Recurrence Relations

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Recurrence Relations"

Transcription

1 Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The t = t - +. The equatio, t = t - +, is a example of a recurrece equatio or recurrece relatio. Recurrece relatios are usually accompaied by iitial coditio(s). For the factorial fuctio above, the iitial coditio would be writte as t 0 = 0; which idicates that o multiplicatios are calculated whe is 0. The first few values for the above recurrece relatio (begiig with the iitial coditio) are: t 0 = 0 t = t 0 + = 0 + = t = t + = + = t = t + = + = t 4 = t + = + = 4 From this patter we might guess that a o-recurrece expressio for t might be t =. Such a expressio is called a solutio to the recurrece relatio. May times we ca guess at the solutio of a recurrece relatio by lookig for a patter i the first few iteratios. If a potetial or cadidate solutio is foud by observatio, we still eed to prove that it does, ideed, solve the recurrece relatio. Such proofs ofte use a iductio style of proof. Whe provig somethig by iductio, oe first shows that cadidate solutio satisfies a base case. For istace, it is obvious that for = 0, it is true that t = 0. The ext step i a proof by iductio is to state the iductio hypothesis. I the iductio hypothesis, oe makes the assumptio that the cadidate solutio is true for the i th case (i 0). For example, for this problem oe would simply state the assumptio that t i = i. The fial step (sometimes called the iductio step ) is to show that assumig the iductio hypothesis is true (the solutio is true for the i th case) that the solutio is true for the i+ case. For our example problem, oe would show that: t i+ = t (i+)- + = t i + = i + DONE! Examples: a. Solve the recurrece relatio: t = t / +, where > is a power of ad t = (This recurrece relatio occurs with the worst case lookup usig a biary search.) t = t = t / + = t + = + = t 4 = t 4/ + = t + = + = t 8 = t 8/ + = t 4 + = + = 4 t 6 = t 6/ + = t 8 + = 4 + = From observatio, a cadidate solutio would be: t = log () + Usig proof by iductio: Base case: t = Iductio Hypothesis: Assume t i = log (i) + Iductio Step: t i = t i/ + = t i + = (log (i) + ) + = log (i) + log () + = log (i) + Doe! Page

2 b. Solve t = 7t /, where > ad is a power of ad t =. t = t = 7t / = 7t = 7 t 4 = 7t 4/ = 7t = 7*7 = 7 t 8 = 7t 8/ = 7t 4 = 7*7 = 7 t 6 =7 t 6/ = 7t 8 = 7*7 = 7 4 adidate: t = 7 log () Proof: Base: t = = 7 log () Iductio Hypothsis: t i = 7 log (i) Iductio Step: t i = 7t i/ = 7t i = 7 * 7 log (i) = 7 (+log (i)) = 7 (log () + log (i)) = 7 log (i) c. Solve t = t / +, where > ad is a power of ad t = 0. t = 0 t = t + = *0 + = t 4 = t + 4 = * + 4 = t 8 = t = * + 8 = 7 t 6 = t = *7 + 6 = 49 Solutio? (We ll retur to this problem later!) Homogeeous Liear Recurreces A homogeeous liear recurrece is ay recurrece that ca be put i the followig format: a 0 t + a t a k t -k = 0 where each a i is a costat (i = 0... k) These are liear because each t i term appears oly to the st power (o t, t *t -, or t / ). They are homogeeous because the right-had side of the equatio is equal to 0. Example: Aalysis of the recursive fuctio to fid the th Fiboacci umber leads to a homogeeous liear recurrece relatio. it Fib(it ) { if (<=) retur ; else retur ( fib(-) + fib(-) ); } Let t = umber of additios eeded to fid Fib(). The t = t - + t -, with t 0 = 0 & t =. This ca be coverted to the format: t t - t - = 0, with t 0 = 0 & t =. The first few terms are: t = t + t 0 = + 0 = t = t + t = + = t 4 = t + t = + = t = t 4 + t = + = Page

