# Binomial Distribution

Save this PDF as:

Size: px
Start display at page:

## Transcription

### FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

### Elements of Statistical Methods Lots of Data or Large Samples (Ch 8)

Elemets of Statistical Methods Lots of Data or Large Samples (Ch 8) Fritz Scholz Sprig Quarter 2010 February 26, 2010 x ad X We itroduced the sample mea x as the average of the observed sample values x

### Parameter, Statistic and Random Samples

Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

### Chapter 6 Sampling Distributions

Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

### Expectation and Variance of a random variable

Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

### 4. Partial Sums and the Central Limit Theorem

1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

### Parameter, Statistic and Random Samples

Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

### Sampling Distributions, Z-Tests, Power

Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

### Module 1 Fundamentals in statistics

Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### Discrete Mathematics for CS Spring 2008 David Wagner Note 22

CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

### Lecture 7: Properties of Random Samples

Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

### MATH/STAT 352: Lecture 15

MATH/STAT 352: Lecture 15 Sectios 5.2 ad 5.3. Large sample CI for a proportio ad small sample CI for a mea. 1 5.2: Cofidece Iterval for a Proportio Estimatig proportio of successes i a biomial experimet

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### Probability and statistics: basic terms

Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

### Approximations and more PMFs and PDFs

Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

### Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

### IE 230 Seat # Name < KEY > Please read these directions. Closed book and notes. 60 minutes.

IE 230 Seat # Name < KEY > Please read these directios. Closed book ad otes. 60 miutes. Covers through the ormal distributio, Sectio 4.7 of Motgomery ad Ruger, fourth editio. Cover page ad four pages of

### STAT 515 fa 2016 Lec Sampling distribution of the mean, part 2 (central limit theorem)

STAT 515 fa 2016 Lec 15-16 Samplig distributio of the mea, part 2 cetral limit theorem Karl B. Gregory Moday, Sep 26th Cotets 1 The cetral limit theorem 1 1.1 The most importat theorem i statistics.............

### Simulation. Two Rule For Inverting A Distribution Function

Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

### The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

### Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

### Statisticians use the word population to refer the total number of (potential) observations under consideration

6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

### CHAPTER 8 FUNDAMENTAL SAMPLING DISTRIBUTIONS AND DATA DESCRIPTIONS. 8.1 Random Sampling. 8.2 Some Important Statistics

CHAPTER 8 FUNDAMENTAL SAMPLING DISTRIBUTIONS AND DATA DESCRIPTIONS 8.1 Radom Samplig The basic idea of the statistical iferece is that we are allowed to draw ifereces or coclusios about a populatio based

### Lecture 5. Random variable and distribution of probability

Itroductio to theory of probability ad statistics Lecture 5. Radom variable ad distributio of probability prof. dr hab.iż. Katarzya Zarzewsa Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

### Lecture 18: Sampling distributions

Lecture 18: Samplig distributios I may applicatios, the populatio is oe or several ormal distributios (or approximately). We ow study properties of some importat statistics based o a radom sample from

### 7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

### Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

### BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9

BIOS 4110: Itroductio to Biostatistics Brehey Lab #9 The Cetral Limit Theorem is very importat i the realm of statistics, ad today's lab will explore the applicatio of it i both categorical ad cotiuous

### Confidence Intervals. Confidence Intervals

A overview Mot probability ditributio are idexed by oe me parameter. F example, N(µ,σ 2 ) B(, p). I igificace tet, we have ued poit etimat f parameter. F example, f iid Y 1,Y 2,...,Y N(µ,σ 2 ), Ȳ i a poit

### NOTES ON DISTRIBUTIONS

NOTES ON DISTRIBUTIONS MICHAEL N KATEHAKIS Radom Variables Radom variables represet outcomes from radom pheomea They are specified by two objects The rage R of possible values ad the frequecy fx with which

### Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

### Probability and Statistics

robability ad Statistics rof. Zheg Zheg Radom Variable A fiite sigle valued fuctio.) that maps the set of all eperimetal outcomes ito the set of real umbers R is a r.v., if the set ) is a evet F ) for

### Economics Spring 2015

1 Ecoomics 400 -- Sprig 015 /17/015 pp. 30-38; Ch. 7.1.4-7. New Stata Assigmet ad ew MyStatlab assigmet, both due Feb 4th Midterm Exam Thursday Feb 6th, Chapters 1-7 of Groeber text ad all relevat lectures

### Random Variables, Sampling and Estimation

Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

### Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

### Lecture 4. Random variable and distribution of probability

Itroductio to theory of probability ad statistics Lecture. Radom variable ad distributio of probability dr hab.iż. Katarzya Zarzewsa, prof.agh Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

### Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

### Exponential Families and Bayesian Inference

Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

### CHAPTER 2. Mean This is the usual arithmetic mean or average and is equal to the sum of the measurements divided by number of measurements.

