# Chapter 6 Principles of Data Reduction

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a ukow parameter. Notes:. X deotes the radom variables X, X,, X ad x deotes the sample poits x, x,, x.. A statistic, T ( X ), is a form of summary or data reductio. 3. T ( X) ca be thought of as partitioig the sample space,, i terms of the set of values of the values of T. X i that geerate Three Priciples of Data Reductio. Sufficiecy Priciple: promotes a method of data reductio that does ot discard iformatio about parameter.. Likelihood Priciple: describes a fuctio of the parameter, determied by the observed sample, that cotais all the iformatio about that is available from the sample.

2 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 3. Equivariace Priciple: prescribes a method of data reductio that still preserves some importat features of the model. Sectio 6. Sufficiecy Priciple A sufficiet statistic for a parameter is a statistic that, i a certai sese, captures all the iformatio about cotaied i the sample. Ay additioal iformatio i the sample, besides the value of the sufficiet statistic, does ot cotais ay more iformatio about. Sufficiecy Priciple: If T ( X ) is a sufficiet statistic for, the ay iferece about should deped o the sample X oly through the value of T ( X ). That is, if x ad y are two sample poits such that T( x) T( y ), the the iferece about should be the same whether X=x or X=y is observed. Sectio 6..: Sufficiet Statistics Defiitio 6.. A statistic T ( X ) is a sufficiet statistic for if the coditioal distributio of the sample X give the value of T ( X) does ot deped o. Questio: Is there a simpler way to fid a sufficiet statistic?

3 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Theorem 6.. If p( x ) is the joit pdf or pmf X ad qt ( ) is the the pdf or pmf of T ( X ), the T ( X) is a sufficiet statistic for if, for every x i the sample space, the ratio p( x ) / qt ( ( x ) ) is a costat fuctio of. Proof: P ( X=x T( X) T( x)) P ( X=x) p( x ). P ( T( X) T( x)) p( T( x) ) P ( X=xad T( X) T( x)) P ( T( X) T( x)) Example 6..3 (Biomial sufficiet statistic) Let X,, X be iid Beroulli with parameter,0. Show that T( X) X X is a sufficiet statistic for. p( x ) Solutio: pt ( ( x) ) x x i i ( ) i =/ ( t x ). i i t t t ( ) t Example 6..4 (Normal sufficiet statistic) Let X,, X be iid (, ), where is kow. Show that T( X ) X is a sufficiet statistic for. Solutio: See the textbook. 3

4 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Example (Example of a Statistic that Is Not Sufficiet) Cosider the model of Example 6.. agai with 3. The T X X X3 is sufficiet while T XX X3 is ot sufficiet because: PX (, X 0, X3 XX X3 ) PX (, X 0, X3 ) PX (, X 0, X3 ) PX ( 0, X, X3 0) ( ) ( ). ( ) ( ) ( ) ( ) Example 6..5 (Sufficiet order statistic) Let X,, X be iid from a pdf f ad o other iformatio about f is available. The it follows that Where x() x() x( ) are the order statistics. f ( x ) f ( x ) f ( x ), i i i By Theorem 6.., the order statistics are a sufficiet statistic. Without additioal iformatio about f, we caot have further reductio. () i If f is Cauchy, the order statistics. f x ( ) /[ ( x ) ], or logic, f( x) e /[ e ] ( x) ( x), the most reductio we ca get are 4

5 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Note: Outside the expoetial family of distributios, it is rare to have a sufficiet statistic of smaller dimesio tha the size of the sample ad i may cases order statistics is the best we ca do. Example (Sufficiet Statistic for Poisso Family) Let X,, X be iid Poisso populatio with the parameter 0. The T( X ) X i i is a sufficiet statistic for. Proof: Notice that T has a Poisso distributio with the parameter. Questio: Ca we fid a sufficiet statistic by simple examiatio of the pdf or pmf? Theorem 6..6 (Factorizatio Theorem) Let f ( x ) deote the joit pdf or pmf of a sample X. A statistic T ( X ) is a sufficiet statistic for if ad oly if there exist fuctios gt ( ) ad h( x) such that, for all sample poits x ad all parameter poits, f ( x ) gt ( ( x) ) h( x ). Note: To use the factorizatio Theorem to fid a sufficiet statistic, we factor the joit pdf of the sample ito two parts, with oe part ot depedig o ( h( x )). The other part, the oe that depeds o, usually depeds o the sample X oly through some fuctio T ( X ) ad this fuctio is the sufficiet statistic of. 5

6 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Example 6..7 Let X,, X be iid (, ), where is kow. Show that T( X ) X is a sufficiet statistic for usig the Factorizatio Theorem. Example 6..8 (Uiform sufficiet statistic) Let X,, X be iid from a discrete uiform o,,. Show that T( X ) X max X is a sufficiet statistic for. ( ) i i Example 6..9 (Normal sufficiet statistic, ad ukow) Let X,, X be iid (, ). Show that T X T X T X X S is a sufficiet statistic for ad ( ) ( ( ), ( )) (, ). Note: For a ormal model (, ), X ad S cotai all iformatio about ad. However, if the model is ot ormal, this may ot ecessarily be true. Example (Sufficiet Statistic for Poisso Family) Let X,, X be iid Poisso populatio with the parameter 0. The use the Factorizatio Theorem to show that both sufficiet statistics for. T( X ) X ad i i T( X ) ( X, X ) i i are Questio: Is there a easy way to fid a sufficiet statistic for a expoetial family of distributios? 6

7 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Theorem 6..0 Let X,, X be iid from a pdf or pmf f ( x ) that belogs to a expoetial family give by Where θ (,, d ), d k. The is a sufficiet statistic for θ. f ( x θ) h( x) c( θ)exp( w( ) ( )) i i θ ti x, T( X) ( t ( X ), t ( X ),, t ( X )) j j j j j k j k Note: There ca be more tha oe sufficiet statistic for a give model (e.g., X itself is a sufficiet statistic; ay oe-to-oe fuctio of a sufficiet statistic is a sufficiet statistic). Example (Sufficiet Statistic for Poisso Family) Let X,, X be iid Poisso populatio with the parameter x 0. The f( x ) exp( ) exp( )exp( xlog( )), we have hx ( ) / x!, c( ) exp( ), x! x! w( ) log( ), ad tx ( ) x, so T ( X ) t ( X ) X is a sufficiet statistic for. i i i i Sectio 6..: Miimal Sufficiet Statistics 7

8 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Defiitio 6.. A sufficiet statistic T ( X ) is called miimal sufficiet statistic if, for ay other sufficiet statistic T '( X ), T ( X) is a fuctio of T '( X ). Notes:. The partitio associated with a miimal sufficiet statistic is the coarsest possible partitio for a sufficiet statistic so that it achieves the greatest possible data reductio for a sufficiet statistic.. Miimal sufficiet statistic elimiates all the extraeous iformatio i the sample ad leaves oly that which cotais iformatio about. 3. How to fid the miimal sufficiet statistics? Example 6.. (Two ormal sufficiet statistics) Let X,, X be iid (, ), where is kow. As see i Example 6..9, T '( ) ( X, S ) X is a sufficiet statistic for ( is a kow parameter i this case). However, we ca reduce further T '( X ) by defiig the fuctio rab (, ) aso that if T( ) r( X, S ) X X is a sufficiet statistic for (which we foud from Example 6..7). Note that we have ot show that X is miimal sufficiet for i this case where is kow. 8

9 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Theorem 6..3 Let f ( x ) be the pmf or pdf of a sample X. Suppose there exists a fuctio T ( X ) such that, for every two sample poits x ad y, the ratio of f ( x ) / f ( y ) is costat as a fuctio of if ad oly if T( x) T( y ). The T ( X ) is a miimal sufficiet statistic for. Example 6..4 (Normal miimal sufficiet statistic) Let X,, X be iid (, ), where both ad are ukow. Let x ad y be two sample poits with correspodig sample meas ad variaces Show that ( X, S ) is a miimal sufficiet statistic for (, ). (, S x ) x ad (, S y ) y. Note: If the set of x values o which the pdf or pmf is positive depeds o the parameter, the for the ratio i Theorem 6..3 to be a costat fuctio of, the umerator ad deomiator must be positive for exactly the same values of. Example 6..5 (Uiform miimal sufficiet statistic) Suppose X,, X are iid uiform observatios o the iterval (, ),. Show that T( X) ( X(), X( ) ) is a miimal sufficiet statistic. (I this example, the dimesio of the miimal sufficiet statistic does ot match the dimesio of the parameter.) Note: A miimal sufficiet statistic is ot uique! Ay oe-to-oe fuctio of a miimal sufficiet statistic is also a miimal sufficiet statistic. 9

10 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Illustratios:. Let X,, X be iid uiform observatios o the iterval (, ),. T( X) ( X(), X( ) ) is a miimal sufficiet for. Hece ( X( ) X(),( X( ) X() )/) is also a miimal sufficiet statistic.. Let X,, X be iid (, ), ad are ukow. ( X, S ) is a miimal sufficiet statistic for (, ). Hece, is also miimal sufficiet statistic. ( X, ) i X i i i Questio: Let X,, X be iid uiform observatios o the iterval (, ),. T( X) ( X(), X( ) ) is a miimal sufficiet for, is X( ) X() also a miimal sufficiet statistic? Sectio 6..3 Acillary Statistics Defiitio 6..6 A statistic S( X ) whose distributio does ot deped o the parameter is called a acillary statistic. Example 6..7 (Uiform acillary statistic) Let X,, X be iid uiform observatios o the iterval (, ),. Show that the rage statistic, R X( ) X(), is a acillary statistic. 0

11 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Example 6..8 (Locatio family acillary statistic) Suppose X,, X are iid observatios from a locatio parameter family with cdf F( x ),. Show that the rage statistic, R X( ) X(), is a acillary statistic. Example 6..9 (Scale family acillary statistic) Suppose X,, X are iid observatios from a locatio parameter family with cdf F( x/ ), 0. The ay statistic that depeds o the sample oly through the values X / X,, X / X is a acillary statistic. Note: From Chapter 4 (Example 4.3.6), it was show that if X ad X are iid is Cauchy(0, ). I fact, this also holds for ay 0. (0, ),where, the X / X Sectio 6..4 Sufficiet, Acillary ad Complete Statistics Questio: Is a acillary statistic ot related at all to miimal sufficiet statistic? Recall that if X,, X are iid uiform observatios o the iterval (, ),, the ( X(), X ( ) ) ad ( X( ) X(),( X( ) X() )/) are miimal sufficiet statistics for. But we also kow that R X( ) X() is a acillary statistic. Hece, i this case the miimal sufficiet ad acillary statistics are related.

12 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Questio: Whe is a miimal sufficiet statistic idepedet of every acillary statistic? Defiitio 6.. Let f ( t ) be a family of pdfs ad pmfs for a statistic T ( X ). The family of probability distributios is called complete if EgT ( ) 0 for all implies P ( g( T) 0). Equivaletly, T ( X ) is called a complete statistic. Illustratio: Cosider the family of distributios (,),. If g( X) X, the EgX ( ) EX 0 whe 0 but PgX ( ( ) 0) PX ( 0) 0 sice X is a cotiuous radom variable. So this family of distributios is complete for. Example 6.. (Biomial complete sufficiet statistic) Suppose that T has a biomial( pdistributio, ) with 0 p. Show that T is a complete statistic. Example 6..3 (Uiform complete sufficiet statistic) Let X,, X be iid uiform (0, ),0, observatios. Show that T X( ) is a complete statistic.

13 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Theorem 6..4 (Basu s Theorem) If T ( X ) is a complete ad miimal sufficiet statistic, the T ( X ) is idepedet of every acillary statistic. Note: Basu s Theorem allows us to deduce the idepedece of two statistics without ever fidig the joit distributio of the two statistics. Questio: Is there a easier way to fid a complete statistic? Theorem 6..5 (Complete statistics i the expoetial family) Let X,, X be iid observatios from a expoetial family with pdf or pmf of the form Where (,, k ). The the statistic f ( x θ) h( x) c( θ)exp( wi( θ ) ti( x)), k i j j j j j k j T( X) ( t ( X ), t ( X ),, t ( X )) is complete as log as the parameter space cotais a ope set i k R. Note: The distributio (, ) (recall from Example that this distributio is a member of the curved expoetial family of distributios) does ot cotai a two-dimesioal ope set because it cotais oly poits o the parabola. Hece, this distributio would ot satisfy the coditios of Theorem

14 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 I fact, oe ca fid a fuctio, gt ( ( X)) 0 such that EgT ( ( X )) 0. (Exercise 6.5) A Re-parameterizatio of Expoetial Families (Caoical Form): f ( x ) h ( x ) c ( *)exp( t ( x )), X where hx ( ) ad t ( x) are the same as i the origial parameterizatio. The set k i i k { (,, ): hx ( )exp( t( x)) dx }, which is called the atural parameter space for the family. i i k i i i Example (Re-parameterizatio of the Normal Distributio) Solutio: f ( x, ) exp( )exp( x x ), where / ad /. Defiitio 3.4.7: A Curved expoetial family is a family of desities of the form (3.4.) for which the dimesio of the vector is equal to d k. If d k, the family is a full expoetial family. Example 3.4.8: Normal with mea ad variace. 4

15 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Example 6..6 (Usig Basu s Theorem I) Let X,, X be iid expoetial( ) observatios. Compute Eg( X ) where X g( X) X X. Example 6..7 (Usig Basu s Theorem II) Let X,, X be iid observatios from Basu s Theorem, show that X ad S are idepedet. (, ) populatio. Usig Theorem 6..8 If a miimal sufficiet statistic exists, the ay complete statistic is also miimal sufficiet. Note: A miimal sufficiet statistics may ot be a complete statistic. Example (A miimal sufficiet statistics that is complete) Let X,, X be iid uiform observatios o the iterval (, ),. From example 6..5, we kow that T( X ) ( X(), X( ) ) is a miimal sufficiet statistic. From example 6..7, we kow that R( X ) X( ) X(), is a acillary statistic. I additio, we kow that R( X ) has a beta pdf with ad. Thus we have E ( X( ) X() ) 0, but PX ( ( ) X() 0) 0. So T( ) ( X, X ) X is ot complete. () ( ) 5

16 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Sectio 6.3 Likelihood Priciple I his sectio, we study a specific, importat statistic called the likelihood fuctio that also ca be used to summarize data. Defiitio 6.3. Let f ( x ) deote the joit pdf or pmf of the sample X ( X,, X ). The give that X=x is observed, the fuctio of defied by L( x) f ( x ) is called the likelihood fuctio. Questio: What is the differece betwee the likelihood fuctio ad the pdf (or pmf)? Aswer: They have the same formula. The distictio betwee them is which variable is fixed ad which is varyig. Likelihood Priciple If x ad y are two sample poits such that L( x ) is proportioal to L( y ), i.e., there exists a costat C( x,y ) such that L( x) C( x,y) L( y ), the the coclusios draw from x ad y for should be idetical. Notes: 6

17 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0. Likelihood priciple states that eve if two sample poits have proportioal likelihoods, the they will cotai equivalet iformatio about.. Give two parameter values ad, the likelihood fuctio tells us if is a more plausible (ot probable) parameter value tha i light of the data gathered. 3. Fiducial iferece (Fisher, 930) iterprets likelihood as probabilities for very much like Bayesia iferece. Skip Sectio 6.3. Formal likelihood priciple Example 6.3. (Negative biomial likelihood) Let X have a egative biomial distributio with r 3 ad success probability p. If x is observed, the the likelihood fuctio is the fifth-degree polyomial o 0 p defied by 4 3 L( p ) Pp ( X ) p ( p). I geeral, if X x is observed, the the likelihood fuctio is the polyomial of degree 3 x, 3 x L p x p p x 3 ( ) ( ) x. 7

18 Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Example (Normal fiducial distributio) Let X,, X be iid L (, ), kow. The / ( x) ( ) exp( ( x i ) / ( )) i / ( ) exp{ ( ( x ) ( ) ) / ( )} i i x x / / i i We first ote that C( x,y ) exists if ad oly if x exp( ( x x) / ( ))( / ) exp( ( x) / ( / )). y, i which case i i i i C ( x,y ) exp( ( x x ) /( ) ( y y ) /( )). Thus, the Likelihood Priciple states that the same coclusio about should be draw for ay sample poits satisfyig x y. Secod, up to a costat, L( x ) has a ormal distributio (, / ) x, thus we have x 0.95 P(.96.96) P( x.96 / x.96 / ). / Example (Likelihood Fuctio for Uiform Distributio) Let X,, X be iid uiform (0, ), the the likelihood fuctio is: L( x) I[0 x( ) ]( x,, x ). 8

### 5. Likelihood Ratio Tests

1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

### Unbiased Estimation. February 7-12, 2008

Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

### Statistical Theory MT 2009 Problems 1: Solution sketches

Statistical Theory MT 009 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. (a) Let 0 < θ < ad put f(x, θ) = ( θ)θ x ; x = 0,,,... (b) (c) where

### Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

### Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

### Solutions: Homework 3

Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

### IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (

### The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

### Infinite Sequences and Series

Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

### IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

### Chapter 6 Sampling Distributions

Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

### 62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

### Probability and statistics: basic terms

Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

### MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

### Element sampling: Part 2

Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

### Parameter, Statistic and Random Samples

Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

### Section 11.8: Power Series

Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

### The Random Walk For Dummies

The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

### Statisticians use the word population to refer the total number of (potential) observations under consideration

6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

### The standard deviation of the mean

Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

### Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

### KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

### CHAPTER 5. Theory and Solution Using Matrix Techniques

A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

### 0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

PROBABILITY MODELS 35 10. Discrete probability distributios I this sectio, we discuss several well-ow discrete probability distributios ad study some of their properties. Some of these distributios, lie

### Sampling Distributions, Z-Tests, Power

Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

### Binomial Distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

### Lecture 9: September 19

36-700: Probability ad Mathematical Statistics I Fall 206 Lecturer: Siva Balakrisha Lecture 9: September 9 9. Review ad Outlie Last class we discussed: Statistical estimatio broadly Pot estimatio Bias-Variace

### Monte Carlo Integration

Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

### Seunghee Ye Ma 8: Week 5 Oct 28

Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

### Zeros of Polynomials

Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

### Lesson 10: Limits and Continuity

www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

### Closed book and notes. No calculators. 60 minutes, but essentially unlimited time.

IE 230 Seat # Closed book ad otes. No calculators. 60 miutes, but essetially ulimited time. Cover page, four pages of exam, ad Pages 8 ad 12 of the Cocise Notes. This test covers through Sectio 4.7 of

### Discrete probability distributions

Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

### 7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

### Lecture 1 Probability and Statistics

Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

### Homework for 2/3. 1. Determine the values of the following quantities: a. t 0.1,15 b. t 0.05,15 c. t 0.1,25 d. t 0.05,40 e. t 0.

Name: ID: Homework for /3. Determie the values of the followig quatities: a. t 0.5 b. t 0.055 c. t 0.5 d. t 0.0540 e. t 0.00540 f. χ 0.0 g. χ 0.0 h. χ 0.00 i. χ 0.0050 j. χ 0.990 a. t 0.5.34 b. t 0.055.753

### Topic 18: Composite Hypotheses

Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:

### 4.1 Sigma Notation and Riemann Sums

0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

### 1. By using truth tables prove that, for all statements P and Q, the statement

Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

### This is an introductory course in Analysis of Variance and Design of Experiments.

1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hard-copy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class

### Output Analysis and Run-Length Control

IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad Ru-Legth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%

### Sample questions. 8. Let X denote a continuous random variable with probability density function f(x) = 4x 3 /15 for

Sample questios Suppose that humas ca have oe of three bloodtypes: A, B, O Assume that 40% of the populatio has Type A, 50% has type B, ad 0% has Type O If a perso has type A, the probability that they

### Chapter 13, Part A Analysis of Variance and Experimental Design

Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

### Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

### First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

### Final Examination Solutions 17/6/2010

The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 009-00 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:

### MAS111 Convergence and Continuity

MAS Covergece ad Cotiuity Key Objectives At the ed of the course, studets should kow the followig topics ad be able to apply the basic priciples ad theorems therei to solvig various problems cocerig covergece

### 3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

### DISTRIBUTION LAW Okunev I.V.

1 DISTRIBUTION LAW Okuev I.V. Distributio law belogs to a umber of the most complicated theoretical laws of mathematics. But it is also a very importat practical law. Nothig ca help uderstad complicated

### 4.1 Data processing inequality

ECE598: Iformatio-theoretic methods i high-dimesioal statistics Sprig 206 Lecture 4: Total variatio/iequalities betwee f-divergeces Lecturer: Yihog Wu Scribe: Matthew Tsao, Feb 8, 206 [Ed. Mar 22] Recall

### STAT 516 Answers Homework 6 April 2, 2008 Solutions by Mark Daniel Ward PROBLEMS

STAT 56 Aswers Homework 6 April 2, 28 Solutios by Mark Daiel Ward PROBLEMS Chapter 6 Problems 2a. The mass p(, correspods to either o the irst two balls beig white, so p(, 8 7 4/39. The mass p(, correspods

### Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 6 9/23/203 Browia motio. Itroductio Cotet.. A heuristic costructio of a Browia motio from a radom walk. 2. Defiitio ad basic properties

### Math 140 Introductory Statistics

8.2 Testig a Proportio Math 1 Itroductory Statistics Professor B. Abrego Lecture 15 Sectios 8.2 People ofte make decisios with data by comparig the results from a sample to some predetermied stadard. These

### HOMEWORK #10 SOLUTIONS

Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

### Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

### On an Application of Bayesian Estimation

O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

### Statistical inference: example 1. Inferential Statistics

Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

### Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.

Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios

### Lecture 10 October Minimaxity and least favorable prior sequences

STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

### Lecture 6 Ecient estimators. Rao-Cramer bound.

Lecture 6 Eciet estimators. Rao-Cramer boud. 1 MSE ad Suciecy Let X (X 1,..., X) be a radom sample from distributio f θ. Let θ ˆ δ(x) be a estimator of θ. Let T (X) be a suciet statistic for θ. As we have

### A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

### 1 Inferential Methods for Correlation and Regression Analysis

1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

### STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

### Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

### DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

### Modeling and Performance Analysis with Discrete-Event Simulation

Simulatio Modelig ad Performace Aalysis with Discrete-Evet Simulatio Chapter 5 Statistical Models i Simulatio Cotets Basic Probability Theory Cocepts Useful Statistical Models Discrete Distributios Cotiuous

### STATISTICAL INFERENCE

STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

### Testing Statistical Hypotheses for Compare. Means with Vague Data

Iteratioal Mathematical Forum 5 o. 3 65-6 Testig Statistical Hypotheses for Compare Meas with Vague Data E. Baloui Jamkhaeh ad A. adi Ghara Departmet of Statistics Islamic Azad iversity Ghaemshahr Brach

### Section 14. Simple linear regression.

Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

### Properties and Hypothesis Testing

Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

### A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

### Math 609/597: Cryptography 1

Math 609/597: Cryptography 1 The Solovay-Strasse Primality Test 12 October, 1993 Burt Roseberg Revised: 6 October, 2000 1 Itroductio We describe the Solovay-Strasse primality test. There is quite a bit

### Math 140A Elementary Analysis Homework Questions 1

Math 14A Elemetary Aalysis Homewor Questios 1 1 Itroductio 1.1 The Set N of Natural Numbers 1 Prove that 1 2 2 2 2 1 ( 1(2 1 for all atural umbers. 2 Prove that 3 11 (8 5 4 2 for all N. 4 (a Guess a formula

### sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

### Singular Continuous Measures by Michael Pejic 5/14/10

Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

### 5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0.

40 RODICA D. COSTIN 5. The Rayleigh s priciple ad the i priciple for the eigevalues of a self-adjoit matrix Eigevalues of self-adjoit matrices are easy to calculate. This sectio shows how this is doe usig

### The Sample Variance Formula: A Detailed Study of an Old Controversy

The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace

### (b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

### G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

### Stat 200 -Testing Summary Page 1

Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

### 2.2. Central limit theorem.

36.. Cetral limit theorem. The most ideal case of the CLT is that the radom variables are iid with fiite variace. Although it is a special case of the more geeral Lideberg-Feller CLT, it is most stadard

### BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

### Math 2784 (or 2794W) University of Connecticut

ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

### Large holes in quasi-random graphs

Large holes i quasi-radom graphs Joaa Polcy Departmet of Discrete Mathematics Adam Mickiewicz Uiversity Pozań, Polad joaska@amuedupl Submitted: Nov 23, 2006; Accepted: Apr 10, 2008; Published: Apr 18,

### , then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

### Subject: Differential Equations & Mathematical Modeling-III

Power Series Solutios of Differetial Equatios about Sigular poits Subject: Differetial Equatios & Mathematical Modelig-III Lesso: Power series solutios of differetial equatios about Sigular poits Lesso

### MATH 10550, EXAM 3 SOLUTIONS

MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

### Complex Numbers Solutions

Complex Numbers Solutios Joseph Zoller February 7, 06 Solutios. (009 AIME I Problem ) There is a complex umber with imagiary part 64 ad a positive iteger such that Fid. [Solutio: 697] 4i + + 4i. 4i 4i

### R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

### ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

### Introduction to Probability and Statistics Twelfth Edition

Itroductio to Probability ad Statistics Twelfth Editio Robert J. Beaver Barbara M. Beaver William Medehall Presetatio desiged ad writte by: Barbara M. Beaver Itroductio to Probability ad Statistics Twelfth

### ON POINTWISE BINOMIAL APPROXIMATION

Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

### Eksamen 2006 H Utsatt SENSORVEILEDNING. Problem 1. Settet består av 9 delspørsmål som alle anbefales å telle likt. Svar er gitt i <<.. >>.

Eco 43 Eksame 6 H Utsatt SENSORVEILEDNING Settet består av 9 delspørsmål som alle abefales å telle likt. Svar er gitt i . Problem a. Let the radom variable (rv.) X be expoetially distributed with