Lecture 9: Hierarchy Theorems

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 9: Hierarchy Theorems"

Transcription

1 IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture will be devoted to hierarchy theorems that will allow us to separate some of our complexity classes. At the ed of the lecture, we preset a example of a probabilistic argumet. This type of argumet will be used i the ext lecture to separate two more classes. 1. The Space Hierarchy Theorem If a machie is allowed to use a sigificatly larger amout of resources, it would seem like it should be able to decide more laguages. I this lecture, we show that this ituitio is right. For example, we show that i space O(s()) we ca decide a laguage that caot be decided i space o(s()), provided that s is space costructible. (Recall that a fuctio s is space costructible if give 1, the biary represetatio of s() ca be computed i space O(s()).) Oe cosequece is that L DSPACE(), which implies that oe of the followig iclusios must be strict: L NL AC 1 NC P NP PSPACE. Note, however, that we curretly do ot kow which iclusio that might be. (It is geerally believed that all these iclusios are strict.) Theorem 1 If s is space costructible, the there is a laguage that is decided i space O(s()) but ot i space o(s()). Proof What we are goig to do is desig a machie D that rus i space O(s()) ad we are goig to make sure that if M is ay machie that rus i space o(s()), the D ad M disagree o some iput. The laguage decided by D will the satisfy the coditios i the statemet of the theorem. To desig D we will use the importat techique of diagoalizatio. First, fix some ecodig of machies over some alphabet ad let M deote the ecodig of 1

2 M. Give the ecodig of some machie M, D will simulate M o the iput strig M ad accept if ad oly if M rejects. The if M is ay machie ruig i space o(s()), M ad D will disagree o M. More precisely, D first verifies that its iput is the ecodig of some machie M. If ot, it rejects. Secod, D computes the space boud s(). Third, D simulates M o M. Durig this simulatio, D will store i its ow memory the cotets of M s memory. If at ay momet the amout of space eeded to store M s memory cotets exceeds s(), the simulatio is halted ad D rejects. Otherwise, if the simulatio completes with M havig either accepted or rejected, the D will do the opposite. Now if M is ay machie ruig i space o(s()), we would like to claim that D disagrees with M o M. To do this, we ru D o M, which causes D to simulate M o M ad output the opposite. If M uses space f() ad if storig each memory symbol of M requires b symbols i D s memory, the we eed to esure that bf() s() so the simulatio ca be guarateed to fid whether M accepts or rejects. However, we oly kow that f() = o(s()), which implies that bf() s() but oly for sufficietly large, ot for all. For small iputs, simulatig M could use too much space. To fix this, we modify D so that wheever it gets a iput of the form M 1 k for some k, D simulates M o M 1 k. Whe k is sufficietly large, we will have bf() s() ad D will have eough space to simulate M ad output the opposite. So we have established that D disagrees o some iput with ay machie M ruig i space o(s()). It is clear that D rus i space O(s()). But we also wat D to decide a laguage, so we eed to make sure that D always halts. If M is a machie decidig a laguage i space o(s()), the we kow that M always halts, so the simulatio will always termiate. But D s iput ca be ay machie whatsoever, so we eed to take care of the possibility that M uses a small amout of space but does ot halt. Now ay machie ruig i space o(s()) also rus i time 2 o(s()), which is less tha 2 s() whe is large eough. So we will add to the simulatio a couter ad stop the simulatio ad reject if we fid that M s computatio has take more tha 2 s() steps. This will esure that D always halts while still allowig the complete simulatio of ay machie that rus i space o(s()). A immediate corollary of this result is that if s 1 = o(s 2 ) ad s 2 is space costructible, the DSPACE(s 1 ) DSPACE(s 2 ). I particular, L DSPACE(), which implies that L PSPACE. But we ca say more, by usig Savitch s Theorem. Corollary 2 NL PSPACE. 2

