Confidence Intervals for the Population Proportion p

 Dale Carpenter
 6 months ago
 Views:
Transcription
1 Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical: estimate ± margi of error The assumptios eeded for cofidece itervals of proportios, is the same as for meas. However, it is prudet to poit out some very importat features that were metioed i 5.1 The distributio for is discrete. However, we will use a ormal approximatio, provided we ca meet the secod coditio that follows. I order to use the formula I will propose we must satisfy the coditio that p 10 ad (1 p) 10. If this coditio is ot met, we should ot use the formula below. Also all the assumptios of a biomial settig have to be met. estimate ± margi of error ± p(1 ˆ  p) ˆ Z Take a close look at the compoets of this formula: The mea for the distributio of sample proportios,, is p, µ. Ad the stadard deviatio is give by σ µ p, σ Sice we are usig zscores, Z, ad the associated probabilities of a ormal distributio, we the are assumig that the distributio of is such that the probability calculatios ca be approximated usig a ormal desity curve; thus the requiremet that we meet the coditio p 10 ad (1 p) 10. There is oe problem with the formula. You will otice that the purpose of the cofidece iterval is to estimate p. But the formula for σ eeds the use of p itself! How do we get aroud this quadary? We will use the estimate.
2 Calculatig the Sample Size The formula for calculatig the sample size for a give margi of error, m, ivolves solvig the equatio p(1 ˆ  p) ˆ m Z for. Z ˆ ˆ Whe we solve for we get, p(1  p). As you ca see we agai have a problem. We wat to m calculate the size of for a give value of m. The calculatio requires us to provide a value for, which we do ot have yet (we are just tryig to estimate how may observatios we eed to calculate ). What do we do? I am goig to replace with p. I will give you two choices for the value of p. Z m p(1  p) You must remember the purpose of why we create a cofidece iterval as explaied i 6.1. We wat to estimate a umber (the parameter) by creatig a iterval where our parameter may lie, ad (here is the crucial part) let everyoe kow how ofte, i the log ru, our iterval will cotai the desired parameter. Remember the problem from sectio 5.1, problem 5.7. The problem wated to illustrate that as the probability of success, p, got closer to 0 or 1, the stadard deviatio, goes to zero. Ad you ca see from the graph below that whe p 0.5 this results i the largest stadard deviatio possible for a fixed sample size. So below, for 15, if p 0.5 the σ is just about. σ Stadard Deviatio Stadard Deviatio i terms of p, probability of success for Probability of Success, p
3 So, if we make p 0.5 i the calculatio to fid the sample size, we would kow that whatever iterval we calculate, we ca guaratee the cofidece level. I eed to give you a width I ca guaratee with my cofidece level. The guaratee of course is how ofte my procedure will create a iterval cotaiig the parameter p, i this case. So you basically have two choices. Use the worst case sceario, p 0.5. Aother is to use p your best guess of p. How does this make sese? Now, suppose that I sell you a car, ad I make the guaratee that you should have o problems with the car for two years. Now I kow that i reality there is a good chace that othig will break dow with the car after four years of use, but I am ot as certai; I ca t guaratee it. So I give you a time period that I kow ca guaratee. Here is a Example. I wat to estimate the proportio of times a ball lads o 18 red i a roulette wheel. A roulette wheel had 18 red, 18 black ad two gree slots marked 0 ad 00; a total of 38 slots. I wat to calculate a 99% cofidece iterval, with a margi of error of at most 1%. What should be the sample size I gather? I kow that m 0.01 (for the 1%). Sice I eed a 99% cofidece iterval I kow Z.576. I this case I kow that the proportio I am lookig for is 18/38, so I could use p 18/38. Z m p(1  p) Thus Yes, I would eed to observe 16,544 plays i the hope to get my estimate withi 1% of the actual 99% of the time. What if I did ot kow that p 18/38? What would I have used for p? Oe optio is to use the value that gives the largest sample size for a give cofidece iterval; ,590. This results i a additioal 46 observatios i this case.
4 So we have two choices, either use the worst case sceario or the sample proportio as the estimate, for p i the calculatio of the stadard deviatio. Here is aother fu fact. Sice, we ow admit that the stadard deviatio, to the estimate as the stadard error, σ, is ot kow to us either, we refer SE.. p (1 p ) As was also metioed i 6.1 as the sample size goes up the margi of error decreases. The graph to the right shows this relatioship. Z The formula, p (1 p ) m, gives the sample size for a wated margi of error, m. Agai, you eed to estimate the value for p. I practice you would either use p 0.5 or you would use a best guess for p. Sometimes you ca use previous studies as a basis for that guess.
5 Homework Problems For Cofidece Itervals (p) 8.1 I each of the followig cases state whether or ot a ormal approximatio to the biomial should be used for a cofidece iterval for the populatio proportio p. a. 30 ad we estimate p will equal 0.9 b. 5 ad we estimate p will equal 0.5 c. 100 ad we estimate p will equal 0.04 d. 600 ad we estimate p will equal Whe tryig to hire maagers ad executives, compaies sometimes verify the academic credetials described by the applicats. Oe compay that performs these checks summarized their fidigs for a sixmoth period. Of the 84 applicats whose credetials were checked, 15 lied about havig a degree. a. Fid the proportio of applicats who lied about havig a degree ad the stadard error. b. Cosider these data to be radom sample of credetials from a large collectio of similar applicats. Give a 90% cofidece iterval for the true proportio of applicats who lie about havig a degree. 8.3 I recet years over 70% of firstyear college studets respodig to a atioal survey have idetified beig welloff fiacially as a importat persoal goal. A state uiversity fids that 13 of a SRS of 00 of its firstyear studets say that this goal is importat. Give 95% cofidece iterval for the proportio of all firstyear studets at the uiversity who would idetify beig welloff as a importat persoal goal. 8.4 The Gallup Poll asked a sample of 1785 U.S. adults, Did you, yourself, happe to atted church of syagogue i the last 7 days? Of the respodets, 750 said Yes. Suppose that the poll sample was a SRS. a. Give a 99% cofidece iterval for the proportio of all U.S. adults who atteded church or syagogue durig the week precedig the poll. b. Does the results provide good evidece that less tha half of the populatio atteded church or syagogue. c. How large a sample would be required to obtai a margi of error of ± 0.01 i a 99% cofidece iterval for the proportio who atted church or syagogue? (Use Gallup s result as the guessed value of p.)
6 Aswers 8.1 a No b. Yes, c. No. d. Yes. 8..a 15 84, S.E b (0.1098, 0.473) 8.3 (0.5943, 0.757) 8.4a. (0.3901, ) 8.4b. Yes, sice our iterval does ot iclude 0.5, half. 8.4c. 16,167.
A quick activity  Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population
A quick activity  Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate
More informationInstructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters?
CONFIDENCE INTERVALS How do we make ifereces about the populatio parameters? The samplig distributio allows us to quatify the variability i sample statistics icludig how they differ from the parameter
More informationSection 9.2. Tests About a Population Proportion 12/17/2014. Carrying Out a Significance Test H A N T. Parameters & Hypothesis
Sectio 9.2 Tests About a Populatio Proportio P H A N T O M S Parameters Hypothesis Assess Coditios Name the Test Test Statistic (Calculate) Obtai P value Make a decisio State coclusio Sectio 9.2 Tests
More informationEconomics Spring 2015
1 Ecoomics 400  Sprig 015 /17/015 pp. 3038; Ch. 7.1.47. New Stata Assigmet ad ew MyStatlab assigmet, both due Feb 4th Midterm Exam Thursday Feb 6th, Chapters 17 of Groeber text ad all relevat lectures
More informationSTA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:
STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform largesample ifereces (hypothesis test ad cofidece itervals) to compare two populatio
More informationCommon Large/Small Sample Tests 1/55
Commo Large/Small Sample Tests 1/55 Test of Hypothesis for the Mea (σ Kow) Covert sample result ( x) to a z value Hypothesis Tests for µ Cosider the test H :μ = μ H 1 :μ > μ σ Kow (Assume the populatio
More information71. Chapter 4. Part I. Sampling Distributions and Confidence Intervals
71 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7 Sectio 1. Samplig Distributio 73 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses
More informationCH19 Confidence Intervals for Proportions. Confidence intervals Construct confidence intervals for population proportions
CH19 Cofidece Itervals for Proportios Cofidece itervals Costruct cofidece itervals for populatio proportios Motivatio Motivatio We are iterested i the populatio proportio who support Mr. Obama. This sample
More informationCentral Limit Theorem the Meaning and the Usage
Cetral Limit Theorem the Meaig ad the Usage Covetio about otatio. N, We are usig otatio X is variable with mea ad stadard deviatio. i lieu of sayig that X is a ormal radom Assume a sample of measuremets
More informationThis is an introductory course in Analysis of Variance and Design of Experiments.
