# Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Save this PDF as:

Size: px
Start display at page:

Download "Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab"

## Transcription

1 Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet For example, we ca ask if the umber of childre i a family ad family icome are idepedet Our sample space X will cosist of a b pairs X = {(i, j) : i = 1,, a, j = 1,, b} where the first coordiate represets the first feature that belogs to oe of a categories ad the secod coordiate represets the secod feature that belogs to oe of b categories A iid sample X 1,, X ca be represeted by a cotigecy table below where N ij is the umber all observatios i a cell (i, j) Table 121: Cotigecy table Feature 2 Feature b 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b a N a1 N a2 N ab We would like to test the idepedece of two features which meas that P(X = (i, j)) = P(X 1 = i)p(x 2 = j) If we itroduce the otatios P(X = (i, j)) = α ij, P(X 1 = i) = p i ad P(X 2 = j) = q j, 77

3 or N i+ p a = N a+ p i Addig up these equatios for all i a gives Therefore, we get that the MLE for p i : Similarly, the MLE for q j is: N a+ N i+ p a = N a+ = p a = = p i = N i+ p i = q j = N +j Therefore, chi-square statistic T i this case ca be writte as (Nij N i+ N +j /) 2 T = N i+ N +j / i,j ad the decisio rule is give by { δ = H 1 : T c H 2 : T > c where the threshold is determied from the coditio χ 2 (a 1)(b 1)(c, + ) = α Example I 1992 poll 189 Motaa residets were asked whether their persoal fiacial status was worse, the same or better tha oe year ago The opiios were divided ito three groups by icome rage: uder 20K, betwee 20K ad 35K, ad over 35K We would like to test if opiios were idepedet of icome Table 122: Motaa outlook poll b = 3 Worse Same Better a = 3 20K (20K, 35K) 35K The chi-squared statistic is ( /189) 2 ( /189) 2 T = + + = / /189 79

4 If we take level of sigificace α = 005 the the threshold c is: χ 2 (a 1)(b 1) (c, + ) = χ 4 2 (c, ) = α = 005 c = 9488 Sice T = 521 < c = 9488 we accept the ull hypothesis that opiios are idepedet of icome Test of homogeeity Suppose that the populatio is divided ito R groups ad each group (or the etire populatio) is divided ito C categories We would like to test whether the distributio of categories i each group is the same Table 123: Test of homogeeity Category 1 Category C Group 1 N 11 N 1C Group R N R1 N RC N +1 N +C N 1+ N R+ If we deote so that for each group i R we have P(Category j Group i ) = p ij C p ij = 1 j=1 the we wat to test the followig hypotheses: H 0 : p ij = p j for all groups i R H 1 : otherwise If observatios X 1,, X are sampled idepedetly from the etire populatio the homogeeity over groups is the same as idepedece of groups ad categories Ideed, if have homogeeity P(Category j Group i ) = P(Category j ) the we have P(Group i, Category j ) = P(Category j Group i )P(Group i ) = P(Category j )P(Group i ) which meas the groups ad categories are idepedet Aother way aroud, if we have idepedece the P(Category j Group i ) = = P(Group i, Category j ) P(Group i ) P(Category j )P(Group i ) = P(Category P(Group i ) j ) 80

5 which is homogeeity This meas that to test homogeeity we ca use the test of idepedece above Iterestigly, the same test ca be used i the case whe the samplig is doe ot from the etire populatio but from each group separately which meas that we decide a priori about the sample size i each group - N 1+,, N R+ Whe we sample from the etire populatio these umbers are radom ad by the LLN N i+ / will approximate the probability P(Group i ), ie N i+ reflects the proportio of group i i the populatio Whe we pick these umbers a priori oe ca simply thik that we artificially reormalize the proportio of each group i the populatio ad test for homogeeity amog groups as idepedece i this ew artificial populatio Aother way to argue that the test will be the same is as follows Assume that P(Category j Group i ) = p j where the probabilities p j are all give The by Pearso s theorem we have the covergece i distributio C (N ij N i+ p j ) 2 2 χ N i+ p C 1 j j=1 for each group i R which implies that R C (N ij N i+ p j ) 2 χ 2 R(C 1) N i+ p j i=1 j=1 sice the samples i differet groups are idepedet If ow we assume that probabilities p 1,, p C are ukow ad plug i the maximum likelihood estimates p j = N +j / the R C (N ij N i+ N +j /) 2 χ 2 R(C 1) (C 1) = χ 2 N i+ N +j / i=1 j=1 (R 1)(C 1) because we have C 1 free parameters p 1,, p C 1 ad estimatig each ukow parameter results i losig oe degree of freedom Example (Textbook, page 560) I this example, 100 people were asked whether the service provided by the fire departmet i the city was satisfactory Shortly after the survey, a large fire occured i the city Suppose that the same 100 people were asked whether they thought that the service provided by the fire departmet was satisfactory The result are i the followig table: Satisfactory Usatisfactory Before fire After fire Suppose that we would like to test whether the opiios chaged after the fire by usig a chi-squared test However, the iid sample cosisted of pairs of opiios of 100 people (X 1, X 2 ),, (X 1, X 2 )

6 where the first coordiate/feature is a perso s opiio before the fire ad it belogs to oe of two categories { Satisfactory, Usatisfactory }, ad the secod coordiate/feature is a perso s opiio after the fire ad it also belogs to oe of two categories { Satisfactory, Usatisfactory } So the correct cotigecy table correspodig to the above data ad satisfyig the assumptio of the chi-squared test would be the followig: Sat before Us before Sat after Us after 2 18 I order to use the first cotigecy table, we would have to poll 100 people after the fire idepedetly of the 100 people polled before the fire 82

### Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

### 1 Inferential Methods for Correlation and Regression Analysis

1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

### Problem Set 4 Due Oct, 12

EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

### ( θ. sup θ Θ f X (x θ) = L. sup Pr (Λ (X) < c) = α. x : Λ (x) = sup θ H 0. sup θ Θ f X (x θ) = ) < c. NH : θ 1 = θ 2 against AH : θ 1 θ 2

82 CHAPTER 4. MAXIMUM IKEIHOOD ESTIMATION Defiitio: et X be a radom sample with joit p.m/d.f. f X x θ. The geeralised likelihood ratio test g.l.r.t. of the NH : θ H 0 agaist the alterative AH : θ H 1,

### Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc.

Chapter 22 Comparig Two Proportios Copyright 2010 Pearso Educatio, Ic. Comparig Two Proportios Comparisos betwee two percetages are much more commo tha questios about isolated percetages. Ad they are more

### 1 Models for Matched Pairs

1 Models for Matched Pairs Matched pairs occur whe we aalyse samples such that for each measuremet i oe of the samples there is a measuremet i the other sample that directly relates to the measuremet i

### Common Large/Small Sample Tests 1/55

Commo Large/Small Sample Tests 1/55 Test of Hypothesis for the Mea (σ Kow) Covert sample result ( x) to a z value Hypothesis Tests for µ Cosider the test H :μ = μ H 1 :μ > μ σ Kow (Assume the populatio

### Estimation for Complete Data

Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

### Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

### Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Term Test 3 (Part A) November 1, 004 Name Math 6 Studet Number Directio: This test is worth 10 poits. You are required to complete this test withi miutes. I order to receive full credit, aswer each problem

### Agreement of CI and HT. Lecture 13 - Tests of Proportions. Example - Waiting Times

Sigificace level vs. cofidece level Agreemet of CI ad HT Lecture 13 - Tests of Proportios Sta102 / BME102 Coli Rudel October 15, 2014 Cofidece itervals ad hypothesis tests (almost) always agree, as log

### Lecture 2: Monte Carlo Simulation

STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

Math 152. Rumbos Fall 2009 1 Solutios to Review Problems for Exam #2 1. I the book Experimetatio ad Measuremet, by W. J. Youde ad published by the by the Natioal Sciece Teachers Associatio i 1962, the

### Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 22 Comparig Two Proportios Copyright 2010, 2007, 2004 Pearso Educatio, Ic. Comparig Two Proportios Read the first two paragraphs of pg 504. Comparisos betwee two percetages are much more commo

### FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

### ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

### Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### Inferential Statistics. Inference Process. Inferential Statistics and Probability a Holistic Approach. Inference Process.

Iferetial Statistics ad Probability a Holistic Approach Iferece Process Chapter 8 Poit Estimatio ad Cofidece Itervals This Course Material by Maurice Geraghty is licesed uder a Creative Commos Attributio-ShareAlike

### MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

### 1 Review of Probability & Statistics

1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

### UCLA STAT 110B Applied Statistics for Engineering and the Sciences

UCLA STAT 110B Applied Statistics for Egieerig ad the Scieces Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistats: Bria Ng, UCLA Statistics Uiversity of Califoria, Los Ageles,

### ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

### Lecture 7: Properties of Random Samples

Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

### EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

### Kurskod: TAMS11 Provkod: TENB 21 March 2015, 14:00-18:00. English Version (no Swedish Version)

Kurskod: TAMS Provkod: TENB 2 March 205, 4:00-8:00 Examier: Xiagfeg Yag (Tel: 070 2234765). Please aswer i ENGLISH if you ca. a. You are allowed to use: a calculator; formel -och tabellsamlig i matematisk

### Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

Radom Matrices with Blocks of Itermediate Scale Strogly Correlated Bad Matrices Jiayi Tog Advisor: Dr. Todd Kemp May 30, 07 Departmet of Mathematics Uiversity of Califoria, Sa Diego Cotets Itroductio Notatio

### Properties and Hypothesis Testing

Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

### STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

### CS284A: Representations and Algorithms in Molecular Biology

CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

### Bayesian Methods: Introduction to Multi-parameter Models

Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

### Because it tests for differences between multiple pairs of means in one test, it is called an omnibus test.

Math 308 Sprig 018 Classes 19 ad 0: Aalysis of Variace (ANOVA) Page 1 of 6 Itroductio ANOVA is a statistical procedure for determiig whether three or more sample meas were draw from populatios with equal

### General IxJ Contingency Tables

page1 Geeral x Cotigecy Tables We ow geeralize our previous results from the prospective, retrospective ad cross-sectioal studies ad the Poisso samplig case to x cotigecy tables. For such tables, the test

Chapter 11: Askig ad Aswerig Questios About the Differece of Two Proportios These otes reflect material from our text, Statistics, Learig from Data, First Editio, by Roxy Peck, published by CENGAGE Learig,

### Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

### A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

### Chapter 13, Part A Analysis of Variance and Experimental Design

Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

### Parameter, Statistic and Random Samples

Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

### Section 14. Simple linear regression.

Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

### Stat 319 Theory of Statistics (2) Exercises

Kig Saud Uiversity College of Sciece Statistics ad Operatios Research Departmet Stat 39 Theory of Statistics () Exercises Refereces:. Itroductio to Mathematical Statistics, Sixth Editio, by R. Hogg, J.

### Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight)

Tests of Hypotheses Based o a Sigle Sample Devore Chapter Eight MATH-252-01: Probability ad Statistics II Sprig 2018 Cotets 1 Hypothesis Tests illustrated with z-tests 1 1.1 Overview of Hypothesis Testig..........

### April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE

April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE TERRY SOO Abstract These otes are adapted from whe I taught Math 526 ad meat to give a quick itroductio to cofidece

### Chapter 8: STATISTICAL INTERVALS FOR A SINGLE SAMPLE. Part 3: Summary of CI for µ Confidence Interval for a Population Proportion p

Chapter 8: STATISTICAL INTERVALS FOR A SINGLE SAMPLE Part 3: Summary of CI for µ Cofidece Iterval for a Populatio Proportio p Sectio 8-4 Summary for creatig a 100(1-α)% CI for µ: Whe σ 2 is kow ad paret

### Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions

Statistical ad Mathematical Methods DS-GA 00 December 8, 05. Short questios Sample Fial Problems Solutios a. Ax b has a solutio if b is i the rage of A. The dimesio of the rage of A is because A has liearly-idepedet

REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

### EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

### Frequentist Inference

Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

### 7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

### Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

### January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

### Statistical Properties of OLS estimators

1 Statistical Properties of OLS estimators Liear Model: Y i = β 0 + β 1 X i + u i OLS estimators: β 0 = Y β 1X β 1 = Best Liear Ubiased Estimator (BLUE) Liear Estimator: β 0 ad β 1 are liear fuctio of

Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

### Lecture 5. Materials Covered: Chapter 6 Suggested Exercises: 6.7, 6.9, 6.17, 6.20, 6.21, 6.41, 6.49, 6.52, 6.53, 6.62, 6.63.

STT 315, Summer 006 Lecture 5 Materials Covered: Chapter 6 Suggested Exercises: 67, 69, 617, 60, 61, 641, 649, 65, 653, 66, 663 1 Defiitios Cofidece Iterval: A cofidece iterval is a iterval believed to

### 10-701/ Machine Learning Mid-term Exam Solution

0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

### Lecture 7: October 18, 2017

Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

### Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

### Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

### Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading

Topic 15 - Two Sample Iferece I STAT 511 Professor Bruce Craig Comparig Two Populatios Research ofte ivolves the compariso of two or more samples from differet populatios Graphical summaries provide visual

### Stat 200 -Testing Summary Page 1

Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

### Statistics 3858 : Likelihood Ratio for Multinomial Models

Statistics 3858 : Likelihood Ratio for Multiomial Models Suppose X is multiomial o M categories, that is X Multiomial, p), where p p 1, p 2,..., p M ) A, ad the parameter space is A {p : p j 0, p j 1 }

### Simulation. Two Rule For Inverting A Distribution Function

Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

### Lecture 12: November 13, 2018

Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

### Lecture 6 Simple alternatives and the Neyman-Pearson lemma

STATS 00: Itroductio to Statistical Iferece Autum 06 Lecture 6 Simple alteratives ad the Neyma-Pearso lemma Last lecture, we discussed a umber of ways to costruct test statistics for testig a simple ull

### Empirical Process Theory and Oracle Inequalities

Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

### Big Picture. 5. Data, Estimates, and Models: quantifying the accuracy of estimates.

5. Data, Estimates, ad Models: quatifyig the accuracy of estimates. 5. Estimatig a Normal Mea 5.2 The Distributio of the Normal Sample Mea 5.3 Normal data, cofidece iterval for, kow 5.4 Normal data, cofidece

### Module 1 Fundamentals in statistics

Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

### This is an introductory course in Analysis of Variance and Design of Experiments.

1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hard-copy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class

### Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

### t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference

EXST30 Backgroud material Page From the textbook The Statistical Sleuth Mea [0]: I your text the word mea deotes a populatio mea (µ) while the work average deotes a sample average ( ). Variace [0]: The

### Intro to Learning Theory

Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

### Chapter 6 Principles of Data Reduction

Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

### MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

### Element sampling: Part 2

Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

### A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

### Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions

Chapter 9 Slide Ifereces from Two Samples 9- Overview 9- Ifereces about Two Proportios 9- Ifereces about Two Meas: Idepedet Samples 9-4 Ifereces about Matched Pairs 9-5 Comparig Variatio i Two Samples

### Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

### Chapter 8: Estimating with Confidence

Chapter 8: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Chapter 8 Estimatig with Cofidece 8.1 Cofidece Itervals: The Basics 8.2 8.3 Estimatig

### INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF 4300 90 Itroductio to classifictio Ae Solberg ae@ifiuioo Based o Chapter -6 i Duda ad Hart: atter Classificatio 90 INF 4300 Madator proect Mai task: classificatio You must implemet a classificatio

### Instructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters?

CONFIDENCE INTERVALS How do we make ifereces about the populatio parameters? The samplig distributio allows us to quatify the variability i sample statistics icludig how they differ from the parameter

### 6.3 Testing Series With Positive Terms

6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

### Exponential Families and Bayesian Inference

Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

### STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

Recall: STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Commets:. So far we have estimates of the parameters! 0 ad!, but have o idea how good these estimates are. Assumptio: E(Y x)! 0 +! x (liear coditioal

### Power and Type II Error

Statistical Methods I (EXST 7005) Page 57 Power ad Type II Error Sice we do't actually kow the value of the true mea (or we would't be hypothesizig somethig else), we caot kow i practice the type II error

### ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

### MA Advanced Econometrics: Properties of Least Squares Estimators

MA Advaced Ecoometrics: Properties of Least Squares Estimators Karl Whela School of Ecoomics, UCD February 5, 20 Karl Whela UCD Least Squares Estimators February 5, 20 / 5 Part I Least Squares: Some Fiite-Sample

### Class 27. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 7 Daiel B. Rowe, Ph.D. Departmet of Mathematics, Statistics, ad Computer Sciece Copyright 013 by D.B. Rowe 1 Ageda: Skip Recap Chapter 10.5 ad 10.6 Lecture Chapter 11.1-11. Review Chapters 9 ad 10

### Discrete Mathematics for CS Spring 2008 David Wagner Note 22

CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

### Chi-Squared Tests Math 6070, Spring 2006

Chi-Squared Tests Math 6070, Sprig 2006 Davar Khoshevisa Uiversity of Utah February XXX, 2006 Cotets MLE for Goodess-of Fit 2 2 The Multiomial Distributio 3 3 Applicatio to Goodess-of-Fit 6 3 Testig for

### CSE 527, Additional notes on MLE & EM

CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

### Describing the Relation between Two Variables

Copyright 010 Pearso Educatio, Ic. Tables ad Formulas for Sulliva, Statistics: Iformed Decisios Usig Data 010 Pearso Educatio, Ic Chapter Orgaizig ad Summarizig Data Relative frequecy = frequecy sum of

### This chapter focuses on two experimental designs that are crucial to comparative studies: (1) independent samples and (2) matched pair samples.

Chapter 9 & : Comparig Two Treatmets: This chapter focuses o two eperimetal desigs that are crucial to comparative studies: () idepedet samples ad () matched pair samples Idepedet Radom amples from Two

### Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

### Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

Lecture Note 8 Poit Estimators ad Poit Estimatio Methods MIT 14.30 Sprig 2006 Herma Beett Give a parameter with ukow value, the goal of poit estimatio is to use a sample to compute a umber that represets

### Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,