CHAPTER 2 umerical Measures Graphical method may ot always be sufficiet for describig data. You ca use the data to calculate a set of umbers that will covey a good metal picture of the frequecy distributio.

### CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

### Rule of probability. Let A and B be two events (sets of elementary events). 11. If P (AB) = P (A)P (B), then A and B are independent.

Percetile: the αth percetile of a populatio is the value x 0, such that P (X x 0 ) α% For example the 5th is the x 0, such that P (X x 0 ) 5% 05 Rule of probability Let A ad B be two evets (sets of elemetary

### 7.1 Convergence of sequences of random variables

Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

### Stat 421-SP2012 Interval Estimation Section

Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

### Introduction to Probability and Statistics Twelfth Edition

Itroductio to Probability ad Statistics Twelfth Editio Robert J. Beaver Barbara M. Beaver William Medehall Presetatio desiged ad writte by: Barbara M. Beaver Itroductio to Probability ad Statistics Twelfth

### Distribution of Random Samples & Limit theorems

STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

### AMS570 Lecture Notes #2

AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

### 1 Introduction to reducing variance in Monte Carlo simulations

Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

### Chapter 6 Principles of Data Reduction

Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

### Stat 225 Lecture Notes Week 7, Chapter 8 and 11

Normal Distributio Stat 5 Lecture Notes Week 7, Chapter 8 ad Please also prit out the ormal radom variable table from the Stat 5 homepage. The ormal distributio is by far the most importat distributio

### Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight)

Tests of Hypotheses Based o a Sigle Sample Devore Chapter Eight MATH-252-01: Probability ad Statistics II Sprig 2018 Cotets 1 Hypothesis Tests illustrated with z-tests 1 1.1 Overview of Hypothesis Testig..........

### Central Limit Theorem the Meaning and the Usage

Cetral Limit Theorem the Meaig ad the Usage Covetio about otatio. N, We are usig otatio X is variable with mea ad stadard deviatio. i lieu of sayig that X is a ormal radom Assume a sample of measuremets

### The standard deviation of the mean

Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

### DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

### April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE

April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE TERRY SOO Abstract These otes are adapted from whe I taught Math 526 ad meat to give a quick itroductio to cofidece

### KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

### Big Picture. 5. Data, Estimates, and Models: quantifying the accuracy of estimates.

5. Data, Estimates, ad Models: quatifyig the accuracy of estimates. 5. Estimatig a Normal Mea 5.2 The Distributio of the Normal Sample Mea 5.3 Normal data, cofidece iterval for, kow 5.4 Normal data, cofidece

### STAT 350 Handout 19 Sampling Distribution, Central Limit Theorem (6.6)

STAT 350 Hadout 9 Samplig Distributio, Cetral Limit Theorem (6.6) A radom sample is a sequece of radom variables X, X 2,, X that are idepedet ad idetically distributed. o This property is ofte abbreviated

### Homework 5 Solutions

Homework 5 Solutios p329 # 12 No. To estimate the chace you eed the expected value ad stadard error. To do get the expected value you eed the average of the box ad to get the stadard error you eed the

### Bayesian Methods: Introduction to Multi-parameter Models

Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

### Lecture 12: November 13, 2018

Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

### 7.1 Convergence of sequences of random variables

Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

### LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

### (6) Fundamental Sampling Distribution and Data Discription

34 Stat Lecture Notes (6) Fudametal Samplig Distributio ad Data Discriptio ( Book*: Chapter 8,pg5) Probability& Statistics for Egieers & Scietists By Walpole, Myers, Myers, Ye 8.1 Radom Samplig: Populatio:

### Quick Review of Probability

Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

### 32 estimating the cumulative distribution function

32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

### Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

### z is the upper tail critical value from the normal distribution

Statistical Iferece drawig coclusios about a populatio parameter, based o a sample estimate. Populatio: GRE results for a ew eam format o the quatitative sectio Sample: =30 test scores Populatio Samplig

### Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

Math 152. Rumbos Fall 2009 1 Solutios to Review Problems for Exam #2 1. I the book Experimetatio ad Measuremet, by W. J. Youde ad published by the by the Natioal Sciece Teachers Associatio i 1962, the

### Confidence intervals summary Conservative and approximate confidence intervals for a binomial p Examples. MATH1005 Statistics. Lecture 24. M.