1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hardcopy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class
More informationDiscrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19
CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple
More informationSampling Distributions, ZTests, Power
Samplig Distributios, ZTests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace
More informationStatistical Intervals for a Single Sample
3/5/06 Applied Statistics ad Probability for Egieers Sixth Editio Douglas C. Motgomery George C. Ruger Chapter 8 Statistical Itervals for a Sigle Sample 8 CHAPTER OUTLINE 8 Cofidece Iterval o the Mea
More informationExam 2 Instructions not multiple versions
Exam 2 Istructios Remove this sheet of istructios from your exam. You may use the back of this sheet for scratch work. This is a closed book, closed otes exam. You are ot allowed to use ay materials other
More informationMath 140 Introductory Statistics
8.2 Testig a Proportio Math 1 Itroductory Statistics Professor B. Abrego Lecture 15 Sectios 8.2 People ofte make decisios with data by comparig the results from a sample to some predetermied stadard. These
More informationTopic 6 Sampling, hypothesis testing, and the central limit theorem
CSE 103: Probability ad statistics Fall 2010 Topic 6 Samplig, hypothesis testig, ad the cetral limit theorem 61 The biomial distributio Let X be the umberofheadswhe acoiofbiaspistossedtimes The distributio
More informationAnalysis of Experimental Data
Aalysis of Experimetal Data 6544597.0479 ± 0.000005 g Quatitative Ucertaity Accuracy vs. Precisio Whe we make a measuremet i the laboratory, we eed to kow how good it is. We wat our measuremets to be both
More informationProblems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:
Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio
More informationChapter 6 Sampling Distributions
Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to
More informationDepartment of Civil EngineeringI.I.T. Delhi CEL 899: Environmental Risk Assessment HW5 Solution
Departmet of Civil EgieerigI.I.T. Delhi CEL 899: Evirometal Risk Assessmet HW5 Solutio Note: Assume missig data (if ay) ad metio the same. Q. Suppose X has a ormal distributio defied as N (mea=5, variace=
More information1 Inferential Methods for Correlation and Regression Analysis
1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet
More informationInfinite Sequences and Series
Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet
More informationBasis for simulation techniques
Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios
More informationSTAT 203 Chapter 18 Sampling Distribution Models
STAT 203 Chapter 18 Samplig Distributio Models Populatio vs. sample, parameter vs. statistic Recall that a populatio cotais the etire collectio of idividuals that oe wats to study, ad a sample is a subset
More informationConfidence Intervals QMET103
Cofidece Itervals QMET103 Library, Teachig ad Learig CONFIDENCE INTERVALS provide a iterval estimate of the ukow populatio parameter. What is a cofidece iterval? Statisticias have a habit of hedgig their
More informationIntroduction to Probability and Statistics Twelfth Edition
Itroductio to Probability ad Statistics Twelfth Editio Robert J. Beaver Barbara M. Beaver William Medehall Presetatio desiged ad writte by: Barbara M. Beaver Itroductio to Probability ad Statistics Twelfth
More informationStatisticians use the word population to refer the total number of (potential) observations under consideration
6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space
More informationUniversity of California, Los Angeles Department of Statistics. Hypothesis testing
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Elemets of a hypothesis test: Hypothesis testig Istructor: Nicolas Christou 1. Null hypothesis, H 0 (claim about µ, p, σ 2, µ
More informationDiscrete Mathematics and Probability Theory Fall 2016 Walrand Probability: An Overview
CS 70 Discrete Mathematics ad Probability Theory Fall 2016 Walrad Probability: A Overview Probability is a fasciatig theory. It provides a precise, clea, ad useful model of ucertaity. The successes of
More informationDiscrete probability distributions
Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop
More informationMOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.
XI1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI2 (1075) STATISTICAL DECISION MAKING Advaced
More informationSuccessful HE applicants. Information sheet A Number of applicants. Gender Applicants Accepts Applicants Accepts. Age. Domicile
Successful HE applicats Sigificace tests use data from samples to test hypotheses. You will use data o successful applicatios for courses i higher educatio to aswer questios about proportios, for example,
More informationDS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10
DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set
More informationPH 425 Quantum Measurement and Spin Winter SPINS Lab 1
PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the zaxis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured
More informationEcon 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chisquare Distribution, Student s t distribution 1.
Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chisquare Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio
More informationLecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting
Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would
More informationUNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY
UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY Structure 2.1 Itroductio Objectives 2.2 Relative Frequecy Approach ad Statistical Probability 2. Problems Based o Relative Frequecy 2.4 Subjective Approach
More informationUCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences
UCLA STAT 13 Itroductio to Statistical Methods for the Life ad Health Scieces Istructor: Ivo Diov, Asst. Prof. of Statistics ad Neurolog Sample Size Calculatios & Cofidece Itervals for Proportios Teachig
More informationOutput Analysis and RunLength Control
IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad RuLegth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%
More informationNUMERICAL METHODS FOR SOLVING EQUATIONS
Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:
More informationSampling Error. Chapter 6 Student Lecture Notes 61. Business Statistics: A DecisionMaking Approach, 6e. Chapter Goals
Chapter 6 Studet Lecture Notes 61 Busiess Statistics: A DecisioMakig Approach 6 th Editio Chapter 6 Itroductio to Samplig Distributios Chap 61 Chapter Goals After completig this chapter, you should
More informationf(x)dx = 1 and f(x) 0 for all x.
OCR Statistics 2 Module Revisio Sheet The S2 exam is 1 hour 30 miutes log. You are allowed a graphics calculator. Before you go ito the exam make sureyou are fully aware of the cotets of theformula booklet
More information1 Constructing and Interpreting a Confidence Interval
Itroductory Applied Ecoometrics EEP/IAS 118 Sprig 2014 WARM UP: Match the terms i the table with the correct formula: Adrew CraeDroesch Sectio #6 5 March 2014 ˆ Let X be a radom variable with mea µ ad
More informationBHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13
BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the
More informationBinomial Distribution
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible
More informationRecall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and nonusers, x  y.
Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad ousers, x  y. Such studies are sometimes viewed
More informationStat 400, section 5.4 supplement: The Central Limit Theorem
Stat, sectio 5. supplemet: The Cetral Limit Theorem otes by Tim Pilachowski Table of Cotets 1. Backgroud 1. Theoretical. Practical. The Cetral Limit Theorem 5. Homework Exercises 7 1. Backgroud Gatherig
More informationMeasures of Spread: Standard Deviation
Measures of Spread: Stadard Deviatio So far i our study of umerical measures used to describe data sets, we have focused o the mea ad the media. These measures of ceter tell us the most typical value of
More informationMeasures of Spread: Standard Deviation
Measures of Spread: Stadard Deviatio So far i our study of umerical measures used to describe data sets, we have focused o the mea ad the media. These measures of ceter tell us the most typical value of
More informationStatistical Fundamentals and Control Charts
Statistical Fudametals ad Cotrol Charts 1. Statistical Process Cotrol Basics Chace causes of variatio uavoidable causes of variatios Assigable causes of variatio large variatios related to machies, materials,
More informationProperties and Hypothesis Testing
Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Crosssectioal data. 2. Time series data.