3 Proof NL DSPACE(log 2 ) DSPACE(). 2. The Time Hierarchy Theorem We just proved that icreasig the amout of space from o(s()) to O(s()) allows machies to decide more laguages. The same is true for time, though we defer the proof to the exercises. Theorem 3 If t is time costructible, the there is a laguage that is decided i time O(t()) but ot i time o(t()). Corollary 4 P EXP. Proof For every k, DTIME( k ) DTIME( log ), which implies that P DTIME( log ). The result follows sice DTIME( log ) DTIME(2 ). A cosequece of this is that oe of the followig iclusios must be strict: P NP PSPACE EXP. Oce agai, we do ot kow which oe. For aother cosequece, the exercises ask you to show that there are problems that caot be solved by ay machie whatsoever. From the Time Hierarchy Theorem, we ow kow that there are laguages that ca be solved by machies but ot by efficiet machies (i.e., machies that ru i polyomial time). Note that the proof of the above theorem relies o the fact that our machies have a costat umber of memory heads, ot just oe. For machies that have oly oe memory head, we could have proved a separatio betwee time O(t()) ad time o(t()/ log t()). It is ot kow if the separatio holds with o(t()) for machies with a sigle memory head. 3. A Probabilistic Argumet We ed this lecture with a result about graphs that will serve as our itroductio to probabilistic argumets. A argumet of this type will be used i the ext lecture. I a udirected graph, a aticlique or idepedet set is a set of odes i which every two odes are ot coected by a edge. For example, a petago has aticliques of size 2 but ot of size 3. It may seem reasoable to thik that as the 3

4 umber of odes i a graph becomes very large, the chaces icrease that it will cotai either a large clique or a large aticlique. I fact, Ramsey s Theorem states that every graph of size at least 2 2k cotais either a clique of size k or a aticlique of size k. Let R(k) be the miimum umber such that every graph with R(k) odes is guarateed to cotai either a clique or a aticlique of size k. Ramsey s Theorem gives a upper boud o this umber: R(k) 2 2k. What about a lower boud? R(k) k is trivial ad, for k 3, R(k) 2k is easy: cosider a polygo with 2k 1 sides. However, these umbers are very far from the upper boud of 2 2k. Ca we get closer? The followig theorem, due to Erdös, shows that we ca. Its proof is a example of a probabilistic argumet: we show that a object of a certai type with a certai property exists by showig that the probability that a radom object of the same type does ot have the property is less tha 1. Theorem 5 R(k) 2 k/2 1. Proof Let ad k be arbitrary. Choose a graph with odes at radom by decidig whether each of the possible ( ) 2 edges is i or out. For ay set A of k odes, the probability that A is a clique is 2 (k 2). The probability that A is a aticlique is the same. Therefore, the probability that there is a set of k odes i the graph that is either a clique or a aticlique is o more tha 2 ( ) k 2 ( k 2). If R(k), the every graph with odes has a clique or aticlique of size k, so this probability is 1 ad this implies that 2 ( ( ) k) 2 ( k 2) 1. Therefore, if 2 k 2 ( k 2) < 1, the some graph with odes must have o cliques or aticliques of size k, which implies that < R(k). A straightforward calculatio shows that satisfies the coditio if < 2 k/2 1. The lower boud follows. 4. Exercises 1. Show that for every ratioal umber r, the fuctio r is space costructible. 2. Show that the followig problem caot be decided by ay machie whatsoever: give a machie M ad a iput x, determie whether M halts o x. This problem is usually referred to as the haltig problem. It is the typical example of a udecidable problem. 4

5 3. Show that the followig problem is udecidable: give a machie M, does M halt o the empty iput? (Hit: Give a iput M, x to the haltig problem, cosider a machie M x that igores its iput ad simply simulates M o x.) 4. Show that NP DTIME(). 5. Show that NP DSPACE(). 6. Prove the Time Hierarchy Theorem. 7. Prove Ramsey s Theorem. That is, show that R(k) 2 2k. (Hit: Let R(i, j) be the miimum umber such that every graph with R(i, j) odes is guarateed to cotai either a clique of size i or a aticlique of size j. Show that R(i, j) R(i, j 1) + R(i 1, j).) 5

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

Fundamental Theorem of Algebra. Yvonne Lai March 2010

Fundamental Theorem of Algebra. Yvonne Lai March 2010 Fudametal Theorem of Algebra Yvoe Lai March 010 We prove the Fudametal Theorem of Algebra: Fudametal Theorem of Algebra. Let f be a o-costat polyomial with real coefficiets. The f has at least oe complex

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term.

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term. 0. Sequeces A sequece is a list of umbers writte i a defiite order: a, a,, a, a is called the first term, a is the secod term, ad i geeral eclusively with ifiite sequeces ad so each term Notatio: the sequece

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

1 Hash tables. 1.1 Implementation

1 Hash tables. 1.1 Implementation Lecture 8 Hash Tables, Uiversal Hash Fuctios, Balls ad Bis Scribes: Luke Johsto, Moses Charikar, G. Valiat Date: Oct 18, 2017 Adapted From Virgiia Williams lecture otes 1 Hash tables A hash table is a

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

Introduction to Computational Molecular Biology. Gibbs Sampling

Introduction to Computational Molecular Biology. Gibbs Sampling 18.417 Itroductio to Computatioal Molecular Biology Lecture 19: November 16, 2004 Scribe: Tushara C. Karuarata Lecturer: Ross Lippert Editor: Tushara C. Karuarata Gibbs Samplig Itroductio Let s first recall

More information

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1).

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1). 6896 Quatum Complexity Theory Sept 23, 2008 Lecturer: Scott Aaroso Lecture 6 Last Time: Quatum Error-Correctio Quatum Query Model Deutsch-Jozsa Algorithm (Computes x y i oe query) Today: Berstei-Vazirii

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Hashing and Amortization

Hashing and Amortization Lecture Hashig ad Amortizatio Supplemetal readig i CLRS: Chapter ; Chapter 7 itro; Sectio 7.. Arrays ad Hashig Arrays are very useful. The items i a array are statically addressed, so that isertig, deletig,

More information

Series III. Chapter Alternating Series

Series III. Chapter Alternating Series Chapter 9 Series III With the exceptio of the Null Sequece Test, all the tests for series covergece ad divergece that we have cosidered so far have dealt oly with series of oegative terms. Series with

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

JANE PROFESSOR WW Prob Lib1 Summer 2000

JANE PROFESSOR WW Prob Lib1 Summer 2000 JANE PROFESSOR WW Prob Lib Summer 000 Sample WeBWorK problems. WeBWorK assigmet Series6CompTests due /6/06 at :00 AM..( pt) Test each of the followig series for covergece by either the Compariso Test or

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

Some special clique problems

Some special clique problems Some special clique problems Reate Witer Istitut für Iformatik Marti-Luther-Uiversität Halle-Witteberg Vo-Seckedorff-Platz, D 0620 Halle Saale Germay Abstract: We cosider graphs with cliques of size k

More information

5 Sequences and Series

5 Sequences and Series Bria E. Veitch 5 Sequeces ad Series 5. Sequeces A sequece is a list of umbers i a defiite order. a is the first term a 2 is the secod term a is the -th term The sequece {a, a 2, a 3,..., a,..., } is a

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary

Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary Recursive Algorithm for Geeratig Partitios of a Iteger Sug-Hyuk Cha Computer Sciece Departmet, Pace Uiversity 1 Pace Plaza, New York, NY 10038 USA scha@pace.edu Abstract. This article first reviews the

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

Posted-Price, Sealed-Bid Auctions

Posted-Price, Sealed-Bid Auctions Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa 207-02-08 We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: Jauary 2009 Aalysis I Time Allowed:.5 hours Read carefully the istructios o the aswer book ad make sure that the particulars required are etered o each

More information

5. Likelihood Ratio Tests

5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

How to Maximize a Function without Really Trying

How to Maximize a Function without Really Trying How to Maximize a Fuctio without Really Tryig MARK FLANAGAN School of Electrical, Electroic ad Commuicatios Egieerig Uiversity College Dubli We will prove a famous elemetary iequality called The Rearragemet

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS CMU: Sprig 2013 Lecture 16: Mootoe Formula Lower Bouds via Graph Etropy March 26, 2013 Lecturer: Mahdi Cheraghchi Scribe: Shashak Sigh 1 Recap Graph Etropy:

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation

II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation II. Descriptive Statistics D. Liear Correlatio ad Regressio I this sectio Liear Correlatio Cause ad Effect Liear Regressio 1. Liear Correlatio Quatifyig Liear Correlatio The Pearso product-momet correlatio

More information

11.6 Absolute Convergence and the Ratio and Root Tests

11.6 Absolute Convergence and the Ratio and Root Tests .6 Absolute Covergece ad the Ratio ad Root Tests The most commo way to test for covergece is to igore ay positive or egative sigs i a series, ad simply test the correspodig series of positive terms. Does

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

TEACHER CERTIFICATION STUDY GUIDE

TEACHER CERTIFICATION STUDY GUIDE COMPETENCY 1. ALGEBRA SKILL 1.1 1.1a. ALGEBRAIC STRUCTURES Kow why the real ad complex umbers are each a field, ad that particular rigs are ot fields (e.g., itegers, polyomial rigs, matrix rigs) Algebra

More information

Large holes in quasi-random graphs

Large holes in quasi-random graphs Large holes i quasi-radom graphs Joaa Polcy Departmet of Discrete Mathematics Adam Mickiewicz Uiversity Pozań, Polad joaska@amuedupl Submitted: Nov 23, 2006; Accepted: Apr 10, 2008; Published: Apr 18,

More information

Lecture 3 The Lebesgue Integral

Lecture 3 The Lebesgue Integral Lecture 3: The Lebesgue Itegral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Istructor: Gorda Zitkovic Lecture 3 The Lebesgue Itegral The costructio of the itegral Uless expressly specified

More information

Induction: Solutions

Induction: Solutions Writig Proofs Misha Lavrov Iductio: Solutios Wester PA ARML Practice March 6, 206. Prove that a 2 2 chessboard with ay oe square removed ca always be covered by shaped tiles. Solutio : We iduct o. For

More information

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F.

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F. CHAPTER 2 The Real Numbers 2.. The Algebraic ad Order Properties of R Defiitio. A biary operatio o a set F is a fuctio B : F F! F. For the biary operatios of + ad, we replace B(a, b) by a + b ad a b, respectively.

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

Analysis of Algorithms. Introduction. Contents

Analysis of Algorithms. Introduction. Contents Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

More information

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm 8.409 A Algorithmist s Toolkit Nov. 9, 2009 Lecturer: Joatha Keler Lecture 20 Brief Review of Gram-Schmidt ad Gauss s Algorithm Our mai task of this lecture is to show a polyomial time algorithm which

More information

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to: STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

Math 140A Elementary Analysis Homework Questions 3-1

Math 140A Elementary Analysis Homework Questions 3-1 Math 0A Elemetary Aalysis Homework Questios -.9 Limits Theorems for Sequeces Suppose that lim x =, lim y = 7 ad that all y are o-zero. Detarime the followig limits: (a) lim(x + y ) (b) lim y x y Let s

More information

6. Uniform distribution mod 1

6. Uniform distribution mod 1 6. Uiform distributio mod 1 6.1 Uiform distributio ad Weyl s criterio Let x be a seuece of real umbers. We may decompose x as the sum of its iteger part [x ] = sup{m Z m x } (i.e. the largest iteger which

More information

Solutions for the Exam 9 January 2012

Solutions for the Exam 9 January 2012 Mastermath ad LNMB Course: Discrete Optimizatio Solutios for the Exam 9 Jauary 2012 Utrecht Uiversity, Educatorium, 15:15 18:15 The examiatio lasts 3 hours. Gradig will be doe before Jauary 23, 2012. Studets

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Lecture 4 February 16, 2016

Lecture 4 February 16, 2016 MIT 6.854/18.415: Advaced Algorithms Sprig 16 Prof. Akur Moitra Lecture 4 February 16, 16 Scribe: Be Eysebach, Devi Neal 1 Last Time Cosistet Hashig - hash fuctios that evolve well Radom Trees - routig

More information

MA131 - Analysis 1. Workbook 9 Series III

MA131 - Analysis 1. Workbook 9 Series III MA3 - Aalysis Workbook 9 Series III Autum 004 Cotets 4.4 Series with Positive ad Negative Terms.............. 4.5 Alteratig Series.......................... 4.6 Geeral Series.............................

More information

Hardness Results for Intersection Non-Emptiness

Hardness Results for Intersection Non-Emptiness Hardess Results for Itersectio No-Emptiess Michael Wehar Uiversity at Buffalo mwehar@buffalo.edu Jauary 16, 2015 Abstract We carefully reexamie a costructio of Karakostas, Lipto, ad Viglas (2003) to show

More information

Section 5.1 The Basics of Counting

Section 5.1 The Basics of Counting 1 Sectio 5.1 The Basics of Coutig Combiatorics, the study of arragemets of objects, is a importat part of discrete mathematics. I this chapter, we will lear basic techiques of coutig which has a lot of

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Introduction to Probability. Ariel Yadin. Lecture 2

Introduction to Probability. Ariel Yadin. Lecture 2 Itroductio to Probability Ariel Yadi Lecture 2 1. Discrete Probability Spaces Discrete probability spaces are those for which the sample space is coutable. We have already see that i this case we ca take

More information

Output Analysis and Run-Length Control

Output Analysis and Run-Length Control IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad Ru-Legth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%

More information

Confidence Intervals for the Population Proportion p

Confidence Intervals for the Population Proportion p Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:

More information

The Sample Variance Formula: A Detailed Study of an Old Controversy

The Sample Variance Formula: A Detailed Study of an Old Controversy The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES 11.4 The Compariso Tests I this sectio, we will lear: How to fid the value of a series by comparig it with a kow series. COMPARISON TESTS

More information

Introduction to Automata Theory. Reading: Chapter 1

Introduction to Automata Theory. Reading: Chapter 1 Itroductio to Automata Theory Readig: Chapter 1 1 What is Automata Theory? Study of abstract computig devices, or machies Automato = a abstract computig device Note: A device eed ot eve be a physical hardware!

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University Istructor: Achievig Statioary Distributios i Markov Chais Moday, November 1, 008 Rice Uiversity Dr. Volka Cevher STAT 1 / ELEC 9: Graphical Models Scribe: Rya E. Guerra, Tahira N. Saleem, Terrace D. Savitsky

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

Solutions to Tutorial 3 (Week 4)

Solutions to Tutorial 3 (Week 4) The Uiversity of Sydey School of Mathematics ad Statistics Solutios to Tutorial Week 4 MATH2962: Real ad Complex Aalysis Advaced Semester 1, 2017 Web Page: http://www.maths.usyd.edu.au/u/ug/im/math2962/

More information

Math 116 Practice for Exam 3

Math 116 Practice for Exam 3 Math 6 Practice for Eam 3 Geerated April 4, 26 Name: SOLUTIONS Istructor: Sectio Number:. This eam has questios. Note that the problems are ot of equal difficulty, so you may wat to skip over ad retur

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information

CS161 Design and Analysis of Algorithms. Administrative

CS161 Design and Analysis of Algorithms. Administrative CS161 Desig ad Aalysis of Algorithms Da Boeh 1 Admiistrative Lecture 1, April 3, 1 Web page http://theory.staford.edu/~dabo/cs161» Hadouts» Aoucemets» Late breakig ews Gradig ad course requiremets» Midterm/fial/hw»

More information

Notes on iteration and Newton s method. Iteration

Notes on iteration and Newton s method. Iteration Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Statisticians use the word population to refer the total number of (potential) observations under consideration

Statisticians use the word population to refer the total number of (potential) observations under consideration 6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