MATH1005 Statistics Lecture 24 M. Stewart School of Mathematics ad Statistics Uiversity of Sydey Outlie Cofidece itervals summary Coservative ad approximate cofidece itervals for a biomial p The aïve iterval

### Eco411 Lab: Central Limit Theorem, Normal Distribution, and Journey to Girl State

Eco411 Lab: Cetral Limit Theorem, Normal Distributio, ad Jourey to Girl State 1. Some studets may woder why the magic umber 1.96 or 2 (called critical values) is so importat i statistics. Where do they

### TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences.

Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Corrected 3 May ad 4 Jue Solutios TMA445 Statistics Saturday 6 May 9: 3: Problem Sow desity a The probability is.9.5 6x x dx

### STAC51: Categorical data Analysis

STAC51: Categorical data Aalysis Mahida Samarakoo Jauary 28, 2016 Mahida Samarakoo STAC51: Categorical data Aalysis 1 / 35 Table of cotets Iferece for Proportios 1 Iferece for Proportios Mahida Samarakoo

### 0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

PROBABILITY MODELS 35 10. Discrete probability distributios I this sectio, we discuss several well-ow discrete probability distributios ad study some of their properties. Some of these distributios, lie

### Chapter 18 Summary Sampling Distribution Models

Uit 5 Itroductio to Iferece Chapter 18 Summary Samplig Distributio Models What have we leared? Sample proportios ad meas will vary from sample to sample that s samplig error (samplig variability). Samplig

### Quick Review of Probability

Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

### 5. INEQUALITIES, LIMIT THEOREMS AND GEOMETRIC PROBABILITY

IA Probability Let Term 5 INEQUALITIES, LIMIT THEOREMS AND GEOMETRIC PROBABILITY 51 Iequalities Suppose that X 0 is a radom variable takig o-egative values ad that c > 0 is a costat The P X c E X, c is

### Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

### Discrete probability distributions

Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

### Computing Confidence Intervals for Sample Data

Computig Cofidece Itervals for Sample Data Topics Use of Statistics Sources of errors Accuracy, precisio, resolutio A mathematical model of errors Cofidece itervals For meas For variaces For proportios

### Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

### Example: Find the SD of the set {x j } = {2, 4, 5, 8, 5, 11, 7}.

1 (*) If a lot of the data is far from the mea, the may of the (x j x) 2 terms will be quite large, so the mea of these terms will be large ad the SD of the data will be large. (*) I particular, outliers

### Data Description. Measure of Central Tendency. Data Description. Chapter x i

Data Descriptio Describe Distributio with Numbers Example: Birth weights (i lb) of 5 babies bor from two groups of wome uder differet care programs. Group : 7, 6, 8, 7, 7 Group : 3, 4, 8, 9, Chapter 3

### This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

### f(x)dx = 1 and f(x) 0 for all x.

OCR Statistics 2 Module Revisio Sheet The S2 exam is 1 hour 30 miutes log. You are allowed a graphics calculator. Before you go ito the exam make sureyou are fully aware of the cotets of theformula booklet

### Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Term Test 3 (Part A) November 1, 004 Name Math 6 Studet Number Directio: This test is worth 10 poits. You are required to complete this test withi miutes. I order to receive full credit, aswer each problem

### Lecture Chapter 6: Convergence of Random Sequences

ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

### Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

### STAT431 Review. X = n. n )

STAT43 Review I. Results related to ormal distributio Expected value ad variace. (a) E(aXbY) = aex bey, Var(aXbY) = a VarX b VarY provided X ad Y are idepedet. Normal distributios: (a) Z N(, ) (b) X N(µ,

### Modeling and Performance Analysis with Discrete-Event Simulation

Simulatio Modelig ad Performace Aalysis with Discrete-Evet Simulatio Chapter 5 Statistical Models i Simulatio Cotets Basic Probability Theory Cocepts Useful Statistical Models Discrete Distributios Cotiuous

### Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple