad are referred to as atithetic variates I geeral, as log as the fuctio h is mootoe (either icreasig or decreasig) i each variable, the it ca be show that X 1 = h(u 1,, U k ) ad X = h(1 U 1,, 1 U k ) are ideed egatively correlated, ad are referred to as atithetic variates Agai, because the vectors (U 1, U, U k ) ad (1 U 1, 1 U, 1 U k ) have the same distributio, so do X 1 ad X ; i particular they have the same mea E(X) But because of the iduced 3

4 egative correlatio (whe h is mootoe) the two are themselves egatively correlated copies I the above example for D, this is easily established sice each iverse fuctio is mootoe; h(y 1, y, y 3, y 4 ) icreases i y 1 ad y 3 ad decreases i y ad y 4 As aother example, if we are cosiderig X = C = ( 1 S i K) +, i=1 the payoff at time T = of a Asia call optio uder the biomial lattice model, S = S 0 Y 1 Y, the re-writig 1 S i = (1/)S 0 Y 1 [1 + Y ], i=1 where the Y i are the iid up-dow rvs, we have h(u 1, U ) = ( (1/)S 0 (ui{u 1 p} + di{u 1 > p})[1 + (ui{u p} + di{u > p})] K) + This fuctio is mootoe decreasig i U 1 ad U : as either variable icreases, they will exceed the value p ad hece the idicators will ted towards the lower value d as opposed to the higher value u > d Because the vectors (U 1, U ) ad (1 U 1, 1 U ) are idetically distributed, so are the rvs X 1 = h(u 1, U ) ad X = h(1 U 1, 1 U ); i particular they have the same mea E(X) But the mootoicity of h results i egative correlatio betwee them, Cov(X 1, X ) < 0 We summarize (without proof): Propositio 11 If the fuctio h for geeratig X = h(u 1,, U k ) is mootoe i each variable, the X 1 = h(u 1,, U k ) ad X = h(1 U 1,, 1 U k ) with the U i iid uiform o (0, 1) are i fact egatively correlated; Cov(X 1, X ) < 0 (Equivaletly E(X 1 X ) < E(X 1 )E(X ) = E (X)) Algorithm for usig atithetic variates to estimate µ = E(X), whe X = h(u 1,, U k ) is mootoe i the U i : The method of simulatig our pairs is straightforward: 1 Geerate U 1, U k Costruct a first pair: Set X 1 = h(u 1,, U k ) ad X = h(1 U 1,, 1 U k ) Defie Y 1 = [X 1 + X ]/ ad ote that E(Y 1 ) = E(X) = µ Now idepedetly geerate k ew iid uiforms to costruct aother pair X 3, X 4 ad so o pair by pair util reachig m (large) desired pairs, ad m iid radom variables Y j = [X j 1 + X j ]/, 1 j m These Y j have the same mea E(X) = µ, but have a smaller variace because of (8) 3 Use the estimate m Y (m) = Y j, 4

5 where Y 1 = X 1 + X Y = X 3 + X 4 Y m = X m 1 + X m To costruct our (ew ad better) cofidece iterval: The sample variace for these Y j is give by s (m) = 1 m 1 m (Y j Y m ) The the iterval Y (m) ± z α/ s(m) is a 100(1 α)% cofidece iterval for the mea µ Examples 1 Estimatig π: As a very simple example, ote that we ca estimate π by observig that π = the area of a disk of radius 1 ({(x, y) : x + y 1}); π/4 = x dx = E( 1 U ) So Mote Carlo ca be used to estimate π by geeratig copies of X = 1 U ad averagig Sice h(x) = 1 x is mootoe decreasig i x, we ca use atithetic variates Thus we would use X 1 = 1 U1, X = 1 (1 U 1 ) for our first pair, X 3 = 1 U, X 4 = 1 (1 U ) ad so o Customer delay i a FIFO sigle-server queue: As aother example, cosider the delay recursio for a FIFO GI/GI/1 queue: D +1 = (D + S T ) +, 0, where {T : 0} are iid customer iterarrival times distributed as A(x) = P (T x), x 0 ad idepedetly {S : 0} are iid customer service times distributed as G(x) = P (S x), x 0 We assume here that both A 1 (y) ad G 1 (y) are explicitly kow so that the iverse trasform method ca be applied The D = h(u 1,, U ) ca be writte as a mootoe i each variable fuctio For example, D 1 = h(u 1, U ) = (D 0 +G 1 (U 1 ) A 1 (U )) +, which is mootoe icreasig i U 1 ad mootoe decreasig i U We ca the write D = (D 1 + G 1 (U 3 ) A 1 (U 4 )) +, which is thus mootoe icreasig i both U 1 ad U 3, ad mootoe decreasig i U ad U 4 This same idea exteds to D for ay Thus if we wated to estimate (say) E(D 10 ), the expected delay of the 10 th customer (whe (say) D 0 = 0), we could do so as follows: Geerate (U 1, U 10 ) ad (V 1, V 10 ) as iid uiforms over (0, 1) Costruct a copy X 1 = D 10 via usig the followig recursio for 0 9: D +1 = (D + G 1 (U +1 ) A 1 (V +1 )) + 5

6 Now repeat the costructio usig (1 U 1, 1 U 10 ) ad (1 V 1, 1 V 10 ) to get the secod (atithetic) copy X = D 10 : D +1 = (D + G 1 (1 U +1 ) A 1 (1 V +1 )) + X 1 ad X are thus egatively correlated copies of D 10 as desired Remark 11 I a real simulatio applicatio, computig exactly Cov(X 1, X ) whe X 1 ad X are atithetic is ever possible i geeral; after all, we do ot eve kow (i geeral) either E(X) or V ar(x) But this is ot importat sice our objective was oly to reduce the variace, ad we accomplished that 14 Atithetic ormal rvs I may fiace applicatios, the fudametal rvs eeded to costruct a desired output copy X are uit ormals, Z 1, Z, (As opposed to uiforms) For example, whe usig geometric Browia motio for asset pricig, our payoffs typically ca be writte i the form X = h(z 1,, Z k ) Notig that Z is also a uit ormal if Z is, ad that the correlatio coefficiet betwee them is ρ = 1, the followig is the Gaussia aalogue to Propositio 11 Propositio 1 If the fuctio h for geeratig X = h(z 1,, Z k ) is mootoe i each variable, the X 1 = h(z 1,, Z k ) ad X = h( Z 1,, Z k ) with the Z i iid N(0, 1) are i fact egatively correlated; Cov(X 1, X ) < 0 6

Output Analysis and Run-Length Control

Output Analysis and Run-Length Control IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad Ru-Legth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should be doe

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulatio 1 Itroductio Readig Assigmet: Read Chapter 1 of text. We shall itroduce may of the key issues to be discussed i this course via a couple of model problems. Model Problem 1 (Jackso

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain Assigmet 9 Exercise 5.5 Let X biomial, p, where p 0, 1 is ukow. Obtai cofidece itervals for p i two differet ways: a Sice X / p d N0, p1 p], the variace of the limitig distributio depeds oly o p. Use the

More information

Module 1 Fundamentals in statistics

Module 1 Fundamentals in statistics Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS

EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS Ryszard Zieliński Ist Math Polish Acad Sc POBox 21, 00-956 Warszawa 10, Polad e-mail: rziel@impagovpl ABSTRACT Weak laws of large umbers (W LLN), strog

More information

LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

There is no straightforward approach for choosing the warmup period l.

There is no straightforward approach for choosing the warmup period l. B. Maddah INDE 504 Discrete-Evet Simulatio Output Aalysis () Statistical Aalysis for Steady-State Parameters I a otermiatig simulatio, the iterest is i estimatig the log ru steady state measures of performace.

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information

Lecture 33: Bootstrap

Lecture 33: Bootstrap Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

http://www.xelca.l/articles/ufo_ladigsbaa_houte.aspx imulatio Output aalysis 3/4/06 This lecture Output: A simulatio determies the value of some performace measures, e.g. productio per hour, average queue

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Mathematics 170B Selected HW Solutions.

