# REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

Save this PDF as:

Size: px
Start display at page:

## Transcription

### Response Variable denoted by y it is the variable that is to be predicted measure of the outcome of an experiment also called the dependent variable

Statistics Chapter 4 Correlatio ad Regressio If we have two (or more) variables we are usually iterested i the relatioship betwee the variables. Associatio betwee Variables Two variables are associated

### t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference

EXST30 Backgroud material Page From the textbook The Statistical Sleuth Mea [0]: I your text the word mea deotes a populatio mea (µ) while the work average deotes a sample average ( ). Variace [0]: The

### Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.

Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios

### The Method of Least Squares. To understand least squares fitting of data.

The Method of Least Squares KEY WORDS Curve fittig, least square GOAL To uderstad least squares fittig of data To uderstad the least squares solutio of icosistet systems of liear equatios 1 Motivatio Curve

### II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation

II. Descriptive Statistics D. Liear Correlatio ad Regressio I this sectio Liear Correlatio Cause ad Effect Liear Regressio 1. Liear Correlatio Quatifyig Liear Correlatio The Pearso product-momet correlatio

### Assessment and Modeling of Forests. FR 4218 Spring Assignment 1 Solutions

Assessmet ad Modelig of Forests FR 48 Sprig Assigmet Solutios. The first part of the questio asked that you calculate the average, stadard deviatio, coefficiet of variatio, ad 9% cofidece iterval of the

### Correlation Regression

Correlatio Regressio While correlatio methods measure the stregth of a liear relatioship betwee two variables, we might wish to go a little further: How much does oe variable chage for a give chage i aother

### Regression, Inference, and Model Building

Regressio, Iferece, ad Model Buildig Scatter Plots ad Correlatio Correlatio coefficiet, r -1 r 1 If r is positive, the the scatter plot has a positive slope ad variables are said to have a positive relatioship

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

### The Pendulum. Purpose

The Pedulum Purpose To carry out a example illustratig how physics approaches ad solves problems. The example used here is to explore the differet factors that determie the period of motio of a pedulum.

### Correlation and Covariance

Correlatio ad Covariace Tom Ilveto FREC 9 What is Next? Correlatio ad Regressio Regressio We specify a depedet variable as a liear fuctio of oe or more idepedet variables, based o co-variace Regressio

### Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

### Linear Regression Models

Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

### Polynomial Functions and Their Graphs

Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

### Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

### ST 305: Exam 3 ( ) = P(A)P(B A) ( ) = P(A) + P(B) ( ) = 1 P( A) ( ) = P(A) P(B) σ X 2 = σ a+bx. σ ˆp. σ X +Y. σ X Y. σ X. σ Y. σ n.

ST 305: Exam 3 By hadig i this completed exam, I state that I have either give or received assistace from aother perso durig the exam period. I have used o resources other tha the exam itself ad the basic

### Linear Regression Analysis. Analysis of paired data and using a given value of one variable to predict the value of the other

Liear Regressio Aalysis Aalysis of paired data ad usig a give value of oe variable to predict the value of the other 5 5 15 15 1 1 5 5 1 3 4 5 6 7 8 1 3 4 5 6 7 8 Liear Regressio Aalysis E: The chirp rate

### Chapter If n is odd, the median is the exact middle number If n is even, the median is the average of the two middle numbers

Chapter 4 4-1 orth Seattle Commuity College BUS10 Busiess Statistics Chapter 4 Descriptive Statistics Summary Defiitios Cetral tedecy: The extet to which the data values group aroud a cetral value. Variatio:

### Regression, Part I. A) Correlation describes the relationship between two variables, where neither is independent or a predictor.