3 Before we fid a solutio to this homogeeous liear recurrece relatio, let s try a easier problem. Let s solve the recurrece relatio: t t - + 6t - = 0, for > with t 0 = 0 ad t =. If we set t = r, the a root, r, of the polyomial: r r - + 6r - = 0, will give us a solutio to the recurrece relatio. r r - + 6r - = 0 r - ( r -r + 6) = 0 r - ( r-) (r-) = 0 Thus, the roots are r=0, r=, ad r=; ad some of the solutios to the recurrece relatio should be t = 0, t =, ad t = Verify: t = 0: 0 *0 +6*0 = 0 Verify: t = : * - + 6* - = * - +* - = -* - = = 0 Verify: t = : * - + 6* - = * - + * - = * - = = 0 t = 0 is a vacuous solutio that fails to satisfy the iitial coditios. We ll elimiate it. If t = ad t = are solutios, the so is t = +. a you verify this? I fact, t = + is a solutio for ay costats &. We ca use the iitial coditios (t 0 =0, t =) to fid the particular solutio that satisfies the iitial coditios: t = +, t 0 = 0 ad t = 0 = + ad = + Solvig these two equatios for the two ukows yields: = - ad = +. Thus, the particular solutio that satisfies the iitial coditios is: t = You should be able to verify that the equatio: t = - ( 0) geerates the same sequece as the recurrece relatio: t = t - - 6t - for > with t 0 = 0 ad t =. Defiitio: Give a homogeous liear recurrece relatio: a 0 t + a t a k t -k = 0, the characteristic equatio is defied as a 0 r k + a r k- + + a k r 0 = 0 What are the characteristic equatios for the followig recurrece relatios? Recurrece Relatio haracteristic Equatio t 7t - + 6t - = 0 t t - 4t - = 0 t t - t - = 0 Theorem: If the characteristic equatio has k distict roots: r, r,, r k, the recurrece relatio has solutio: t = r + r + k r k Theorem: If the characteristic equatio has a root, r, of multiplicity = m, the t = r, t = r, t = r, t = r, t = m- r are all solutios to the recurrece relatio. Page

4 Examples: a) (Back to the Fiboacci example) t t - t - = 0, with t 0 = 0 ad t = haracteristic equatio: r r = 0 Roots: r = ( + ) / ad r = ( - ) / Geeral Solutio: t = + Applyig iitial coditios yields the followig equatios i ukows: 0 = + = + Which yields = ad = Specific Solutio: t = b) t 4t - + 4t - = 0, where > 0 ad t 0 = 0 & t = haracteristic Equatio: r 4r + 4 = 0 Roots: r = with multiplicity of Geeral Solutio: t = + Applyig iitial coditios: 0 = = + Which yields: = 0 & = ½ Specific Solutio: t = ½ = - Page 4

5 Nohomogeeous Liear Recurreces A homogeeous liear recurrece is ay recurrece that ca be put i the followig format: a 0 t + a t a k t -k = f() where each a i is a costat (i = 0... k) ad f() is ay fuctio i. There is o kow geeral method for solvig ohomogeeous liear recurreces. However there is a method for the special case: a 0 t + a t a k t -k = b p(), where b is a costat ad p() is a polyomial i. Examples: t t - = 4 t t - = 4 (+) The st example ca be made homogeeous by the applyig the followig trick: t t - = 4 t - t - = 4 - Also t t - = 4 t t = Subtractig the st equatio from the d yields: t 7t + t - = Multiplyig by 4: t 7t - + t - = 0 The characteristic equatio for this homogeeous recurrece is: r -7t + = 0 Which factors ito: (r-)(r-4) = 0 Thus the geeral solutio is: t = + 4 Usig the iitial coditios, t 0 = 0 ad t = 4, we get = -4 ad = 4 Thus, the specific solutio is: t = 4 + 4( ) Notice that the 4( ) term would have bee preset if the origial recurrece relatio had bee the homogeeous relatio: t t - = 0. The other term (4 + ) comes from the fuctio o the right-had side of the origial recurrece relatio. This leads us to the followig theorem: Theorem: A recurrece relatio i the form: a 0 t + a t a k t -k = b p(), has a characteristic equatio i the form: (a 0 r k + a r k- + + a k )(r-b) d+ = 0, where b is the costat foud i the recurrece relatio ad d is the degree of p(). Thus the characteristic equatio is composed of i) the characteristic equatio correspodig to a homogeeous versio of the recurrece relatio, ad ii) (r-b) d+ which has a root of multiplicity d+. If there is more tha oe term like b p() o the right side, each oe cotributes a product such as (r-b) d+ to the characteristic equatio. Page