More information

2.2. Central limit theorem.

2.2. Central limit theorem. 36.. Cetral limit theorem. The most ideal case of the CLT is that the radom variables are iid with fiite variace. Although it is a special case of the more geeral Lideberg-Feller CLT, it is most stadard

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Increasing timing capacity using packet coloring

Increasing timing capacity using packet coloring 003 Coferece o Iformatio Scieces ad Systems, The Johs Hopkis Uiversity, March 4, 003 Icreasig timig capacity usig packet colorig Xi Liu ad R Srikat[] Coordiated Sciece Laboratory Uiversity of Illiois e-mail:

More information

Model Theory 2016, Exercises, Second batch, covering Weeks 5-7, with Solutions

Model Theory 2016, Exercises, Second batch, covering Weeks 5-7, with Solutions Model Theory 2016, Exercises, Secod batch, coverig Weeks 5-7, with Solutios 3 Exercises from the Notes Exercise 7.6. Show that if T is a theory i a coutable laguage L, haso fiite model, ad is ℵ 0 -categorical,

More information

Oblivious Gradient Clock Synchronization

Oblivious Gradient Clock Synchronization Motivatio: Clock Sychroizatio Oblivious Gradiet Clock Sychroizatio Thomas Locher, ETH Zurich Roger Wattehofer, ETH Zurich Clock sychroizatio is a classic, importat problem! May results have bee published

More information

# fixed points of g. Tree to string. Repeatedly select the leaf with the smallest label, write down the label of its neighbour and remove the leaf.

# fixed points of g. Tree to string. Repeatedly select the leaf with the smallest label, write down the label of its neighbour and remove the leaf. Combiatorics Graph Theory Coutig labelled ad ulabelled graphs There are 2 ( 2) labelled graphs of order. The ulabelled graphs of order correspod to orbits of the actio of S o the set of labelled graphs.

More information

On Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below

On Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below O Algorithm for the Miimum Spaig Trees Problem with Diameter Bouded Below Edward Kh. Gimadi 1,2, Alexey M. Istomi 1, ad Ekateria Yu. Shi 2 1 Sobolev Istitute of Mathematics, 4 Acad. Koptyug aveue, 630090

More information

Math 140A Elementary Analysis Homework Questions 1

Math 140A Elementary Analysis Homework Questions 1 Math 14A Elemetary Aalysis Homewor Questios 1 1 Itroductio 1.1 The Set N of Natural Numbers 1 Prove that 1 2 2 2 2 1 ( 1(2 1 for all atural umbers. 2 Prove that 3 11 (8 5 4 2 for all N. 4 (a Guess a formula

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

Sequences, Series, and All That

Sequences, Series, and All That Chapter Te Sequeces, Series, ad All That. Itroductio Suppose we wat to compute a approximatio of the umber e by usig the Taylor polyomial p for f ( x) = e x at a =. This polyomial is easily see to be 3

More information

This is an introductory course in Analysis of Variance and Design of Experiments.

This is an introductory course in Analysis of Variance and Design of Experiments. 1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hard-copy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class

More information

Topic 18: Composite Hypotheses

Topic 18: Composite Hypotheses Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Lecture 14: Randomized Computation (cont.)

Lecture 14: Randomized Computation (cont.) CSE 200 Computability ad Complexity Wedesday, May 15, 2013 Lecture 14: Radomized Computatio (cot.) Istructor: Professor Shachar Lovett Scribe: Dogcai She 1 Radmized Algorithm Examples 1.1 The k-th Elemet

More information

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser FIR Filters Lecture #7 Chapter 5 8 What Is this Course All About? To Gai a Appreciatio of the Various Types of Sigals ad Systems To Aalyze The Various Types of Systems To Lear the Skills ad Tools eeded

More information

HOMEWORK #10 SOLUTIONS

HOMEWORK #10 SOLUTIONS Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

More information

P1 Chapter 8 :: Binomial Expansion

P1 Chapter 8 :: Binomial Expansion P Chapter 8 :: Biomial Expasio jfrost@tiffi.kigsto.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 6 th August 7 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information