Regressio, Part I I. Differece from correlatio. II. Basic idea: A) Correlatio describes the relatioship betwee two variables, where either is idepedet or a predictor. - I correlatio, it would be irrelevat

### Kinetics of Complex Reactions

Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

### a is some real number (called the coefficient) other

Precalculus Notes for Sectio.1 Liear/Quadratic Fuctios ad Modelig http://www.schooltube.com/video/77e0a939a3344194bb4f Defiitios: A moomial is a term of the form tha zero ad is a oegative iteger. a where

### THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

### ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

### ECON 3150/4150, Spring term Lecture 3

Itroductio Fidig the best fit by regressio Residuals ad R-sq Regressio ad causality Summary ad ext step ECON 3150/4150, Sprig term 2014. Lecture 3 Ragar Nymoe Uiversity of Oslo 21 Jauary 2014 1 / 30 Itroductio

### Properties and Hypothesis Testing

Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

### Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

### S Y Y = ΣY 2 n. Using the above expressions, the correlation coefficient is. r = SXX S Y Y

1 Sociology 405/805 Revised February 4, 004 Summary of Formulae for Bivariate Regressio ad Correlatio Let X be a idepedet variable ad Y a depedet variable, with observatios for each of the values of these

### TEACHER CERTIFICATION STUDY GUIDE

COMPETENCY 1. ALGEBRA SKILL 1.1 1.1a. ALGEBRAIC STRUCTURES Kow why the real ad complex umbers are each a field, ad that particular rigs are ot fields (e.g., itegers, polyomial rigs, matrix rigs) Algebra

### NCSS Statistical Software. Tolerance Intervals

Chapter 585 Itroductio This procedure calculates oe-, ad two-, sided tolerace itervals based o either a distributio-free (oparametric) method or a method based o a ormality assumptio (parametric). A two-sided

### 11 Correlation and Regression

11 Correlatio Regressio 11.1 Multivariate Data Ofte we look at data where several variables are recorded for the same idividuals or samplig uits. For example, at a coastal weather statio, we might record

### Principle Of Superposition

ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

### First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So,

0 2. OLS Part II The OLS residuals are orthogoal to the regressors. If the model icludes a itercept, the orthogoality of the residuals ad regressors gives rise to three results, which have limited practical

### 1 Inferential Methods for Correlation and Regression Analysis

1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

### x c the remainder is Pc ().

Algebra, Polyomial ad Ratioal Fuctios Page 1 K.Paulk Notes Chapter 3, Sectio 3.1 to 3.4 Summary Sectio Theorem Notes 3.1 Zeros of a Fuctio Set the fuctio to zero ad solve for x. The fuctio is zero at these

### Simple Linear Regression

Chapter 2 Simple Liear Regressio 2.1 Simple liear model The simple liear regressio model shows how oe kow depedet variable is determied by a sigle explaatory variable (regressor). Is is writte as: Y i

### Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

### Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

### Zeros of Polynomials

Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### Optimization Methods MIT 2.098/6.255/ Final exam

Optimizatio Methods MIT 2.098/6.255/15.093 Fial exam Date Give: December 19th, 2006 P1. [30 pts] Classify the followig statemets as true or false. All aswers must be well-justified, either through a short

### Statistical Properties of OLS estimators

1 Statistical Properties of OLS estimators Liear Model: Y i = β 0 + β 1 X i + u i OLS estimators: β 0 = Y β 1X β 1 = Best Liear Ubiased Estimator (BLUE) Liear Estimator: β 0 ad β 1 are liear fuctio of

### Quadratic Functions. Before we start looking at polynomials, we should know some common terminology.

Quadratic Fuctios I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively i mathematical

### 3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

### CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

### The Phi Power Series

The Phi Power Series I did this work i about 0 years while poderig the relatioship betwee the golde mea ad the Madelbrot set. I have fially decided to make it available from my blog at http://semresearch.wordpress.com/.

