Probability and MLE.

Size: px
Start display at page:

Download "Probability and MLE."

Transcription

1 Probability ad MLE

2 (brief) itro to probability

3 Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai (usually deoted by ) - The set of values a radom variable ca take: - A = The stock market will go up this year : Biary - A = Number of Steelers wis i 2015 : Discrete - A = % chage i Google stock i 2015 : Cotiuous

4 Axioms of probability (Kolmogorov s axioms) A variety of useful facts ca be derived from just three axioms: 1. 0 P(A) 1 2. P(true) = 1, P(false) = 0 3. P(A B) = P(A) + P(B) P(A B) There have bee several other attempts to provide a foudatio for probability theory. Kolmogorov s axioms are the most widely used.

5 Priors Degree of belief i a evet i the absece of ay other iformatio No rai Rai P(rai tomorrow) = 0.2 P(o rai tomorrow) = 0.8

6 Coditioal probability P(A = 1 B = 1): The fractio of cases where A is true if B is true P(A = 0.2) P(A B = 0.5)

7 Coditioal probability I some cases, give kowledge of oe or more radom variables we ca improve upo our prior belief of aother radom variable For example: p(slept i movie) = 0.5 p(slept i movie liked movie) = 1/4 p(did t sleep i movie liked movie) = 3/4 Slept Liked

8 Joit distributios The probability that a set of radom variables will take a specific value is their joit distributio. Notatio: P(A B) or P(A,B) Example: P(liked movie, slept) If we assume idepedece the P(A,B)=P(A)P(B) However, i may cases such a assumptio may be too strog (more later i the class)

9 Joit distributio (cot) P(class size > 20) = 0.6 P(summer) = 0.4 P(class size > 20, summer) =? Evaluatio of classes Size Time Eval 30 R 2 70 R 1 12 S 2 8 S 3 56 R 1 24 S 2 10 S 3 23 R 3 9 R 2 45 R 1

10 Joit distributio (cot) P(class size > 20) = 0.6 P(summer) = 0.4 P(class size > 20, summer) = 0.1 Evaluatio of classes Size Time Eval 30 R 2 70 R 1 12 S 2 8 S 3 56 R 1 24 S 2 10 S 3 23 R 3 9 R 2 45 R 1

11 Joit distributio (cot) P(class size > 20) = 0.6 P(eval = 1) = 0.3 P(class size > 20, eval = 1) = 0.3 Size Time Eval 30 R 2 70 R 1 12 S 2 8 S 3 56 R 1 24 S 2 10 S 3 23 R 3 9 R 2 45 R 1

12 Joit distributio (cot) Evaluatio of classes P(class size > 20) = 0.6 P(eval = 1) = 0.3 P(class size > 20, eval = 1) = 0.3 Size Time Eval 30 R 2 70 R 1 12 S 2 8 S 3 56 R 1 24 S 2 10 S 3 23 R 3 9 R 2 45 R 1

13 Chai rule The joit distributio ca be specified i terms of coditioal probability: P(A,B) = P(A B)*P(B) Together with Bayes rule (which is actually derived from it) this is oe of the most powerful rules i probabilistic reasoig

14 Bayes rule Oe of the most importat rules for this class. Derived from the chai rule: P(A,B) = P(A B)P(B) = P(B A)P(A) Thus, P( A B) P( B A) P( A) P( B) Thomas Bayes was a Eglish clergyma who set out his theory of probability i 1764.

15 Bayes rule (cot) Ofte it would be useful to derive the rule a bit further: A A P A B P A P A B P B P A P A B P A B P ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( This results from: P(B) = A P(B,A) A B A B P(B,A=1) P(B,A=0)

16 Recall: Your first cosultig job A billioaire from the suburbs of Seattle asks you a questio: He says: I have a coi, if I flip it, what s the probability it will fall with the head up? You say: Please flip it a few times: You say: The probability is: 3/5 because frequecy of heads i all flips He says: But ca I put moey o this estimate? You say: ummm. Maybe ot. Not eough flips (less tha sample complexity)

17 What about prior kowledge? Billioaire says: Wait, I kow that the coi is close to What ca you do for me ow? You say: I ca lear it the Bayesia way Rather tha estimatig a sigle, we obtai a distributio over possible values of Before data After data 50-50