Mathematics 170B Selected HW Solutions. Mathematics 17B Selected HW Solutios. F 4. Suppose X is B(,p). (a)fidthemometgeeratigfuctiom (s)of(x p)/ p(1 p). Write q = 1 p. The MGF of X is (pe s + q), sice X ca be writte as the sum of idepedet Beroulli

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

5. Likelihood Ratio Tests

5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

Estimation of a population proportion March 23,

Estimation of a population proportion March 23, 1 Social Studies 201 Notes for March 23, 2005 Estimatio of a populatio proportio Sectio 8.5, p. 521. For the most part, we have dealt with meas ad stadard deviatios this semester. This sectio of the otes

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information

Surveying the Variance Reduction Methods

Surveying the Variance Reduction Methods Iteratioal Research Joural of Applied ad Basic Scieces 2013 Available olie at www.irjabs.com ISSN 2251-838X / Vol, 7 (7): 427-432 Sciece Explorer Publicatios Surveyig the Variace Reductio Methods Arash

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

6. Sufficient, Complete, and Ancillary Statistics

6. Sufficient, Complete, and Ancillary Statistics Sufficiet, Complete ad Acillary Statistics http://www.math.uah.edu/stat/poit/sufficiet.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 6. Sufficiet, Complete, ad Acillary

More information

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1 Parameter Estimatio Samples from a probability distributio F () are: [,,..., ] T.Theprobabilitydistributio has a parameter vector [,,..., m ] T. Estimator: Statistic used to estimate ukow. Estimate: Observed

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9 BIOS 4110: Itroductio to Biostatistics Brehey Lab #9 The Cetral Limit Theorem is very importat i the realm of statistics, ad today's lab will explore the applicatio of it i both categorical ad cotiuous

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

P1 Chapter 8 :: Binomial Expansion

P1 Chapter 8 :: Binomial Expansion P Chapter 8 :: Biomial Expasio jfrost@tiffi.kigsto.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 6 th August 7 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

Introduction to Probability. Ariel Yadin

Introduction to Probability. Ariel Yadin Itroductio to robability Ariel Yadi Lecture 2 *** Ja. 7 ***. Covergece of Radom Variables As i the case of sequeces of umbers, we would like to talk about covergece of radom variables. There are may ways

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Clases 7-8: Métodos de reducción de varianza en Monte Carlo *

Clases 7-8: Métodos de reducción de varianza en Monte Carlo * Clases 7-8: Métodos de reducció de variaza e Mote Carlo * 9 de septiembre de 27 Ídice. Variace reductio 2. Atithetic variates 2 2.. Example: Uiform radom variables................ 3 2.2. Example: Tail

More information

CS/ECE 715 Spring 2004 Homework 5 (Due date: March 16)

CS/ECE 715 Spring 2004 Homework 5 (Due date: March 16) CS/ECE 75 Sprig 004 Homework 5 (Due date: March 6) Problem 0 (For fu). M/G/ Queue with Radom-Sized Batch Arrivals. Cosider the M/G/ system with the differece that customers are arrivig i batches accordig

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation Cofidece Iterval for tadard Deviatio of Normal Distributio with Kow Coefficiets of Variatio uparat Niwitpog Departmet of Applied tatistics, Faculty of Applied ciece Kig Mogkut s Uiversity of Techology

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

10.6 ALTERNATING SERIES

10.6 ALTERNATING SERIES 0.6 Alteratig Series Cotemporary Calculus 0.6 ALTERNATING SERIES I the last two sectios we cosidered tests for the covergece of series whose terms were all positive. I this sectio we examie series whose

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Sample Size Determination (Two or More Samples)

Sample Size Determination (Two or More Samples) Sample Sie Determiatio (Two or More Samples) STATGRAPHICS Rev. 963 Summary... Data Iput... Aalysis Summary... 5 Power Curve... 5 Calculatios... 6 Summary This procedure determies a suitable sample sie

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES I geeral, it is difficult to fid the exact sum of a series. We were able to accomplish this for geometric series ad the series /[(+)]. This is

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence. Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes. Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

More information

MATH/STAT 352: Lecture 15

MATH/STAT 352: Lecture 15 MATH/STAT 352: Lecture 15 Sectios 5.2 ad 5.3. Large sample CI for a proportio ad small sample CI for a mea. 1 5.2: Cofidece Iterval for a Proportio Estimatig proportio of successes i a biomial experimet

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen) Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Itroductio to Probability ad Statistics Lecture 23: Cotiuous radom variables- Iequalities, CLT Puramrita Sarkar Departmet of Statistics ad Data Sciece The Uiversity of Texas at Austi www.cs.cmu.edu/

More information

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01 ENGI 44 Cofidece Itervals (Two Samples) Page -0 Two Sample Cofidece Iterval for a Differece i Populatio Meas [Navidi sectios 5.4-5.7; Devore chapter 9] From the cetral limit theorem, we kow that, for sufficietly

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information