6 Examples: a) t t - = 4 (+) with iitial coditios t 0 = 0 ad t =. haracteristic Equatio: (r-)(r-4) = 0 Which has roots: r = ad r = 4 with multiplicity Geeral solutio: t = We eed to fid a value for t so that we ca derive equatios i ukows: t t = 4 (4+) = 6* =80 ad, thus, t = t + 80 = () + 80 = 6 Solvig for,, ad : 4 4 = 0, = -0, = Thus, the specific solutio is: t = 0( ) 0(4 ) + 84 b) t t - = - where > 0 ad t 0 = 0 haracteristic Equatio: (r-)(r-) = 0 (r-) = 0 Which has roots: r = with multiplicity Geeral solutio: t = + + = + + Give t 0 = 0: t = t 0 + (-) = = 0 t = t + (-) = 0 + = 0 Solvig for,, ad : 0 = 0, = -½, = ½ 4 Thus, the specific solutio is: t = - + = = ( ) c) t t - = + where > ad t = 0 haracteristic Equatio: (r-)(r-) (r-) = 0 Which has roots: r = with multiplicity ad r= with multiplicity Geeral solutio: t = = Give t = 0: t = t + + = = 6 t = t + + = * = t 4 = t = * = = Solvig for,, ad : = -, = -, = ½, 4 = Thus, the specific solutio is: t = - + ½ ( )+ = - + Page

7 d) Let s retur to the example left ufiished o page : Solve t = t / +, where > ad is a power of ad t = 0. This is ot a liear recurrece relatio because of the t / term. However, by usig two substitutios, we ca covert this ito a liear recurrece relatio. First, sice is defied to always be a power of, we ll replace with k. Thus, the ew k k recurrece relatio is: t k t k = t k, where k > 0 ad t 0 = 0. Sice terms such as Let S k = t k. k t are tedious to work with, we ll make aother substitutio. We ow have the recurrece relatio: S k = S k- + k or S k S k- = k -, where k > 0 ad S 0 = 0, which is a liear ohomogeeous recurrece relatio. The right-had side of the equatio may be rewritte as k () + k (-), where () ad (-) are trivial fuctios i k. Thus usig the thereom for ohomogeeous recurrece relatios, the characteristic equatio is: (r ) (r ) (r ) = 0 The first factor is derived from the homogeeous cotributio while the other two factors follow directly from the thereom. Thus, the roots are ad (with multiplicity ). Geeral Solutio: t k = S k = k + k + k k Sice = k, k = log. Thus, the geeral solutio is: t = + + log, where ad is a power of. Solvig for,, ad : =, = -, = Thus, the specific solutio is: t = + log or t = log ( ), where ad is a power of. You should verify that this solutio geerates the same sequece of values that is geerated by the origial recurrece relatio. Page 7

8 Master Theorem A very commo type of recurrece relatio occurs with Divide-ad-oquer type of algorithms. I fact, they are so commo that a master theorem has bee prove that addresses these problems ad provides a order of complexity formula. That is, if the recurrece relatio matches a commo patter, we ca fid the complexity of the solutio. Note, the theorem does ot provide the exact solutio; but, after all, most of the time all we really eed is the complexity. Master Theorem: Give a recurrece relatio of the form: t = at /b + f(), where f() is i ( d ) with d 0, the For example, let s oce agai cosider the recurrece relatio o the previous page: t = t / +. For this problem, a =, b =, ad sice - is i ( ), d =. Thus, a = b d ; therefore the solutio for the recurrece relatio belogs to ( log ) = ( log ). DONE! What are the order of growth for solutios of the followig recurrece relatios? a. t = 4t / +, t = b. t = 4t / +, t = c. t = 4t / +, t = Page 8

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1 . Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely

More information

A Simplified Binet Formula for k-generalized Fibonacci Numbers

A Simplified Binet Formula for k-generalized Fibonacci Numbers A Simplified Biet Formula for k-geeralized Fiboacci Numbers Gregory P. B. Dresde Departmet of Mathematics Washigto ad Lee Uiversity Lexigto, VA 440 dresdeg@wlu.edu Zhaohui Du Shaghai, Chia zhao.hui.du@gmail.com

More information

2.4 - Sequences and Series

2.4 - Sequences and Series 2.4 - Sequeces ad Series Sequeces A sequece is a ordered list of elemets. Defiitio 1 A sequece is a fuctio from a subset of the set of itegers (usually either the set 80, 1, 2, 3,... < or the set 81, 2,

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

Analysis of Algorithms. Introduction. Contents

Analysis of Algorithms. Introduction. Contents Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

More information

Solutions to Final Exam

Solutions to Final Exam Solutios to Fial Exam 1. Three married couples are seated together at the couter at Moty s Blue Plate Dier, occupyig six cosecutive seats. How may arragemets are there with o wife sittig ext to her ow

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information

Solution of Linear Constant-Coefficient Difference Equations

Solution of Linear Constant-Coefficient Difference Equations ECE 38-9 Solutio of Liear Costat-Coefficiet Differece Equatios Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa Solutio of Liear Costat-Coefficiet Differece Equatios Example: Determie

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION ANOTHER GENERALIZED FIBONACCI SEQUENCE MARCELLUS E. WADDILL A N D LOUIS SACKS Wake Forest College, Wisto Salem, N. C., ad Uiversity of ittsburgh, ittsburgh, a. 1. INTRODUCTION Recet issues of umerous periodicals

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Section 11.6 Absolute and Conditional Convergence, Root and Ratio Tests

Section 11.6 Absolute and Conditional Convergence, Root and Ratio Tests Sectio.6 Absolute ad Coditioal Covergece, Root ad Ratio Tests I this chapter we have see several examples of covergece tests that oly apply to series whose terms are oegative. I this sectio, we will lear

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

The Structure of Z p when p is Prime

The Structure of Z p when p is Prime LECTURE 13 The Structure of Z p whe p is Prime Theorem 131 If p > 1 is a iteger, the the followig properties are equivalet (1) p is prime (2) For ay [0] p i Z p, the equatio X = [1] p has a solutio i Z

More information

Section 1 of Unit 03 (Pure Mathematics 3) Algebra

Section 1 of Unit 03 (Pure Mathematics 3) Algebra Sectio 1 of Uit 0 (Pure Mathematics ) Algebra Recommeded Prior Kowledge Studets should have studied the algebraic techiques i Pure Mathematics 1. Cotet This Sectio should be studied early i the course

More information

Addition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c

Addition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c Notes for March 31 Fields: A field is a set of umbers with two (biary) operatios (usually called additio [+] ad multiplicatio [ ]) such that the followig properties hold: Additio: Name Descriptio Commutativity

More information

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS VERNER E. HOGGATT, JR. Sa Jose State Uiversity, Sa Jose, Califoria 95192 ad CALVIN T. LONG Washigto State Uiversity, Pullma, Washigto 99163

More information

5 Sequences and Series

5 Sequences and Series Bria E. Veitch 5 Sequeces ad Series 5. Sequeces A sequece is a list of umbers i a defiite order. a is the first term a 2 is the secod term a is the -th term The sequece {a, a 2, a 3,..., a,..., } is a

More information

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4.

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4. 11. FINITE FIELDS 11.1. A Field With 4 Elemets Probably the oly fiite fields which you ll kow about at this stage are the fields of itegers modulo a prime p, deoted by Z p. But there are others. Now although

More information

5.6 Absolute Convergence and The Ratio and Root Tests

5.6 Absolute Convergence and The Ratio and Root Tests 5.6 Absolute Covergece ad The Ratio ad Root Tests Bria E. Veitch 5.6 Absolute Covergece ad The Ratio ad Root Tests Recall from our previous sectio that diverged but ( ) coverged. Both of these sequeces

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Notes on iteration and Newton s method. Iteration

Notes on iteration and Newton s method. Iteration Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f

More information

Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary

Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary Recursive Algorithm for Geeratig Partitios of a Iteger Sug-Hyuk Cha Computer Sciece Departmet, Pace Uiversity 1 Pace Plaza, New York, NY 10038 USA scha@pace.edu Abstract. This article first reviews the

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

CSE 4095/5095 Topics in Big Data Analytics Spring 2017; Homework 1 Solutions

CSE 4095/5095 Topics in Big Data Analytics Spring 2017; Homework 1 Solutions CSE 09/09 Topics i ig Data Aalytics Sprig 2017; Homework 1 Solutios Note: Solutios to problems,, ad 6 are due to Marius Nicolae. 1. Cosider the followig algorithm: for i := 1 to α log e do Pick a radom

More information

Induction: Solutions

Induction: Solutions Writig Proofs Misha Lavrov Iductio: Solutios Wester PA ARML Practice March 6, 206. Prove that a 2 2 chessboard with ay oe square removed ca always be covered by shaped tiles. Solutio : We iduct o. For

More information

Solutions to Math 347 Practice Problems for the final

Solutions to Math 347 Practice Problems for the final Solutios to Math 347 Practice Problems for the fial 1) True or False: a) There exist itegers x,y such that 50x + 76y = 6. True: the gcd of 50 ad 76 is, ad 6 is a multiple of. b) The ifiimum of a set is

More information

Integer Linear Programming

Integer Linear Programming Iteger Liear Programmig Itroductio Iteger L P problem (P) Mi = s. t. a = b i =,, m = i i 0, iteger =,, c Eemple Mi z = 5 s. t. + 0 0, 0, iteger F(P) = feasible domai of P Itroductio Iteger L P problem

More information

APPENDIX F Complex Numbers

APPENDIX F Complex Numbers APPENDIX F Complex Numbers Operatios with Complex Numbers Complex Solutios of Quadratic Equatios Polar Form of a Complex Number Powers ad Roots of Complex Numbers Operatios with Complex Numbers Some equatios

More information

11.6 Absolute Convergence and the Ratio and Root Tests

11.6 Absolute Convergence and the Ratio and Root Tests .6 Absolute Covergece ad the Ratio ad Root Tests The most commo way to test for covergece is to igore ay positive or egative sigs i a series, ad simply test the correspodig series of positive terms. Does

More information

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra Proof of Fermat s Last Theorem by Algebra Idetities ad Liear Algebra Javad Babaee Ragai Youg Researchers ad Elite Club, Qaemshahr Brach, Islamic Azad Uiversity, Qaemshahr, Ira Departmet of Civil Egieerig,

More information

Discrete Mathematics Recurrences

Discrete Mathematics Recurrences Discrete Mathematics Recurreces Saad Meimeh 1 What is a recurrece? It ofte happes that, i studyig a sequece of umbers a, a coectio betwee a ad a 1, or betwee a ad several of the previous a i, i

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture 3 Tolstikhi Ilya Abstract I this lecture we will prove the VC-boud, which provides a high-probability excess risk boud for the ERM algorithm whe

More information

UNIT #5. Lesson #2 Arithmetic and Geometric Sequences. Lesson #3 Summation Notation. Lesson #4 Arithmetic Series. Lesson #5 Geometric Series

UNIT #5. Lesson #2 Arithmetic and Geometric Sequences. Lesson #3 Summation Notation. Lesson #4 Arithmetic Series. Lesson #5 Geometric Series UNIT #5 SEQUENCES AND SERIES Lesso # Sequeces Lesso # Arithmetic ad Geometric Sequeces Lesso #3 Summatio Notatio Lesso #4 Arithmetic Series Lesso #5 Geometric Series Lesso #6 Mortgage Paymets COMMON CORE

More information

Sequences and Limits

Sequences and Limits Chapter Sequeces ad Limits Let { a } be a sequece of real or complex umbers A ecessary ad sufficiet coditio for the sequece to coverge is that for ay ɛ > 0 there exists a iteger N > 0 such that a p a q

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n = 60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

Algebra II Notes Unit Seven: Powers, Roots, and Radicals

Algebra II Notes Unit Seven: Powers, Roots, and Radicals Syllabus Objectives: 7. The studets will use properties of ratioal epoets to simplify ad evaluate epressios. 7.8 The studet will solve equatios cotaiig radicals or ratioal epoets. b a, the b is the radical.

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES 9 SEQUENCES AND SERIES INTRODUCTION Sequeces have may importat applicatios i several spheres of huma activities Whe a collectio of objects is arraged i a defiite order such that it has a idetified first

More information

1 Hash tables. 1.1 Implementation

1 Hash tables. 1.1 Implementation Lecture 8 Hash Tables, Uiversal Hash Fuctios, Balls ad Bis Scribes: Luke Johsto, Moses Charikar, G. Valiat Date: Oct 18, 2017 Adapted From Virgiia Williams lecture otes 1 Hash tables A hash table is a

More information

arxiv: v1 [math.fa] 3 Apr 2016

arxiv: v1 [math.fa] 3 Apr 2016 Aticommutator Norm Formula for Proectio Operators arxiv:164.699v1 math.fa] 3 Apr 16 Sam Walters Uiversity of Norther British Columbia ABSTRACT. We prove that for ay two proectio operators f, g o Hilbert

More information

Solutions to Homework 1

Solutions to Homework 1 Solutios to Homework MATH 36. Describe geometrically the sets of poits z i the complex plae defied by the followig relatios /z = z () Re(az + b) >, where a, b (2) Im(z) = c, with c (3) () = = z z = z 2.

More information

a 3, a 4, ... are the terms of the sequence. The number a n is the nth term of the sequence, and the entire sequence is denoted by a n

a 3, a 4, ... are the terms of the sequence. The number a n is the nth term of the sequence, and the entire sequence is denoted by a n 60_090.qxd //0 : PM Page 59 59 CHAPTER 9 Ifiite Series Sectio 9. EXPLORATION Fidig Patters Describe a patter for each of the followig sequeces. The use your descriptio to write a formula for the th term

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS TUTORIAL 1 - DIFFERENTIATION Use the elemetary rules of calculus arithmetic to solve problems that ivolve differetiatio

More information

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1).

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1). 6896 Quatum Complexity Theory Sept 23, 2008 Lecturer: Scott Aaroso Lecture 6 Last Time: Quatum Error-Correctio Quatum Query Model Deutsch-Jozsa Algorithm (Computes x y i oe query) Today: Berstei-Vazirii

More information

On the Linear Complexity of Feedback Registers

On the Linear Complexity of Feedback Registers O the Liear Complexity of Feedback Registers A. H. Cha M. Goresky A. Klapper Northeaster Uiversity Abstract I this paper, we study sequeces geerated by arbitrary feedback registers (ot ecessarily feedback

More information

Math 140A Elementary Analysis Homework Questions 3-1

Math 140A Elementary Analysis Homework Questions 3-1 Math 0A Elemetary Aalysis Homework Questios -.9 Limits Theorems for Sequeces Suppose that lim x =, lim y = 7 ad that all y are o-zero. Detarime the followig limits: (a) lim(x + y ) (b) lim y x y Let s

More information

On Nonsingularity of Saddle Point Matrices. with Vectors of Ones

On Nonsingularity of Saddle Point Matrices. with Vectors of Ones Iteratioal Joural of Algebra, Vol. 2, 2008, o. 4, 197-204 O Nosigularity of Saddle Poit Matrices with Vectors of Oes Tadeusz Ostrowski Istitute of Maagemet The State Vocatioal Uiversity -400 Gorzów, Polad

More information

Fourier Series and the Wave Equation

Fourier Series and the Wave Equation Fourier Series ad the Wave Equatio We start with the oe-dimesioal wave equatio u u =, x u(, t) = u(, t) =, ux (,) = f( x), u ( x,) = This represets a vibratig strig, where u is the displacemet of the strig

More information

Math 609/597: Cryptography 1

Math 609/597: Cryptography 1 Math 609/597: Cryptography 1 The Solovay-Strasse Primality Test 12 October, 1993 Burt Roseberg Revised: 6 October, 2000 1 Itroductio We describe the Solovay-Strasse primality test. There is quite a bit

More information

Students will calculate quantities that involve positive and negative rational exponents.

Students will calculate quantities that involve positive and negative rational exponents. : Ratioal Expoets What are ad? Studet Outcomes Studets will calculate quatities that ivolve positive ad egative ratioal expoets. Lesso Notes Studets exted their uderstadig of iteger expoets to ratioal

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

POWER SERIES SOLUTION OF FIRST ORDER MATRIX DIFFERENTIAL EQUATIONS

POWER SERIES SOLUTION OF FIRST ORDER MATRIX DIFFERENTIAL EQUATIONS Joural of Applied Mathematics ad Computatioal Mechaics 4 3(3) 3-8 POWER SERIES SOLUION OF FIRS ORDER MARIX DIFFERENIAL EQUAIONS Staisław Kukla Izabela Zamorska Istitute of Mathematics Czestochowa Uiversity

More information

Topic 9 - Taylor and MacLaurin Series

Topic 9 - Taylor and MacLaurin Series Topic 9 - Taylor ad MacLauri Series A. Taylors Theorem. The use o power series is very commo i uctioal aalysis i act may useul ad commoly used uctios ca be writte as a power series ad this remarkable result

More information

Fast Power Flow Methods 1.0 Introduction

Fast Power Flow Methods 1.0 Introduction Fast ower Flow Methods. Itroductio What we have leared so far is the so-called full- ewto-raphso R power flow alorithm. The R alorithm is perhaps the most robust alorithm i the sese that it is most liely

More information

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm 8.409 A Algorithmist s Toolkit Nov. 9, 2009 Lecturer: Joatha Keler Lecture 20 Brief Review of Gram-Schmidt ad Gauss s Algorithm Our mai task of this lecture is to show a polyomial time algorithm which

More information

Appendix F: Complex Numbers

Appendix F: Complex Numbers Appedix F Complex Numbers F1 Appedix F: Complex Numbers Use the imagiary uit i to write complex umbers, ad to add, subtract, ad multiply complex umbers. Fid complex solutios of quadratic equatios. Write

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Basic Sets. Functions. MTH299 - Examples. Example 1. Let S = {1, {2, 3}, 4}. Indicate whether each statement is true or false. (a) S = 4. (e) 2 S.

Basic Sets. Functions. MTH299 - Examples. Example 1. Let S = {1, {2, 3}, 4}. Indicate whether each statement is true or false. (a) S = 4. (e) 2 S. Basic Sets Example 1. Let S = {1, {2, 3}, 4}. Idicate whether each statemet is true or false. (a) S = 4 (b) {1} S (c) {2, 3} S (d) {1, 4} S (e) 2 S. (f) S = {1, 4, {2, 3}} (g) S Example 2. Compute the

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information

Poisson s remarkable calculation - a method or a trick?

Poisson s remarkable calculation - a method or a trick? Poisso s remarkable calculatio - a method or a trick? Deis Bell 1 Departmet of Mathematics, Uiversity of North Florida 1 UNF Drive, Jacksoville, FL 34, U. S. A. email: dbell@uf.edu The Gaussia fuctio e

More information

SOLVING LINEAR RECURSIONS OVER ALL FIELDS

SOLVING LINEAR RECURSIONS OVER ALL FIELDS SOLVING LINEAR RECURSIONS OVER ALL FIELDS KEITH CONRAD 1. Itroductio A sequece {a } = a 0, a 1, a,... i a field K satisfies a liear recursio if there are c 1,..., c d K such that 1.1 a = c 1 a 1 + c a

More information

Automated Proofs for Some Stirling Number Identities

Automated Proofs for Some Stirling Number Identities Autoated Proofs for Soe Stirlig Nuber Idetities Mauel Kauers ad Carste Scheider Research Istitute for Sybolic Coputatio Johaes Kepler Uiversity Altebergerstraße 69 A4040 Liz, Austria Subitted: Sep 1, 2007;

More information

A representation approach to the tower of Hanoi problem

A representation approach to the tower of Hanoi problem Uiversity of Wollogog Research Olie Departmet of Computig Sciece Workig Paper Series Faculty of Egieerig ad Iformatio Scieces 98 A represetatio approach to the tower of Haoi problem M. C. Er Uiversity

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Introduction to Algorithms 6.046J/18.401J LECTURE 3 Divide and conquer Binary search Powering a number Fibonacci numbers Matrix multiplication

Introduction to Algorithms 6.046J/18.401J LECTURE 3 Divide and conquer Binary search Powering a number Fibonacci numbers Matrix multiplication Itroductio to Algorithms 6.046J/8.40J LECTURE 3 Divide ad coquer Biary search Powerig a umber Fiboacci umbers Matrix multiplicatio Strasse s algorithm VLSI tree layout Prof. Charles E. Leiserso The divide-ad-coquer

More information

f x x c x c x c... x c...

f x x c x c x c... x c... CALCULUS BC WORKSHEET ON POWER SERIES. Derive the Taylor series formula by fillig i the blaks below. 4 5 Let f a a c a c a c a4 c a5 c a c What happes to this series if we let = c? f c so a Now differetiate

More information

6.883: Online Methods in Machine Learning Alexander Rakhlin

6.883: Online Methods in Machine Learning Alexander Rakhlin 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURES 5 AND 6. THE EXPERTS SETTING. EXPONENTIAL WEIGHTS All the algorithms preseted so far halluciate the future values as radom draws ad the perform

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

SINGLE-CHANNEL QUEUING PROBLEMS APPROACH

SINGLE-CHANNEL QUEUING PROBLEMS APPROACH SINGLE-CHANNEL QUEUING ROBLEMS AROACH Abdurrzzag TAMTAM, Doctoral Degree rogramme () Dept. of Telecommuicatios, FEEC, BUT E-mail: xtamta@stud.feec.vutbr.cz Supervised by: Dr. Karol Molár ABSTRACT The paper

More information

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A) REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1 460_0906.qxd //04 :8 PM Page 69 SECTION 9.6 The Ratio ad Root Tests 69 Sectio 9.6 EXPLORATION Writig a Series Oe of the followig coditios guaratees that a series will diverge, two coditios guaratee that

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Math 140A Elementary Analysis Homework Questions 1

Math 140A Elementary Analysis Homework Questions 1 Math 14A Elemetary Aalysis Homewor Questios 1 1 Itroductio 1.1 The Set N of Natural Numbers 1 Prove that 1 2 2 2 2 1 ( 1(2 1 for all atural umbers. 2 Prove that 3 11 (8 5 4 2 for all N. 4 (a Guess a formula

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

Classification of DT signals

Classification of DT signals Comlex exoetial A discrete time sigal may be comlex valued I digital commuicatios comlex sigals arise aturally A comlex sigal may be rereseted i two forms: jarg { z( ) } { } z ( ) = Re { z ( )} + jim {

More information

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A05 Q-BINOMIALS AND THE GREATEST COMMON DIVISOR Keith R. Slavi 8474 SW Chevy Place, Beaverto, Orego 97008, USA slavi@dsl-oly.et Received:

More information

Implicit function theorem

Implicit function theorem Jovo Jaric Implicit fuctio theorem The reader kows that the equatio of a curve i the x - plae ca be expressed F x, =., this does ot ecessaril represet a fuctio. Take, for example F x, = 2x x =. (1 either

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES 11.4 The Compariso Tests I this sectio, we will lear: How to fid the value of a series by comparig it with a kow series. COMPARISON TESTS

More information

A PROOF OF THE TWIN PRIME CONJECTURE AND OTHER POSSIBLE APPLICATIONS

A PROOF OF THE TWIN PRIME CONJECTURE AND OTHER POSSIBLE APPLICATIONS A PROOF OF THE TWI PRIME COJECTURE AD OTHER POSSIBLE APPLICATIOS by PAUL S. BRUCKMA 38 Frot Street, #3 aaimo, BC V9R B8 (Caada) e-mail : pbruckma@hotmail.com ABSTRACT : A elemetary proof of the Twi Prime

More information

CSE 5311 Notes 1: Mathematical Preliminaries

CSE 5311 Notes 1: Mathematical Preliminaries Chapter 1 - Algorithms Computig CSE 5311 Notes 1: Mathematical Prelimiaries Last updated 1/20/18 12:56 PM) Relatioship betwee complexity classes, eg log,, log, 2, 2, etc Chapter 2 - Gettig Started Loop

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information