### September 2012 C1 Note. C1 Notes (Edexcel) Copyright - For AS, A2 notes and IGCSE / GCSE worksheets 1

September 0 s (Edecel) Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright

### STP 226 ELEMENTARY STATISTICS

TP 6 TP 6 ELEMENTARY TATITIC CHAPTER 4 DECRIPTIVE MEAURE IN REGREION AND CORRELATION Liear Regressio ad correlatio allows us to examie the relatioship betwee two or more quatitative variables. 4.1 Liear

### Least-Squares Regression

MATH 482 Least-Squares Regressio Dr. Neal, WKU As well as fidig the correlatio of paired sample data {{ x 1, y 1 }, { x 2, y 2 },..., { x, y }}, we also ca plot the data with a scatterplot ad fid the least

### Castiel, Supernatural, Season 6, Episode 18

13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

### Nonlinear regression

oliear regressio How to aalyse data? How to aalyse data? Plot! How to aalyse data? Plot! Huma brai is oe the most powerfull computatioall tools Works differetly tha a computer What if data have o liear

### PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

### MCT242: Electronic Instrumentation Lecture 2: Instrumentation Definitions

Faculty of Egieerig MCT242: Electroic Istrumetatio Lecture 2: Istrumetatio Defiitios Overview Measuremet Error Accuracy Precisio ad Mea Resolutio Mea Variace ad Stadard deviatio Fiesse Sesitivity Rage

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### Paired Data and Linear Correlation

Paired Data ad Liear Correlatio Example. A group of calculus studets has take two quizzes. These are their scores: Studet st Quiz Score ( data) d Quiz Score ( data) 7 5 5 0 3 0 3 4 0 5 5 5 5 6 0 8 7 0

### A NOTE ON THE TOTAL LEAST SQUARES FIT TO COPLANAR POINTS

A NOTE ON THE TOTAL LEAST SQUARES FIT TO COPLANAR POINTS STEVEN L. LEE Abstract. The Total Least Squares (TLS) fit to the poits (x,y ), =1,,, miimizes the sum of the squares of the perpedicular distaces

### Notes on iteration and Newton s method. Iteration

Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f

### Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression

REGRESSION 1 Outlie Liear regressio Regularizatio fuctios Polyomial curve fittig Stochastic gradiet descet for regressio MLE for regressio Step-wise forward regressio Regressio methods Statistical techiques

### Linear Regression Demystified

Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

### On a Smarandache problem concerning the prime gaps

O a Smaradache problem cocerig the prime gaps Felice Russo Via A. Ifate 7 6705 Avezzao (Aq) Italy felice.russo@katamail.com Abstract I this paper, a problem posed i [] by Smaradache cocerig the prime gaps

### 3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.

3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### 6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

### Algebra of Least Squares

October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

### CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

### A.1 Algebra Review: Polynomials/Rationals. Definitions:

MATH 040 Notes: Uit 0 Page 1 A.1 Algera Review: Polyomials/Ratioals Defiitios: A polyomial is a sum of polyomial terms. Polyomial terms are epressios formed y products of costats ad variales with whole

### Revision Topic 1: Number and algebra

Revisio Topic : Number ad algebra Chapter : Number Differet types of umbers You eed to kow that there are differet types of umbers ad recogise which group a particular umber belogs to: Type of umber Symbol

### Unit 4: Polynomial and Rational Functions

48 Uit 4: Polyomial ad Ratioal Fuctios Polyomial Fuctios A polyomial fuctio y px ( ) is a fuctio of the form p( x) ax + a x + a x +... + ax + ax+ a 1 1 1 0 where a, a 1,..., a, a1, a0are real costats ad

### Properties and Tests of Zeros of Polynomial Functions

Properties ad Tests of Zeros of Polyomial Fuctios The Remaider ad Factor Theorems: Sythetic divisio ca be used to fid the values of polyomials i a sometimes easier way tha substitutio. This is show by

### Chapter 12 Correlation

Chapter Correlatio Correlatio is very similar to regressio with oe very importat differece. Regressio is used to explore the relatioship betwee a idepedet variable ad a depedet variable, whereas correlatio

### In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example:

74 The Method of Partial Fractios I algebra oe speds much time fidig commo deomiators ad thus simplifyig ratioal epressios For eample: + + + 6 5 + = + = = + + + + + ( )( ) 5 It may the seem odd to be watig

### CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

### Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

### Numerical Methods in Fourier Series Applications

Numerical Methods i Fourier Series Applicatios Recall that the basic relatios i usig the Trigoometric Fourier Series represetatio were give by f ( x) a o ( a x cos b x si ) () where the Fourier coefficiets

### Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring

Machie Learig Regressio I Hamid R. Rabiee [Slides are based o Bishop Book] Sprig 015 http://ce.sharif.edu/courses/93-94//ce717-1 Liear Regressio Liear regressio: ivolves a respose variable ad a sigle predictor

### EXPERIMENT OF SIMPLE VIBRATION

EXPERIMENT OF SIMPLE VIBRATION. PURPOSE The purpose of the experimet is to show free vibratio ad damped vibratio o a system havig oe degree of freedom ad to ivestigate the relatioship betwee the basic

### Chapter Vectors

Chapter 4. Vectors fter readig this chapter you should be able to:. defie a vector. add ad subtract vectors. fid liear combiatios of vectors ad their relatioship to a set of equatios 4. explai what it

### Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Time Respose & Frequecy Respose d -Order Dyamic System -Pole, Low-Pass, Active Filter R 4 R 7 C 5 e i R 1 C R 3 - + R 6 - + e out Assigmet: Perform a Complete Dyamic System Ivestigatio of the Two-Pole,

### Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

### IP Reference guide for integer programming formulations.

IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

### Recurrence Relations

Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

### SNAP Centre Workshop. Basic Algebraic Manipulation

SNAP Cetre Workshop Basic Algebraic Maipulatio 8 Simplifyig Algebraic Expressios Whe a expressio is writte i the most compact maer possible, it is cosidered to be simplified. Not Simplified: x(x + 4x)

### ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

### Chapter 9: Numerical Differentiation

178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

### REVISION SHEET FP1 (MEI) ALGEBRA. Identities In mathematics, an identity is a statement which is true for all values of the variables it contains.

The mai ideas are: Idetities REVISION SHEET FP (MEI) ALGEBRA Before the exam you should kow: If a expressio is a idetity the it is true for all values of the variable it cotais The relatioships betwee

### Math 2784 (or 2794W) University of Connecticut

ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

### Final Examination Solutions 17/6/2010

The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 009-00 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:

### CHAPTER 5. Theory and Solution Using Matrix Techniques

A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

### Stat 139 Homework 7 Solutions, Fall 2015

Stat 139 Homework 7 Solutios, Fall 2015 Problem 1. I class we leared that the classical simple liear regressio model assumes the followig distributio of resposes: Y i = β 0 + β 1 X i + ɛ i, i = 1,...,,

### U8L1: Sec Equations of Lines in R 2

MCVU U8L: Sec. 8.9. Equatios of Lies i R Review of Equatios of a Straight Lie (-D) Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio of the lie

### ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

### Complex Numbers Solutions

Complex Numbers Solutios Joseph Zoller February 7, 06 Solutios. (009 AIME I Problem ) There is a complex umber with imagiary part 64 ad a positive iteger such that Fid. [Solutio: 697] 4i + + 4i. 4i 4i

### Open book and notes. 120 minutes. Cover page and six pages of exam. No calculators.

IE 330 Seat # Ope book ad otes 120 miutes Cover page ad six pages of exam No calculators Score Fial Exam (example) Schmeiser Ope book ad otes No calculator 120 miutes 1 True or false (for each, 2 poits

### NUMERICAL METHODS FOR SOLVING EQUATIONS

Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

### We will conclude the chapter with the study a few methods and techniques which are useful

Chapter : Coordiate geometry: I this chapter we will lear about the mai priciples of graphig i a dimesioal (D) Cartesia system of coordiates. We will focus o drawig lies ad the characteristics of the graphs

### Study on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm

Joural of ad Eergy Egieerig, 05, 3, 43-437 Published Olie April 05 i SciRes. http://www.scirp.org/joural/jpee http://dx.doi.org/0.436/jpee.05.34058 Study o Coal Cosumptio Curve Fittig of the Thermal Based

### LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

### Section 14. Simple linear regression.

Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo