Massachusetts Institute of Technology

Size: px
Start display at page:

Download "Massachusetts Institute of Technology"

Transcription

1 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) Problem Set 8: Solutios. (a) We cosider a Markov chai with states 0,,, 3,, 5, where state i idicates that there are i shoes available at the frot door i the morig before Oscar leaves o his ru. Now we ca determie the trasitio probabilities. Assumig i shoes are at the frot door before Oscar sets out o his ru, with probability Oscar will retur to the same door from which he set out, ad thus before his ext ru there will still be i shoes at the frot door. Alteratively, with probability Oscar returs to a differet door, ad i this case, with equal probability there will be mi{i +,5} or max{i, 0} shoes at the frot door before his ext ru. These trasitio probabilities are illustrated i the followig Markov chai: (b) Whe there are either 0 or 5 shoes at the frot door, with probability Oscar will leave o his ru from the door with 0 shoes ad hece ru barefooted. To fid the log-term probability of Oscar ruig barefooted, we must fid the steady-state probabilities of beig i states 0 ad 5, π 0 ad π 5, respectively. Note that the steady-state probabilities exist because the chai is recurret ad aperiodic. Sice this is a birth-death process, we ca use the local balace equatios. We have implyig that ad similarly, As π 0 p 0 = π p 0, π = π 0 5 π i =, { P( X t+ = i X t = i, X t = x t,...x = x ) = i = m, 0 i m π 5 =... = π = π 0. it follows that π i = 6 for i = 0,,..., 5. Hece, P(Oscar rus barefooted i the log-term) = (π 0 + π 5 ) =. 6 i=0. (a) Cosider ay possible sequece of values x, x,...,x t, i for X, X,...,X t, ad ote that 0 < i < m P( X t+ = i + X t = i, X t = x t,...x = x ) = i = 0, 0 i = m Page of 8

2 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) { P( X t+ = i X t = i, X t = x t,...x = x ) = 0 < i m, 0 i = 0 P( X t+ = j X t = i, X t = x t,...x = x ) = 0, i j >. As the coditioal probabilities above oly deped o i, where X t = i, it follows that X, X,... satisfy the Markov property. The associated Markov chai is illustrated below. / / / / 0 m - m / / / / (b) Note that Y, Y,... is ot a Markov chai for m >, because does ot equal P(Y t+ = d + Y t = d, Y t = d ) = P(Y t+ = d + Y t = d, Y t = d, Y t = d ) = 0, for 0 < d < m (the idea is that if Y t = d, Y t = d, ad Y t = d, the X t = d, while if Y t = d, ad Y t = d, the X t = d). If, however, we keep track of X t ad Y t, we do have a Markov chai, because for ay possible sequece of pairs of values (x, y ),..., (x t, y t ),(i, i ) for ( X, Y ),..., ( X t, Y t ),( X t, Y t ), P(( X t+, Y t+ ) = (i +, i + ) ( X t, Y t ) = (i, i ),...( X, Y ) = (x, y )) 0 < i = i < m = i = i = 0, 0 otherwise P(( X t+, Y t+ ) = (i, i ) ( X t, Y t ) = (i, i ),...( X, Y ) = (x, y )) { = 0 < i i m, 0 otherwise P(( X t+, Y t+ ) = (i, i ) ( X t, Y t ) = (i, i ),...( X, Y ) = (x, y )) { = i = i = m, 0 otherwise from which it is clear that the coditioal probabilities oly deped o (i, i ), the values of X t ad Y t, respectively. The correspodig Markov chai is illustrated below. Page of 8

3 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) / / / / (0, m) (, m) (m-,m) (m, m) / / / / / / (0, m-) (, m-) (m-, m-) / / / / / (0, ) (, ) / / (0, 0) 3. (a) If m out of idividuals are ifected, the there must be m susceptible idividuals. Each oe of these idividuals will be idepedetly ifected over the course of the day with probability ρ = ( p) m. Thus the umber of ew ifectios, I, will be a biomial radom variable with parameters m ad ρ. That is, ( ) m p I (k) = ρ k ( ρ) m k k = 0,,..., m. k (b) Let the state of the SIS model be the umber of ifected idividuals. For =, the correspodig Markov chai is illustrated below. pq+(- p)(- q) (- q) p(-q) 0 q(- p) q(- q) (c) The oly recurret state is the state with 0 ifected idividuals. (d) Let the state of the SIR model be (S, I), where S is the umber of susceptible idividuals ad I is the umber of ifected idividuals. For =, the correspodig Markov chai is illustrated below. q Page 3 of 8

4 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) (0,0) (, 0) (, 0) q pq (- p)q q (0,) (, ) q(- q) (0,) (- q) p(- q) (- p)(- q) (- q) If oe did ot wish to keep track of the breakdow of susceptible ad recovered idividuals whe o oe was ifected, the three states free of ifectios could be cosolidated ito a sigle state as illustrated below. (,0) q pq (- p)q q (0,) (, ) q(- q) (0,) (- q) p(- q) (- p)(- q) (e) Ay state where the umber of ifected idividuals equals 0 is a recurret state. For =, there are either oe or three recurret states, depedig o the Markov chai draw i part (d).. (a) The process is i state 3 immediately before the first trasitio. After leavig state 3 for the first time, the process caot go back to state 3 agai. Hece J, which represets the umber of trasitios up to ad icludig the trasitio o which the process leaves state 3 for the last time is a geometric radom variable with success probability equal to 0.6. The variace for J is give by: σ p 0 J = = p 9 (- q) Page of 8

5 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) (b) There is a positive probability that we ever eter state ; i.e., P(K < ) <. Hece the expected value of K is. (c) The Markov chai has 3 differet recurret classes. The first recurret class cosists of states {, }, the secod recurret class cosists of state {7} ad the third recurret class cosists of states {, 5, 6}. The probability of gettig absorbed ito the first recurret class startig from the trasiet state 3 is, /0 = /0 + /0 + 3/0 6 which is the probability of trasitio to the first recurret class give there is a chage of 3 state. Similarly, probability of absorptio ito secod ad third recurret classes are 6 ad 6 respectively. Now, we solve the balace equatios withi each recurret class, which give us the probabilities coditioed o gettig absorbed from state 3 to that recurret class. The ucoditioal steady-state probabilities are foud by weighig the coditioal steady-state probabilities by the probability of absorptio to the recurret classes. The first recurret class is a birth-death process. We write the followig equatios ad solve for the coditioal probabilities, deoted by p ad p. p p = p + p = Solvig these equatios, we get p = 3, p = 3. For the secod recurret class, p 7 =. The third recurret class is also a birth-death process, we ca fid the coditioal steady-state probabilities as follows, p = p 5 p 5 = p 6 p + p 5 + p 6 = ad thus, p = 7, p 5 = 7, p 6 = 7. Usig these data, the ucoditioal steady-state probabilities for all the states are foud as follows: π = = π = = π 3 = 0 (trasiet state) 3 π 7 = = 6 π = = 7 6 π 5 = = 7 6 π 6 = = 7 6 Page 5 of 8

6 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) (d) The give coditioal evet, that the process ever eters state, chages the absorptio probabilities to the recurret classes. The probability of gettig absorbed to the first recurret class is, to the secod recurret class is 3, ad to the third recurret class is 0. Hece, the steady state probabilities are give by, π = = 3 π = = 3 6 π 3 = π = π 5 = π 6 = π 7 = = For pedagogical purposes, let us actually draw what the ew Markov chai would look like, give the evet that the process ever eters state. The resultig chai is show below. Let us see how we came up with these trasitio probabilities. / /0 S S S3 / 3/0 9/0 S7 We eed to be careful whe rescalig the ew trasitio probabilities. First of all, it is clear that the probabilities withi the recurret classes {S, S} ad {S7} do t get affected. We also ote that the self loop trasitio probability of the trasiet state S3 does t get chaged either.(this would be true for ay other trasiet state) To see that the self loop probability p 3,3 does t get chaged, we coditio o the evet that we evetually eter S or S7. Let s call the ew self loop probability, q 3,3. The, q 3,3 = P(X = S3 absorbed ito or 7, X 0 = S3) = p 3, 3 P (absorbed ito or 7 X =S3, X 0 =S3) P (absorbed ito or 7 X 0 =S3) p 3, 3 (a 3, +a 3, 7 ) = (a 3 +a 3 7 ) = p 3,3 = 0,, Now, we calculate q 3,7 ad q 3,. q 3,7 = P(X = S7 absorbed ito or 7, X 0 = S3) = 3 p 3, (a 3, +a 3, 7 ) 6 + = = = 0 p 3, 7 P (absorbed ito or 7 X =S7, X 0 =S3) P (absorbed ito or 7 X 0 =S3) Page 6 of 8

7 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) q 3, = P(X = S absorbed ito or 7, X 0 = S3) = p 3, 0 3,, = (a 3 +a 3 7 ) = = p 3, P (absorbed ito or 7 X =S, X 0 =S3) P (absorbed ito or 7 X 0 =S3) Now, we ca calculate the absorptio probabilities of this ew Markov chai. The probability of gettig absorbed ito the recurret class {, }, startig from S3, is 3 0. The probability of gettig absorbed ito the recurret class {7}, startig from 3 = S3, is 3 = + 9. Thus, our calculated absorptio probabilities match the probabilities we 0 0 ituited earlier. The importat thig to take away from this example is that, whe doig problems of this sort, (i.e give we do/do t eter a particular set of recurret classes), it is eccessary to rescale the trasitio probabilities of the ew chai, comig out of ALL the trasiet states. I other words, to fid each of the ew trasitio probabilities, we coditio o the give evet, that we do or do ot eter particular recurret classes. G. a) First let the p ij s be the trasitio probabilities of the Markov chai. The m k+ () = E[R k+ X 0 = ] = E[g(X 0 ) + g(x ) g(x k+ ) X 0 = ] = p i E[g(X 0 ) + g(x ) g(x k+ ) X 0 =, X = i] i= = p i E[g() + g(x ) g(x k+ ) X = i] i= = g() + p i E[g(X ) g(x k+ ) X = i] i= = g() + p i m k (i) i= ad thus i geeral m k+ (c) = g(c) + i= p cim k (i) whe c {,..., }. Note that the third equality simply uses the total expectatio theorem. b) v k+ () = V ar[r k+ X 0 = ] = V ar[g(x 0 ) + g(x ) g(x k+ ) X 0 = ] = V ar[e[g(x 0 ) + g(x ) g(x k+ ) X 0 =, X ]] + Page 7 of 8

8 6.0/6.3: Probabilistic Systems Aalysis (Fall 00) E[V ar[g(x 0 ) + g(x ) g(x k+ ) X 0 =, X ]] = V ar[g() + E[g(X ) g(x k+ ) X 0 =, X ]] + E[V ar[g() + g(x ) g(x k+ ) X 0 =, X ]] = V ar[e[g(x ) g(x k+ ) X 0 =, X ]] + E[V ar[g(x ) g(x k+ ) X 0 =, X ]] = V ar[e[g(x ) g(x k+ ) X ]] + E[V ar[g(x ) g(x k+ ) X ]] = V ar[m k (X )] + E[v k (X )] = E[(m k (X )) ] E[m k (X )] + p i v k (i) i= = p i m k (i) ( p i m k (i)) + p i v k (i) i= i= i= so i geeral v k+ (c) = i= p cim k (i) ( i= p cim k (i)) + i= p civ k (i) whe c {,..., }. Required for 6.3; optioal for 6.0 Page 8 of 8

9 MIT OpeCourseWare / 6.3 Probabilistic Systems Aalysis ad Applied Probability Fall 00 For iformatio about citig these materials or our Terms of Use, visit:

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

6.041/6.431 Spring 2009 Final Exam Thursday, May 21, 1:30-4:30 PM.

