# Lecture 9: Hierarchy Theorems

Save this PDF as:

Size: px
Start display at page:

Download "Lecture 9: Hierarchy Theorems" ## Transcription

1 IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture will be devoted to hierarchy theorems that will allow us to separate some of our complexity classes. At the ed of the lecture, we preset a example of a probabilistic argumet. This type of argumet will be used i the ext lecture to separate two more classes. 1. The Space Hierarchy Theorem If a machie is allowed to use a sigificatly larger amout of resources, it would seem like it should be able to decide more laguages. I this lecture, we show that this ituitio is right. For example, we show that i space O(s()) we ca decide a laguage that caot be decided i space o(s()), provided that s is space costructible. (Recall that a fuctio s is space costructible if give 1, the biary represetatio of s() ca be computed i space O(s()).) Oe cosequece is that L DSPACE(), which implies that oe of the followig iclusios must be strict: L NL AC 1 NC P NP PSPACE. Note, however, that we curretly do ot kow which iclusio that might be. (It is geerally believed that all these iclusios are strict.) Theorem 1 If s is space costructible, the there is a laguage that is decided i space O(s()) but ot i space o(s()). Proof What we are goig to do is desig a machie D that rus i space O(s()) ad we are goig to make sure that if M is ay machie that rus i space o(s()), the D ad M disagree o some iput. The laguage decided by D will the satisfy the coditios i the statemet of the theorem. To desig D we will use the importat techique of diagoalizatio. First, fix some ecodig of machies over some alphabet ad let M deote the ecodig of 1

2 M. Give the ecodig of some machie M, D will simulate M o the iput strig M ad accept if ad oly if M rejects. The if M is ay machie ruig i space o(s()), M ad D will disagree o M. More precisely, D first verifies that its iput is the ecodig of some machie M. If ot, it rejects. Secod, D computes the space boud s(). Third, D simulates M o M. Durig this simulatio, D will store i its ow memory the cotets of M s memory. If at ay momet the amout of space eeded to store M s memory cotets exceeds s(), the simulatio is halted ad D rejects. Otherwise, if the simulatio completes with M havig either accepted or rejected, the D will do the opposite. Now if M is ay machie ruig i space o(s()), we would like to claim that D disagrees with M o M. To do this, we ru D o M, which causes D to simulate M o M ad output the opposite. If M uses space f() ad if storig each memory symbol of M requires b symbols i D s memory, the we eed to esure that bf() s() so the simulatio ca be guarateed to fid whether M accepts or rejects. However, we oly kow that f() = o(s()), which implies that bf() s() but oly for sufficietly large, ot for all. For small iputs, simulatig M could use too much space. To fix this, we modify D so that wheever it gets a iput of the form M 1 k for some k, D simulates M o M 1 k. Whe k is sufficietly large, we will have bf() s() ad D will have eough space to simulate M ad output the opposite. So we have established that D disagrees o some iput with ay machie M ruig i space o(s()). It is clear that D rus i space O(s()). But we also wat D to decide a laguage, so we eed to make sure that D always halts. If M is a machie decidig a laguage i space o(s()), the we kow that M always halts, so the simulatio will always termiate. But D s iput ca be ay machie whatsoever, so we eed to take care of the possibility that M uses a small amout of space but does ot halt. Now ay machie ruig i space o(s()) also rus i time 2 o(s()), which is less tha 2 s() whe is large eough. So we will add to the simulatio a couter ad stop the simulatio ad reject if we fid that M s computatio has take more tha 2 s() steps. This will esure that D always halts while still allowig the complete simulatio of ay machie that rus i space o(s()). A immediate corollary of this result is that if s 1 = o(s 2 ) ad s 2 is space costructible, the DSPACE(s 1 ) DSPACE(s 2 ). I particular, L DSPACE(), which implies that L PSPACE. But we ca say more, by usig Savitch s Theorem. Corollary 2 NL PSPACE. 2

3 Proof NL DSPACE(log 2 ) DSPACE(). 2. The Time Hierarchy Theorem We just proved that icreasig the amout of space from o(s()) to O(s()) allows machies to decide more laguages. The same is true for time, though we defer the proof to the exercises. Theorem 3 If t is time costructible, the there is a laguage that is decided i time O(t()) but ot i time o(t()). Corollary 4 P EXP. Proof For every k, DTIME( k ) DTIME( log ), which implies that P DTIME( log ). The result follows sice DTIME( log ) DTIME(2 ). A cosequece of this is that oe of the followig iclusios must be strict: P NP PSPACE EXP. Oce agai, we do ot kow which oe. For aother cosequece, the exercises ask you to show that there are problems that caot be solved by ay machie whatsoever. From the Time Hierarchy Theorem, we ow kow that there are laguages that ca be solved by machies but ot by efficiet machies (i.e., machies that ru i polyomial time). Note that the proof of the above theorem relies o the fact that our machies have a costat umber of memory heads, ot just oe. For machies that have oly oe memory head, we could have proved a separatio betwee time O(t()) ad time o(t()/ log t()). It is ot kow if the separatio holds with o(t()) for machies with a sigle memory head. 3. A Probabilistic Argumet We ed this lecture with a result about graphs that will serve as our itroductio to probabilistic argumets. A argumet of this type will be used i the ext lecture. I a udirected graph, a aticlique or idepedet set is a set of odes i which every two odes are ot coected by a edge. For example, a petago has aticliques of size 2 but ot of size 3. It may seem reasoable to thik that as the 3

4 umber of odes i a graph becomes very large, the chaces icrease that it will cotai either a large clique or a large aticlique. I fact, Ramsey s Theorem states that every graph of size at least 2 2k cotais either a clique of size k or a aticlique of size k. Let R(k) be the miimum umber such that every graph with R(k) odes is guarateed to cotai either a clique or a aticlique of size k. Ramsey s Theorem gives a upper boud o this umber: R(k) 2 2k. What about a lower boud? R(k) k is trivial ad, for k 3, R(k) 2k is easy: cosider a polygo with 2k 1 sides. However, these umbers are very far from the upper boud of 2 2k. Ca we get closer? The followig theorem, due to Erdös, shows that we ca. Its proof is a example of a probabilistic argumet: we show that a object of a certai type with a certai property exists by showig that the probability that a radom object of the same type does ot have the property is less tha 1. Theorem 5 R(k) 2 k/2 1. Proof Let ad k be arbitrary. Choose a graph with odes at radom by decidig whether each of the possible ( ) 2 edges is i or out. For ay set A of k odes, the probability that A is a clique is 2 (k 2). The probability that A is a aticlique is the same. Therefore, the probability that there is a set of k odes i the graph that is either a clique or a aticlique is o more tha 2 ( ) k 2 ( k 2). If R(k), the every graph with odes has a clique or aticlique of size k, so this probability is 1 ad this implies that 2 ( ( ) k) 2 ( k 2) 1. Therefore, if 2 k 2 ( k 2) < 1, the some graph with odes must have o cliques or aticliques of size k, which implies that < R(k). A straightforward calculatio shows that satisfies the coditio if < 2 k/2 1. The lower boud follows. 4. Exercises 1. Show that for every ratioal umber r, the fuctio r is space costructible. 2. Show that the followig problem caot be decided by ay machie whatsoever: give a machie M ad a iput x, determie whether M halts o x. This problem is usually referred to as the haltig problem. It is the typical example of a udecidable problem. 4

5 3. Show that the followig problem is udecidable: give a machie M, does M halt o the empty iput? (Hit: Give a iput M, x to the haltig problem, cosider a machie M x that igores its iput ad simply simulates M o x.) 4. Show that NP DTIME(). 5. Show that NP DSPACE(). 6. Prove the Time Hierarchy Theorem. 7. Prove Ramsey s Theorem. That is, show that R(k) 2 2k. (Hit: Let R(i, j) be the miimum umber such that every graph with R(i, j) odes is guarateed to cotai either a clique of size i or a aticlique of size j. Show that R(i, j) R(i, j 1) + R(i 1, j).) 5

### CS151 Complexity Theory Time ad Space CS151 Complexity Theory Lecture 2 April 1, 2004 A motivatig questio: Boolea formula with odes evaluate usig O(log ) space? depth-first traversal requires storig itermediate values idea: short-circuit

More information

### Computability and computational complexity Computability ad computatioal complexity Lecture 4: Uiversal Turig machies. Udecidability Io Petre Computer Sciece, Åbo Akademi Uiversity Fall 2015 http://users.abo.fi/ipetre/computability/ 21. toukokuu

More information

### Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

### HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

### Lecture 14: Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS Sprig 2013 Lecture 14: Graph Etropy March 19, 2013 Lecturer: Mahdi Cheraghchi Scribe: Euiwoog Lee 1 Recap Bergma s boud o the permaet Shearer s Lemma Number

More information

### OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES Peter M. Maurer Why Hashig is θ(). As i biary search, hashig assumes that keys are stored i a array which is idexed by a iteger. However, hashig attempts to bypass

More information

### (A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

### MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

### Fundamental Theorem of Algebra. Yvonne Lai March 2010 Fudametal Theorem of Algebra Yvoe Lai March 010 We prove the Fudametal Theorem of Algebra: Fudametal Theorem of Algebra. Let f be a o-costat polyomial with real coefficiets. The f has at least oe complex

More information

### Lecture 2: Uncomputability and the Haling Problem CSE 200 Computability ad Complexity Wedesday, April 3, 2013 Lecture 2: Ucomputability ad the Halig Problem Istructor: Professor Shachar Lovett Scribe: Dogcai She 1 The Uiversal Turig Machie I the last

More information

### Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

### Math F215: Induction April 7, 2013 Math F25: Iductio April 7, 203 Iductio is used to prove that a collectio of statemets P(k) depedig o k N are all true. A statemet is simply a mathematical phrase that must be either true or false. Here

More information

### Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

### Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

### 10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term. 0. Sequeces A sequece is a list of umbers writte i a defiite order: a, a,, a, a is called the first term, a is the secod term, ad i geeral eclusively with ifiite sequeces ad so each term Notatio: the sequece

More information

### Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

### 6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

### MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

### 1 Hash tables. 1.1 Implementation Lecture 8 Hash Tables, Uiversal Hash Fuctios, Balls ad Bis Scribes: Luke Johsto, Moses Charikar, G. Valiat Date: Oct 18, 2017 Adapted From Virgiia Williams lecture otes 1 Hash tables A hash table is a

More information

### Lecture 1: Basic problems of coding theory Lecture 1: Basic problems of codig theory Error-Correctig Codes (Sprig 016) Rutgers Uiversity Swastik Kopparty Scribes: Abhishek Bhrushudi & Aditya Potukuchi Admiistrivia was discussed at the begiig of

More information

### Computability and computational complexity Computability ad computatioal complexity Lecture 6: Relatios betwee complexity classes Io Petre Computer Sciece, Åbo Akademi Uiversity Fall 2015 http://users.abo.fi/ipetre/computability/ 21 May 2018 http://users.abo.fi/ipetre/computability/

More information

### Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

### The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

### IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

### Lecture 5: The Landscape of Complexity Classes IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 5: The Landscape of Complexity Classes David Mix Barrington and Alexis Maciel July 21,

More information

### 10.6 ALTERNATING SERIES 0.6 Alteratig Series Cotemporary Calculus 0.6 ALTERNATING SERIES I the last two sectios we cosidered tests for the covergece of series whose terms were all positive. I this sectio we examie series whose

More information

### Computability and computational complexity Computability ad computatioal complexity Lecture 12: O P vs NP Io Petre Computer Sciece, Åbo Akademi Uiversity Fall 2015 http://users.abo.fi/ipetre/computability/ December 9, 2015 http://users.abo.fi/ipetre/computability/

More information

### Introduction to Computational Molecular Biology. Gibbs Sampling 18.417 Itroductio to Computatioal Molecular Biology Lecture 19: November 16, 2004 Scribe: Tushara C. Karuarata Lecturer: Ross Lippert Editor: Tushara C. Karuarata Gibbs Samplig Itroductio Let s first recall

More information

### 4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

### 4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3 Exam Problems (x. Give the series (, fid the values of x for which this power series coverges. Also =0 state clearly what the radius of covergece is. We start by settig up the Ratio Test: x ( x x ( x x

More information

### Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1). 6896 Quatum Complexity Theory Sept 23, 2008 Lecturer: Scott Aaroso Lecture 6 Last Time: Quatum Error-Correctio Quatum Query Model Deutsch-Jozsa Algorithm (Computes x y i oe query) Today: Berstei-Vazirii

More information

### Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

### Series III. Chapter Alternating Series Chapter 9 Series III With the exceptio of the Null Sequece Test, all the tests for series covergece ad divergece that we have cosidered so far have dealt oly with series of oegative terms. Series with

More information

### Hashing and Amortization Lecture Hashig ad Amortizatio Supplemetal readig i CLRS: Chapter ; Chapter 7 itro; Sectio 7.. Arrays ad Hashig Arrays are very useful. The items i a array are statically addressed, so that isertig, deletig,

More information

### UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 17 Lecturer: David Wagner April 3, Notes 17 for CS 170 UC Berkeley CS 170: Efficiet Algorithms ad Itractable Problems Hadout 17 Lecturer: David Wager April 3, 2003 Notes 17 for CS 170 1 The Lempel-Ziv algorithm There is a sese i which the Huffma codig was

More information

### Advanced Course of Algorithm Design and Analysis Differet complexity measures Advaced Course of Algorithm Desig ad Aalysis Asymptotic complexity Big-Oh otatio Properties of O otatio Aalysis of simple algorithms A algorithm may may have differet executio

More information

### Lecture 11: Hash Functions and Random Oracle Model CS 7810 Foudatios of Cryptography October 16, 017 Lecture 11: Hash Fuctios ad Radom Oracle Model Lecturer: Daiel Wichs Scribe: Akshar Varma 1 Topic Covered Defiitio of Hash Fuctios Merkle-Damgaård Theorem

More information

### Lecture 4: April 10, 2013 TTIC/CMSC 1150 Mathematical Toolkit Sprig 01 Madhur Tulsiai Lecture 4: April 10, 01 Scribe: Haris Agelidakis 1 Chebyshev s Iequality recap I the previous lecture, we used Chebyshev s iequality to get a

More information

### CS161: Algorithm Design and Analysis Handout #10 Stanford University Wednesday, 10 February 2016 CS161: Algorithm Desig ad Aalysis Hadout #10 Staford Uiversity Wedesday, 10 February 2016 Lecture #11: Wedesday, 10 February 2016 Topics: Example midterm problems ad solutios from a log time ago Sprig

More information

### Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

### 7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

### A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

### Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

### JANE PROFESSOR WW Prob Lib1 Summer 2000 JANE PROFESSOR WW Prob Lib Summer 000 Sample WeBWorK problems. WeBWorK assigmet Series6CompTests due /6/06 at :00 AM..( pt) Test each of the followig series for covergece by either the Compariso Test or

More information

### Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

### 7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

### Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

### Recitation 4: Lagrange Multipliers and Integration Math 1c TA: Padraic Bartlett Recitatio 4: Lagrage Multipliers ad Itegratio Week 4 Caltech 211 1 Radom Questio Hey! So, this radom questio is pretty tightly tied to today s lecture ad the cocept of cotet

More information

### ENGI 4421 Confidence Intervals (Two Samples) Page 12-01 ENGI 44 Cofidece Itervals (Two Samples) Page -0 Two Sample Cofidece Iterval for a Differece i Populatio Meas [Navidi sectios 5.4-5.7; Devore chapter 9] From the cetral limit theorem, we kow that, for sufficietly

More information

### THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS DEMETRES CHRISTOFIDES Abstract. Cosider a ivertible matrix over some field. The Gauss-Jorda elimiatio reduces this matrix to the idetity

More information

### Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

### Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

### 5 Sequences and Series Bria E. Veitch 5 Sequeces ad Series 5. Sequeces A sequece is a list of umbers i a defiite order. a is the first term a 2 is the secod term a is the -th term The sequece {a, a 2, a 3,..., a,..., } is a

More information

### Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

### w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

### (b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

### Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

### Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

### Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

### Lecture 5: April 17, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 5: April 7, 203 Scribe: Somaye Hashemifar Cheroff bouds recap We recall the Cheroff/Hoeffdig bouds we derived i the last lecture idepedet

More information

### Some special clique problems Some special clique problems Reate Witer Istitut für Iformatik Marti-Luther-Uiversität Halle-Witteberg Vo-Seckedorff-Platz, D 0620 Halle Saale Germay Abstract: We cosider graphs with cliques of size k

More information

### A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

More information

### page Suppose that S 0, 1 1, 2. page 10 1. Suppose that S 0, 1 1,. a. What is the set of iterior poits of S? The set of iterior poits of S is 0, 1 1,. b. Give that U is the set of iterior poits of S, evaluate U. 0, 1 1, 0, 1 1, S. The

More information

### It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

### Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

### Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

### Quantum Computing Lecture 7. Quantum Factoring Quatum Computig Lecture 7 Quatum Factorig Maris Ozols Quatum factorig A polyomial time quatum algorithm for factorig umbers was published by Peter Shor i 1994. Polyomial time meas that the umber of gates

More information

### Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

### Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting Advaced Complexity Theory Sprig 206 Lecture 4: Uique-SAT, Parity-SAT, ad Approximate Coutig Prof. Daa Moshkovitz Scribe: Aoymous Studet Scribe Date: Fall 202 Overview I this lecture we begi talkig about

More information

### n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n Series. Defiitios ad first properties A series is a ifiite sum a + a + a +..., deoted i short by a. The sequece of partial sums of the series a is the sequece s ) defied by s = a k = a +... + a,. k= Defiitio

More information

### Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

### Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

### If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

### 5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

### ( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

### Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

### Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary Recursive Algorithm for Geeratig Partitios of a Iteger Sug-Hyuk Cha Computer Sciece Departmet, Pace Uiversity 1 Pace Plaza, New York, NY 10038 USA scha@pace.edu Abstract. This article first reviews the

More information

### Posted-Price, Sealed-Bid Auctions Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa 207-02-08 We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this

More information

### Math 216A Notes, Week 5 Math 6A Notes, Week 5 Scribe: Ayastassia Sebolt Disclaimer: These otes are ot early as polished (ad quite possibly ot early as correct) as a published paper. Please use them at your ow risk.. Thresholds

More information

### PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

### An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

### Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

### Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

### University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

### Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

### Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 15 CS 70 Discrete Mathematics ad Probability Theory Fall 2013 Vazirai Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model realworld

More information

### Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

### Spectral Partitioning in the Planted Partition Model Spectral Graph Theory Lecture 21 Spectral Partitioig i the Plated Partitio Model Daiel A. Spielma November 11, 2009 21.1 Itroductio I this lecture, we will perform a crude aalysis of the performace of

More information

### Lecture 9: Pseudo-random generators against space bounded computation, Lecture 9: Pseudo-radom geerators agaist space bouded computatio, Primality Testig Topics i Pseudoradomess ad Complexity (Sprig 2018) Rutgers Uiversity Swastik Kopparty Scribes: Harsha Tirumala, Jiyu Zhag

More information

### 1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

### Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

### Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model

More information

### Curve Sketching Handout #5 Topic Interpretation Rational Functions Curve Sketchig Hadout #5 Topic Iterpretatio Ratioal Fuctios A ratioal fuctio is a fuctio f that is a quotiet of two polyomials. I other words, p ( ) ( ) f is a ratioal fuctio if p ( ) ad q ( ) are polyomials

More information

### Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: Jauary 2009 Aalysis I Time Allowed:.5 hours Read carefully the istructios o the aswer book ad make sure that the particulars required are etered o each

More information

### Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

### Sums, products and sequences Sums, products ad sequeces How to write log sums, e.g., 1+2+ (-1)+ cocisely? i=1 Sum otatio ( sum from 1 to ): i 3 = 1 + 2 + + If =3, i=1 i = 1+2+3=6. The ame ii does ot matter. Could use aother letter

More information