More informationPaired Data and Linear Correlation
Paired Data ad Liear Correlatio Example. A group of calculus studets has take two quizzes. These are their scores: Studet st Quiz Score ( data) d Quiz Score ( data) 7 5 5 0 3 0 3 4 0 5 5 5 5 6 0 8 7 0
More informationFinal Examination Solutions 17/6/2010
The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 00900 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:
More informationStat 200 Testing Summary Page 1
Stat 00 Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece
More informationChapter 22: What is a Test of Significance?
Chapter 22: What is a Test of Sigificace? Thought Questio Assume that the statemet If it s Saturday, the it s the weeked is true. followig statemets will also be true? Which of the If it s the weeked,
More informationIntroducing Sample Proportions
Itroducig Sample Proportios Probability ad statistics Aswers & Notes TINspire Ivestigatio Studet 60 mi 7 8 9 0 Itroductio A 00 survey of attitudes to climate chage, coducted i Australia by the CSIRO,
More informationMA131  Analysis 1. Workbook 2 Sequences I
MA3  Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................
More informationWorksheet 23 ( ) Introduction to Simple Linear Regression (continued)
Worksheet 3 ( 11.511.8) Itroductio to Simple Liear Regressio (cotiued) This worksheet is a cotiuatio of Discussio Sheet 3; please complete that discussio sheet first if you have ot already doe so. This
More informationIssues in Study Design
Power ad Sample Size: Issues i Study Desig Joh McGready Departmet of Biostatistics, Bloomberg School Lecture Topics Revisit cocept of statistical power Factors ifluecig power Sample size determiatio whe
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationTable 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab
Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet
More informationStatistics 20: Final Exam Solutions Summer Session 2007
1. 20 poits Testig for Diabetes. Statistics 20: Fial Exam Solutios Summer Sessio 2007 (a) 3 poits Give estimates for the sesitivity of Test I ad of Test II. Solutio: 156 patiets out of total 223 patiets
More informationNotes on iteration and Newton s method. Iteration
Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f
More informationA PROBABILITY PRIMER
CARLETON COLLEGE A ROBABILITY RIMER SCOTT BIERMAN (Do ot quote without permissio) A robability rimer INTRODUCTION The field of probability ad statistics provides a orgaizig framework for systematically
More informationChapter 1 (Definitions)
FINAL EXAM REVIEW Chapter 1 (Defiitios) Qualitative: Nomial: Ordial: Quatitative: Ordial: Iterval: Ratio: Observatioal Study: Desiged Experimet: Samplig: Cluster: Stratified: Systematic: Coveiece: Simple
More informationActivity 3: Length Measurements with the FourSided Meter Stick
Activity 3: Legth Measuremets with the FourSided Meter Stick OBJECTIVE: The purpose of this experimet is to study errors ad the propagatio of errors whe experimetal data derived usig a foursided meter
More informationCensus. Mean. µ = x 1 + x x n n
MATH 183 Basic Statistics Dr. Neal, WKU Let! be a populatio uder cosideratio ad let X be a specific measuremet that we are aalyzig. For example,! = All U.S. households ad X = Number of childre (uder age
More informationIntroduction to Machine Learning DIS10
CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig
More informationTennessee Department of Education
Teessee Departmet of Educatio Task: Comparig Shapes Geometry O a piece of graph paper with a coordiate plae, draw three ocolliear poits ad label them A, B, C. (Do ot use the origi as oe of your poits.)
More informationMeasures of Variation
Chapter : Measures of Variatio from Statistical Aalysis i the Behavioral Scieces by James Raymodo Secod Editio 97814669676 01 Copyright Property of Kedall Hut Publishig CHAPTER Measures of Variatio Key
More informationA LARGER SAMPLE SIZE IS NOT ALWAYS BETTER!!!
A LARGER SAMLE SIZE IS NOT ALWAYS BETTER!!! Nagaraj K. Neerchal Departmet of Mathematics ad Statistics Uiversity of Marylad Baltimore Couty, Baltimore, MD 2250 Herbert Lacayo ad Barry D. Nussbaum Uited
More informationOn an Application of Bayesian Estimation
O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, HigashiOsaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma
More informationTopic 18: Composite Hypotheses
Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:
More informationThe picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled
1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how
More informationSummary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.
Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios
More informationThe standard deviation of the mean
Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider
More informationLinear Regression Models
Liear Regressio Models Dr. Joh MellorCrummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect
More informationSequences I. Chapter Introduction
Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which
More informationZeros of Polynomials
Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Lecture 16
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Lecture 16 Variace Questio: Let us retur oce agai to the questio of how may heads i a typical sequece of coi flips. Recall that we
More informationII. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation
II. Descriptive Statistics D. Liear Correlatio ad Regressio I this sectio Liear Correlatio Cause ad Effect Liear Regressio 1. Liear Correlatio Quatifyig Liear Correlatio The Pearso productmomet correlatio
More informationNCSS Statistical Software. Tolerance Intervals
Chapter 585 Itroductio This procedure calculates oe, ad two, sided tolerace itervals based o either a distributiofree (oparametric) method or a method based o a ormality assumptio (parametric). A twosided
More informationBINOMIAL COEFFICIENT AND THE GAUSSIAN
BINOMIAL COEFFICIENT AND THE GAUSSIAN The biomial coefficiet is defied as! k!(! ad ca be writte out i the form of a Pascal Triagle startig at the zeroth row with elemet 0,0) ad followed by the two umbers,
More informationSection 11.8: Power Series
Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i
More information5. A formulae page and two tables are provided at the end of Part A of the examination PART A
Istructios: 1. You have bee provided with: (a) this questio paper (Part A ad Part B) (b) a multiple choice aswer sheet (for Part A) (c) Log Aswer Sheet(s) (for Part B) (d) a booklet of tables. (a) I PART
More informationP1 Chapter 8 :: Binomial Expansion
P Chapter 8 :: Biomial Expasio jfrost@tiffi.kigsto.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 6 th August 7 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework
More informationProbability, Expectation Value and Uncertainty
Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such
More informationThe Sample Variance Formula: A Detailed Study of an Old Controversy
The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace
More informationChapter 6 Principles of Data Reduction
Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a
More informationWHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT
WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? Harold G. Loomis Hoolulu, HI ABSTRACT Most coastal locatios have few if ay records of tsuami wave heights obtaied over various time periods. Still
More informationSeunghee Ye Ma 8: Week 5 Oct 28
Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationSOLUTIONS y n. n 1 = 605, y 1 = 351. y1. p y n. n 2 = 195, y 2 = 41. y p H 0 : p 1 = p 2 vs. H 1 : p 1 p 2.
STAT 400 UIUC Practice Problems # SOLUTIONS Stepaov Dalpiaz The followig are a umber of practice problems that may be helpful for completig the homework, ad will likely be very useful for studyig for exams..
More informationSTAT 516 Answers Homework 6 April 2, 2008 Solutions by Mark Daniel Ward PROBLEMS
STAT 56 Aswers Homework 6 April 2, 28 Solutios by Mark Daiel Ward PROBLEMS Chapter 6 Problems 2a. The mass p(, correspods to either o the irst two balls beig white, so p(, 8 7 4/39. The mass p(, correspods
More informationStatistical Inference Procedures
Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a
More informationMedian and IQR The median is the value which divides the ordered data values in half.
STA 666 Fall 2007 Webbased Course Notes 4: Describig Distributios Numerically Numerical summaries for quatitative variables media ad iterquartile rage (IQR) 5umber summary mea ad stadard deviatio Media
More informationY i n. i=1. = 1 [number of successes] number of successes = n
Eco 371 Problem Set # Aswer Sheet 3. I this questio, you are asked to cosider a Beroulli radom variable Y, with a success probability P ry 1 p. You are told that you have draws from this distributio ad
More informationIE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.
Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (
More informationSeries: Infinite Sums
Series: Ifiite Sums Series are a way to mae sese of certai types of ifiitely log sums. We will eed to be able to do this if we are to attai our goal of approximatig trascedetal fuctios by usig ifiite degree
More informationSimple Linear Regression
Simple Liear Regressio 1. Model ad Parameter Estimatio (a) Suppose our data cosist of a collectio of pairs (x i, y i ), where x i is a observed value of variable X ad y i is the correspodig observatio
More information