6.041/6.431 Spring 2009 Final Exam Thursday, May 21, 1:30-4:30 PM. 6.041/6.431 Sprig 2009 Fial Exam Thursday, May 21, 1:30-4:30 PM. Name: Recitatio Istructor: Questio Part Score Out of 0 2 1 all 18 2 all 24 3 a 4 b 4 c 4 4 a 6 b 6 c 6 5 a 6 b 6 6 a 4 b 4 c 4 d 5 e 5 7

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 3 January 29, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 3 January 29, 2003 Prof. Yannis A. Korilis TCOM 5: Networkig Theory & Fudametals Lecture 3 Jauary 29, 23 Prof. Yais A. Korilis 3-2 Topics Markov Chais Discrete-Time Markov Chais Calculatig Statioary Distributio Global Balace Equatios Detailed Balace

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

STAT 350 Handout 19 Sampling Distribution, Central Limit Theorem (6.6)

STAT 350 Handout 19 Sampling Distribution, Central Limit Theorem (6.6) STAT 350 Hadout 9 Samplig Distributio, Cetral Limit Theorem (6.6) A radom sample is a sequece of radom variables X, X 2,, X that are idepedet ad idetically distributed. o This property is ofte abbreviated

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 5

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 5 M&E 321 prig 12-13 tochastic ystems Jue 1, 2013 Prof. Peter W. Gly Page 1 of 5 ectio 6: Harris Recurrece Cotets 6.1 Harris Recurret Markov Chais............................. 1 6.2 tochastic Lyapuov Fuctios..............................

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Series III. Chapter Alternating Series

Series III. Chapter Alternating Series Chapter 9 Series III With the exceptio of the Null Sequece Test, all the tests for series covergece ad divergece that we have cosidered so far have dealt oly with series of oegative terms. Series with

More information

Generalized Semi- Markov Processes (GSMP)

Generalized Semi- Markov Processes (GSMP) Geeralized Semi- Markov Processes (GSMP) Summary Some Defiitios Markov ad Semi-Markov Processes The Poisso Process Properties of the Poisso Process Iterarrival times Memoryless property ad the residual

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Markov Decision Processes

Markov Decision Processes Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes

More information

MA131 - Analysis 1. Workbook 9 Series III

MA131 - Analysis 1. Workbook 9 Series III MA3 - Aalysis Workbook 9 Series III Autum 004 Cotets 4.4 Series with Positive ad Negative Terms.............. 4.5 Alteratig Series.......................... 4.6 Geeral Series.............................

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

More information

CS 270 Algorithms. Oliver Kullmann. Growth of Functions. Divide-and- Conquer Min-Max- Problem. Tutorial. Reading from CLRS for week 2

CS 270 Algorithms. Oliver Kullmann. Growth of Functions. Divide-and- Conquer Min-Max- Problem. Tutorial. Reading from CLRS for week 2 Geeral remarks Week 2 1 Divide ad First we cosider a importat tool for the aalysis of algorithms: Big-Oh. The we itroduce a importat algorithmic paradigm:. We coclude by presetig ad aalysig two examples.

More information

September 2012 C1 Note. C1 Notes (Edexcel) Copyright - For AS, A2 notes and IGCSE / GCSE worksheets 1

September 2012 C1 Note. C1 Notes (Edexcel) Copyright   - For AS, A2 notes and IGCSE / GCSE worksheets 1 September 0 s (Edecel) Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2016

SCORE. Exam 2. MA 114 Exam 2 Fall 2016 MA 4 Exam Fall 06 Exam Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Lecture 15: Strong, Conditional, & Joint Typicality

Lecture 15: Strong, Conditional, & Joint Typicality EE376A/STATS376A Iformatio Theory Lecture 15-02/27/2018 Lecture 15: Strog, Coditioal, & Joit Typicality Lecturer: Tsachy Weissma Scribe: Nimit Sohoi, William McCloskey, Halwest Mohammad I this lecture,

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016 subcaptiofot+=small,labelformat=pares,labelsep=space,skip=6pt,list=0,hypcap=0 subcaptio ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, /6/06. Self-cojugate Partitios Recall that, give a partitio λ, we may

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

SNAP Centre Workshop. Basic Algebraic Manipulation

SNAP Centre Workshop. Basic Algebraic Manipulation SNAP Cetre Workshop Basic Algebraic Maipulatio 8 Simplifyig Algebraic Expressios Whe a expressio is writte i the most compact maer possible, it is cosidered to be simplified. Not Simplified: x(x + 4x)

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew Problem ( poits) Evaluate the itegrals Z p x 9 x We ca draw a right triagle labeled this way x p x 9 From this we ca read off x = sec, so = sec ta, ad p x 9 = R ta. Puttig those pieces ito the itegralrwe

More information

Power and Type II Error

Power and Type II Error Statistical Methods I (EXST 7005) Page 57 Power ad Type II Error Sice we do't actually kow the value of the true mea (or we would't be hypothesizig somethig else), we caot kow i practice the type II error

More information

10.6 ALTERNATING SERIES

10.6 ALTERNATING SERIES 0.6 Alteratig Series Cotemporary Calculus 0.6 ALTERNATING SERIES I the last two sectios we cosidered tests for the covergece of series whose terms were all positive. I this sectio we examie series whose

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

REPRESENTING MARKOV CHAINS WITH TRANSITION DIAGRAMS

REPRESENTING MARKOV CHAINS WITH TRANSITION DIAGRAMS Joural o Mathematics ad Statistics, 9 (3): 49-54, 3 ISSN 549-36 3 Sciece Publicatios doi:.38/jmssp.3.49.54 Published Olie 9 (3) 3 (http://www.thescipub.com/jmss.toc) REPRESENTING MARKOV CHAINS WITH TRANSITION

More information

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13 BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Math 113 Exam 4 Practice

Math 113 Exam 4 Practice Math Exam 4 Practice Exam 4 will cover.-.. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Math 2112 Solutions Assignment 5

Math 2112 Solutions Assignment 5 Math 2112 Solutios Assigmet 5 5.1.1 Idicate which of the followig relatioships are true ad which are false: a. Z Q b. R Q c. Q Z d. Z Z Z e. Q R Q f. Q Z Q g. Z R Z h. Z Q Z a. True. Every positive iteger

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Please do NOT write in this box. Multiple Choice. Total

Please do NOT write in this box. Multiple Choice. Total Istructor: Math 0560, Worksheet Alteratig Series Jauary, 3000 For realistic exam practice solve these problems without lookig at your book ad without usig a calculator. Multiple choice questios should

More information

Sequences. Notation. Convergence of a Sequence

Sequences. Notation. Convergence of a Sequence Sequeces A sequece is essetially just a list. Defiitio (Sequece of Real Numbers). A sequece of real umbers is a fuctio Z (, ) R for some real umber. Do t let the descriptio of the domai cofuse you; it

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Curve Sketching Handout #5 Topic Interpretation Rational Functions

Curve Sketching Handout #5 Topic Interpretation Rational Functions Curve Sketchig Hadout #5 Topic Iterpretatio Ratioal Fuctios A ratioal fuctio is a fuctio f that is a quotiet of two polyomials. I other words, p ( ) ( ) f is a ratioal fuctio if p ( ) ad q ( ) are polyomials

More information

Algorithm Analysis. Chapter 3

Algorithm Analysis. Chapter 3 Data Structures Dr Ahmed Rafat Abas Computer Sciece Dept, Faculty of Computer ad Iformatio, Zagazig Uiversity arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Algorithm Aalysis Chapter 3 3. Itroductio

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol Discrete-Evet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.

More information

Queuing Theory. Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues

Queuing Theory. Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues Queuig Theory Basic properties, Markovia models, Networks of queues, Geeral service time distributios, Fiite source models, Multiserver queues Chapter 8 Kedall s Notatio for Queuig Systems A/B/X/Y/Z: A

More information

Math F215: Induction April 7, 2013

Math F215: Induction April 7, 2013 Math F25: Iductio April 7, 203 Iductio is used to prove that a collectio of statemets P(k) depedig o k N are all true. A statemet is simply a mathematical phrase that must be either true or false. Here

More information

CS322: Network Analysis. Problem Set 2 - Fall 2009

CS322: Network Analysis. Problem Set 2 - Fall 2009 Due October 9 009 i class CS3: Network Aalysis Problem Set - Fall 009 If you have ay questios regardig the problems set, sed a email to the course assistats: simlac@staford.edu ad peleato@staford.edu.

More information

+ au n+1 + bu n = 0.)

+ au n+1 + bu n = 0.) Lecture 6 Recurreces - kth order: u +k + a u +k +... a k u k 0 where a... a k are give costats, u 0... u k are startig coditios. (Simple case: u + au + + bu 0.) How to solve explicitly - first, write characteristic

More information

Math 216A Notes, Week 5

Math 216A Notes, Week 5 Math 6A Notes, Week 5 Scribe: Ayastassia Sebolt Disclaimer: These otes are ot early as polished (ad quite possibly ot early as correct) as a published paper. Please use them at your ow risk.. Thresholds

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and Filter bas Separately, the lowpass ad highpass filters are ot ivertible T removes the highest frequecy / ad removes the lowest frequecy Together these filters separate the sigal ito low-frequecy ad high-frequecy

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

COUNTABLE-STATE MARKOV CHAINS

COUNTABLE-STATE MARKOV CHAINS Chapter 5 COUNTABLE-STATE MARKOV CHAINS 5.1 Itroductio ad classificatio of states Markov chais with a coutably-ifiite state space (more briefly, coutable-state Markov chais) exhibit some types of behavior

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Sequeces ad 6 Sequeces Ad SEQUENCES AND SERIES Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives rise to what is called a sequece. Sequeces

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

x a x a Lecture 2 Series (See Chapter 1 in Boas)

x a x a Lecture 2 Series (See Chapter 1 in Boas) Lecture Series (See Chapter i Boas) A basic ad very powerful (if pedestria, recall we are lazy AD smart) way to solve ay differetial (or itegral) equatio is via a series expasio of the correspodig solutio

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

Chapter 6 Overview: Sequences and Numerical Series. For the purposes of AP, this topic is broken into four basic subtopics:

Chapter 6 Overview: Sequences and Numerical Series. For the purposes of AP, this topic is broken into four basic subtopics: Chapter 6 Overview: Sequeces ad Numerical Series I most texts, the topic of sequeces ad series appears, at first, to be a side topic. There are almost o derivatives or itegrals (which is what most studets

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or Topic : Sequeces ad Series A sequece is a ordered list of umbers, e.g.,,, 8, 6, or,,,.... A series is a sum of the terms of a sequece, e.g. + + + 8 + 6 + or... Sigma Notatio b The otatio f ( k) is shorthad

More information

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n.

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n. 0_0905.qxd //0 :7 PM Page SECTION 9.5 Alteratig Series Sectio 9.5 Alteratig Series Use the Alteratig Series Test to determie whether a ifiite series coverges. Use the Alteratig Series Remaider to approximate

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

The coalescent coalescence theory

The coalescent coalescence theory The coalescet coalescece theory Peter Beerli September 1, 009 Historical ote Up to 198 most developmet i populatio geetics was prospective ad developed expectatios based o situatios of today. Most work

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

More information