18 Bayesia Learig Use Bayes rule: Or equivaletly: posterior likelihood prior 18

19 AIDS test (Bayes rule) Data Approximately 0.1% are ifected Test detects all ifectios Test reports positive for 1% healthy people Probability of havig AIDS if test is positive: Oly 9%!... 10

20 AIDS test (Bayes rule) Data Approximately 0.1% are ifected Test detects all ifectios Test reports positive for 1% healthy people Probability of havig AIDS if test is positive: Oly 9%!... 10

21 Prior distributio From where do we get the prior? - Represets expert kowledge (philosophical approach) - Simple posterior form (egieer s approach) Uiformative priors: - Uiform distributio Cojugate priors: - Closed-form represetatio of posterior - P(q) ad P(q D) have the same algebraic form as a fuctio of \theta

22 Cojugate Prior P(q) ad P(q D) have the same form as a fuctio of theta Eg. 1 Coi flip problem Likelihood give Beroulli model: If prior is Beta distributio, The posterior is Beta distributio 22

23 Beta distributio More cocetrated as values of b H, b T icrease

24 Beta cojugate prior As = a H + a T icreases As we get more samples, effect of prior is washed out

25 Cojugate Prior P() ad P( D) have the same form Eg. 2 Dice roll problem (6 outcomes istead of 2) Likelihood is ~ Multiomial( { 1, 2,, k }) If prior is Dirichlet distributio, The posterior is Dirichlet distributio For Multiomial, cojugate prior is Dirichlet distributio.

26 Posterior Distributio The approach see so far is what is kow as a Bayesia approach Prior iformatio ecoded as a distributio over possible values of parameter Usig the Bayes rule, you get a updated posterior distributio over parameters, which you provide with flourish to the Billioaire But the billioaire is ot impressed - Distributio? I just asked for oe umber: is it 3/5, 1/2, what is it? - How do we go from a distributio over parameters, to a sigle estimate of the true parameters?

27 Maximum A Posteriori Estimatio Choose that maximizes a posterior probability MAP estimate of probability of head: Mode of Beta distributio 27

28 Desity estimatio

29 Desity Estimatio A Desity Estimator lears a mappig from a set of attributes to a Probability Iput data for a variable or a set of variables Desity Estimator Probability

30 Desity estimatio Estimate the distributio (or coditioal distributio) of a radom variable Types of variables: - Biary coi flip, alarm - Discrete dice, car model year - Cotiuous height, weight, temp.,

31 Whe do we eed to estimate desities? Desity estimators are critical igrediets i several of the ML algorithms we will discuss I some cases these are combied with other iferece types for more ivolved algorithms (i.e. EM) while i others they are part of a more geeral process (learig i BNs ad HMMs)

32 Desity estimatio Biary ad discrete variables: Cotiuous variables: Easy: Just cout! Harder (but just a bit): Fit a model

33 Learig a desity estimator for discrete variables P ˆ (x u) #records i which x i u i total umber of records A trivial learig algorithm! But why is this true?

34 Maximum Likelihood Priciple We ca defie the likelihood of the data give the model as follows: k1 P ˆ (dataset M) P ˆ (x x x M) P ˆ (x M) 1 2 k For example M is - The probability of head for a coi flip - The probabilities of observig 1,2,3,4 ad 5 for a dice - etc. M is our model (usually a collectio of parameters)

35 Maximum Likelihood Priciple Our goal is to determie the values for the parameters i M We ca do this by maximizig the probability of geeratig the observed samples For example, let be the probabilities for a coi flip The L(x 1,,x ) = p(x 1 ) p(x ) The observatios (differet flips) are assumed to be idepedet For such a coi flip with P(H)=q the best assigmet for h is Why? P ˆ (dataset M) P ˆ (x x x M) P ˆ (x M) 1 2 k argmax q = #H/#samples k1

36 Maximum Likelihood Priciple: Biary variables For a biary radom variable A with P(A=1)=q argmax q = #1/#samples Why? Data likelihood: P( D M ) q (1 q 1 ) 2 We would like to fid: arg max q q (1 q 1 ) 2 Omittig terms that do ot deped o q

37 Data likelihood: We would like to fid: Maximum Likelihood Priciple 2 1 ) (1 ) ( q q M D P 2 1 ) (1 arg max q q q ) (1 0 ) ) (1 ( ) (1 0 ) (1 ) (1 0 ) (1 ) (1 ) ( q q q q q q q q q q q q q q q q q q q q q

38 Log Probabilities Whe workig with products, probabilities of etire datasets ofte get too small. A possible solutio is to use the log of probabilities, ofte termed log likelihood log ˆ P (dataset M) log P ˆ (x M) log P ˆ (x M) k k k1 Maximizig this likelihood fuctio is the same as maximizig P(dataset M) k1 Log values betwee 0 ad 1 I some cases movig to log space would also make computatio easier (for example, removig the expoets)

39 How much do grad studets sleep? Lets try to estimate the distributio of the time studets sped sleepig (outside class).

40 Possible statistics X Sleep time 12 Sleep Mea of X: 10 E{X} 7.03 Variace of X: Frequecy Sleep Var{X} = E{(X-E{X})^2} Hours

41 Covariace: Sleep vs. GPA Co-Variace of X1, X2: Covariace{X1,X2} = E{(X1-E{X1})(X2-E{X2})} = Sleep / GPA 4 GPA 3.5 Sleep / GPA Sleep hours

42 Statistical Models Statistical models attempt to characterize properties of the populatio of iterest For example, we might believe that repeated measuremets follow a ormal (Gaussia) distributio with some mea µ ad variace 2, x ~ N(µ, 2 ) where ( x x ) ( ) e 2 2 p 2 2 ad =(µ, 2 ) defies the parameters (mea ad variace) of the model. 1 2

43 The Parameters of Our Model A statistical model is a collectio of distributios; the parameters specify idividual distributios x ~ N(µ, 2 ) We eed to adjust the parameters so that the resultig distributio fits the data well

44 The Parameters of Our Model A statistical model is a collectio of distributios; the parameters specify idividual distributios x ~ N(µ, 2 ) We eed to adjust the parameters so that the resultig distributio fits the data well

45 Computig the parameters of our model Lets assume a Guassia distributio for our sleep data How do we compute the parameters of the model? 12 Sleep 10 8 Frequecy 6 4 Sleep Hours

46 Maximum Likelihood Priciple We ca fit statistical models by maximizig the probability of geeratig the observed samples: L(x 1,,x ) = p(x 1 ) p(x ) (the samples are assumed to be idepedet) I the Gaussia case we simply set the mea ad the variace to the sample mea ad the sample variace: 1 i 1 xi 2 1 ( i 1 xi ) 2 Why?

47 Desity estimatio Biary ad discrete variables: Cotiuous variables: Easy: Just cout! Harder (but just a bit): Fit a model But what if we oly have very few samples?

48 MLE vs. MAP Maximum Likelihood estimatio (MLE) Choose value that maximizes the probability of observed data Maximum a posteriori (MAP) estimatio Choose value that is most probable give observed data ad prior belief

49 Importat poits Radom variables Chai rule Bayes rule Joit distributio, idepedece, coditioal idepedece MLE

50 Assume we performed coi flips ad used the outcome to lear the probability of heads, defied as q. I the questios below assume that 0 < q < 1 uless stated otherwise. 1. We have performed a additioal coi flip ad leared a ew probability for heads, q1, based o the +1 observatios. The followig holds: a. q1 = q b. q1 q c. it depeds o q ad the value of the ew observatio 2. We have performed two additioal coi flips ad leared a ew probability for heads, q1, based o the +2 observatios. The followig holds: a. q1 = q b. q1 q c. it depeds o q ad the values of the ew observatios 3. Now assume that 0.6 < q < 1. Similar to (2) we have performed two additioal coi flips ad leared a ew probability for heads, q1, based o the +2 observatios. The followig holds: 1. q1 = q 2. q1 q 3. it depeds o q ad the values of the ew observatios

51 Probability Desity Fuctio Discrete distributios Cotiuous: Cumulative Desity Fuctio (CDF): F(a) f(x) a x

52 Total probability Cumulative Desity Fuctios Probability Desity Fuctio (PDF) Properties: F(x)

53 Expectatios Mea/Expected Value: Variace: I geeral:

54 Multivariate Joit for (x,y) Margial: Coditioals: Chai rule:

55 Bayes Rule Stadard form: Replacig the bottom:

56 Biomial Distributio: Mea/Var:

57 Uiform Aythig is equally likely i the regio [a,b] Distributio: Mea/Var a b

58 Gaussia (Normal) If I look at the height of wome i coutry xx, it will look approximately Gaussia Small radom oise errors, look Gaussia/Normal Distributio: Mea/var

59 Why Do People Use Gaussias Cetral Limit Theorem: (loosely) - Sum of a large umber of IID radom variables is approximately Gaussia

60 Multivariate Gaussias Distributio for vector x PDF:

61 Multivariate Gaussias 1 cov( x, x ) ( x )( x ) 1 2 1, i 1 2, i 2 i1

62 Covariace examples Ati-correlated Correlated Idepedet (almost) Covariace: -9.2 Covariace: Covariace: 0.6

63 Sum of Gaussias The sum of two Gaussias is a Gaussia:

Machine Learning.

Machine Learning. 10-701 Machie Learig http://www.cs.cmu.edu/~epxig/class/10701-15f/ Orgaizatioal ifo All up-to-date ifo is o the course web page (follow liks from my page). Istructors - Eric Xig - Ziv Bar-Joseph TAs: See

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Elementary manipulations of probabilities

Elementary manipulations of probabilities Elemetary maipulatios of probabilities Set probability of multi-valued r.v. {=Odd} = +3+5 = /6+/6+/6 = ½ X X,, X i j X i j Multi-variat distributio: Joit probability: X true true X X,, X X i j i j X X

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

10-701: Introduction to Deep Neural Networks Machine Learning.

10-701: Introduction to Deep Neural Networks Machine Learning. 10-701: Introduction to Deep Neural Networks Machine Learning http://www.cs.cmu.edu/~10701 Organizational info All up-to-date info is on the course web page (follow links from my page). Instructors - Nina

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model Back to Maximum Likelihood Give a geerative model f (x, y = k) =π k f k (x) Usig a geerative modellig approach, we assume a parametric form for f k (x) =f (x; k ) ad compute the MLE θ of θ =(π k, k ) k=

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Kurskod: TAMS11 Provkod: TENB 21 March 2015, 14:00-18:00. English Version (no Swedish Version)

Kurskod: TAMS11 Provkod: TENB 21 March 2015, 14:00-18:00. English Version (no Swedish Version) Kurskod: TAMS Provkod: TENB 2 March 205, 4:00-8:00 Examier: Xiagfeg Yag (Tel: 070 2234765). Please aswer i ENGLISH if you ca. a. You are allowed to use: a calculator; formel -och tabellsamlig i matematisk

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Module 1 Fundamentals in statistics

Module 1 Fundamentals in statistics Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

Statisticians use the word population to refer the total number of (potential) observations under consideration

Statisticians use the word population to refer the total number of (potential) observations under consideration 6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

More information

HOMEWORK I: PREREQUISITES FROM MATH 727

HOMEWORK I: PREREQUISITES FROM MATH 727 HOMEWORK I: PREREQUISITES FROM MATH 727 Questio. Let X, X 2,... be idepedet expoetial radom variables with mea µ. (a) Show that for Z +, we have EX µ!. (b) Show that almost surely, X + + X (c) Fid the

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes. Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13 BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Math 36Q Fall 25 Professor Hoh Below is a list of practice questios for the Fial Exam. I would suggest also goig over the practice problems ad exams for Exam ad Exam 2 to

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Topic 8: Expected Values

Topic 8: Expected Values Topic 8: Jue 6, 20 The simplest summary of quatitative data is the sample mea. Give a radom variable, the correspodig cocept is called the distributioal mea, the epectatio or the epected value. We begi

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

STAT Homework 2 - Solutions

STAT Homework 2 - Solutions STAT-36700 Homework - Solutios Fall 08 September 4, 08 This cotais solutios for Homework. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better isight.

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

More information

AAEC/ECON 5126 FINAL EXAM: SOLUTIONS

AAEC/ECON 5126 FINAL EXAM: SOLUTIONS AAEC/ECON 5126 FINAL EXAM: SOLUTIONS SPRING 2015 / INSTRUCTOR: KLAUS MOELTNER This exam is ope-book, ope-otes, but please work strictly o your ow. Please make sure your ame is o every sheet you re hadig

More information

Regression and generalization

Regression and generalization Regressio ad geeralizatio CE-717: Machie Learig Sharif Uiversity of Techology M. Soleymai Fall 2016 Curve fittig: probabilistic perspective Describig ucertaity over value of target variable as a probability

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Solutios to Quiz : Sprig 006 Problem : Each of the followig statemets is either True or False. There will be o partial credit give for the True False questios, thus ay explaatios will ot be graded. Please

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

Overview of Estimation

Overview of Estimation Topic Iferece is the problem of turig data ito kowledge, where kowledge ofte is expressed i terms of etities that are ot preset i the data per se but are preset i models that oe uses to iterpret the data.

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Lecture 3: MLE and Regression

Lecture 3: MLE and Regression STAT/Q SCI 403: Itroductio to Resamplig Methods Sprig 207 Istructor: Ye-Chi Che Lecture 3: MLE ad Regressio 3. Parameters ad Distributios Some distributios are idexed by their uderlyig parameters. Thus,

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

Machine Learning 4771

Machine Learning 4771 Machie Learig 4771 Istructor: Toy Jebara Topic 14 Structurig Probability Fuctios for Storage Structurig Probability Fuctios for Iferece Basic Graphical Models Graphical Models Parameters as Nodes Structurig

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { } UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

More information

BIOSTATISTICS. Lecture 5 Interval Estimations for Mean and Proportion. dr. Petr Nazarov

BIOSTATISTICS. Lecture 5 Interval Estimations for Mean and Proportion. dr. Petr Nazarov Microarray Ceter BIOSTATISTICS Lecture 5 Iterval Estimatios for Mea ad Proportio dr. Petr Nazarov 15-03-013 petr.azarov@crp-sate.lu Lecture 5. Iterval estimatio for mea ad proportio OUTLINE Iterval estimatios

More information

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Some Basic Probability Cocepts 2. Experimets, Outcomes ad Radom Variables A radom variable is a variable whose value is ukow util it is observed. The value of a radom variable results from a experimet;

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

NOTES ON DISTRIBUTIONS

NOTES ON DISTRIBUTIONS NOTES ON DISTRIBUTIONS MICHAEL N KATEHAKIS Radom Variables Radom variables represet outcomes from radom pheomea They are specified by two objects The rage R of possible values ad the frequecy fx with which

More information

CHAPTER 8 FUNDAMENTAL SAMPLING DISTRIBUTIONS AND DATA DESCRIPTIONS. 8.1 Random Sampling. 8.2 Some Important Statistics

CHAPTER 8 FUNDAMENTAL SAMPLING DISTRIBUTIONS AND DATA DESCRIPTIONS. 8.1 Random Sampling. 8.2 Some Important Statistics CHAPTER 8 FUNDAMENTAL SAMPLING DISTRIBUTIONS AND DATA DESCRIPTIONS 8.1 Radom Samplig The basic idea of the statistical iferece is that we are allowed to draw ifereces or coclusios about a populatio based

More information

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen) Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Understanding Samples

Understanding Samples 1 Will Moroe CS 109 Samplig ad Bootstrappig Lecture Notes #17 August 2, 2017 Based o a hadout by Chris Piech I this chapter we are goig to talk about statistics calculated o samples from a populatio. We

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Properties of Joints Chris Piech CS109, Stanford University

Properties of Joints Chris Piech CS109, Stanford University Properties of Joits Chris Piech CS09, Staford Uiversity Titaic Probability 7% of passegers were from the Ottoma Empire Biometric Keystroes Altruism? Scores for a stadardized test that studets i Polad

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Eco 35: Itroductio to Empirical Ecoomics Lecture 3 Discrete Radom Variables ad Probability Distributios Copyright 010 Pearso Educatio, Ic. Publishig as Pretice Hall Ch. 4-1 4.1 Itroductio to Probability

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Pattern Classification

Pattern Classification Patter Classificatio All materials i these slides were tae from Patter Classificatio (d ed) by R. O. Duda, P. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to: STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Chapter 8 Estimatig with Cofidece 8.1 Cofidece Itervals: The Basics 8.2 8.3 Estimatig

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments: Recall: STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Commets:. So far we have estimates of the parameters! 0 ad!, but have o idea how good these estimates are. Assumptio: E(Y x)! 0 +! x (liear coditioal

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1 Parameter Estimatio Samples from a probability distributio F () are: [,,..., ] T.Theprobabilitydistributio has a parameter vector [,,..., m ] T. Estimator: Statistic used to estimate ukow. Estimate: Observed

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information