CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

Size: px
Start display at page:

Download "CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering"

Transcription

1 CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio of all objects or evets it may be discrete (whe there are a fiite umber of possible objects or evets) or cotiuous (whe there are a ifiite umber of possible objects or evets). Two sets are particularly importat. The uiversal set,, is the set of all objects or evets withi the sample space, ad the empty set (or ull set), φ, is the set cotaiig o objects or evets. Ve Diagram A diagram depictig sets i such a way that the area of the sample space is equal to, ad the areas of idividual sets are proportioal to the relative likelihoods of various sets withi the sample space. A example of a Ve diagram showig the sample space,, ad two sets, A ad B, is show below. The sets cotai o commo elemets, therefore, they are cosidered to be idepedet. A B A B Ve diagram with two idepedet sets: (left) mutually exclusive, ad (right) collectively exhaustive. Ve diagrams ca show relatioships betwee sets graphically. Whe sets are ot idepedet, they share elemets; i terms of a Ve diagram, the space occupied by the sets overlap each other. I such cases, we ca defie a set C that cosists of elemets that are i set A or set B as the uio of sets A ad B. We ca also defie a set D that cosists of elemets that are i set A ad set B as the itersectio of sets A ad B. Some useful relatioships betwee sets iclude: A B = B A A B = B A A (B C) = (A B) C A (B C) = (a B) C

2 The upper relatioships are referred to as the commutative laws ad the lower as the associative laws. D = A B C = A U B Notatio for sets usig Ve diagrams: (left) uio of A ad B, ad (right) itersectio of A ad B Other useful idetities/rules, each of which ca easily be checked with the aid of a Ve diagram, iclude: A A = A A A = A A φ = A A φ = φ A = A = A A (B C) = (A B) (A C) A (B C) = (A B) (A C) The complemet of a set is the set of all objects that are ot part of the set, ad is usually idicated by a overbar the complemet of A is A. This gives rise to some additioal idetities: A A = A A = φ A B= A B A B= A B Axioms There are three axioms upo which all of probability theory is based. The axioms of specify properties that probability must have, but do ot say what probability is as Probability a result, there are differet iterpretatios of probability. The axioms are:. The probability, P[A], of evet A has a value betwee 0 ad, i.e. 0 P[A].. The sum of the respective probabilities of each of a set of mutually exclusive ad collectively exhaustive evets {A i } is, i.e. =. 3. The probability that oe or the other of two mutually exclusive evets, A ad B, occur is equal to the sum of their idividual probabilities, i.e. P[A B] = P[A] + P[B]. Ai i

3 The third axiom ca be geeralized to the case of mutually exclusive evets as P[A A A 3 A ] = P[A ] + P[A ] + P[A 3 ] + + P[A ] Most evets are ot mutually exclusive they have some commo poits ad cosequetly overlap i a Ve diagram. Sice Ve diagrams are draw such that the area of the sample space is uity, the area of a set (represetig a evet) is equal to the probability of the evet. O that basis, it is easy to see i the diagram below that P[A B] = P[A] + P[B] P[A B] P[A] P[A B] P[B] Ve diagram showig relatioship betwee area ad probability Coditioal Oe of the most importat cocepts i probability theory is that of coditioal Probability probability, alog with the related cocepts of depedece ad idepedece. The coditioal probability of evet A give evet B, writte as A B, is the probability that evet A occurs give that evet B occurs. For the case show i the Ve diagram immediately above, we ca see that P[A B] = P[A B] / P[B] Two evets are said to be idepedet if P[A B] = P[A] which simply says that the probability of A is the same regardless of B. Evets are depedet if they are t idepedet. Total A very useful result of the defiitio of coditioal probability is aalogous to Probability the chai rule for partial differetiatio. If B, B, B 3,, B is a set of mutually Theorem exclusive ad collectively exhaustive evets, ad A is aother evet that is coditioal o oe or more of the B i, the P[A] = P[A B ] + P[A B ] + P[A B 3 ] + + P[A B ] = P[ A Bi] P[ Bi]

4 This result, kow as the total probability theorem, is illustrated graphically below. B B 3 B 4 A B B 5 Bayes Theorem Usig the total probability theorem, the probability of occurrece of a evet, A, is calculated that probability depeds o other mutually exclusive ad collectively exhaustive evets B i. Sometimes, it is also useful to kow the probability of a evet B i give that A has occurred. From our previous discussio of coditioal probability, we kow that P[A B i ] = P[A B i ] / P[B i ] Similarly, P[B i A] = P[A B i ] / P[A] from which we ca the see that P[A B i ] = P[A B i ] P[B i ] = P[B i A] P[A] The, we ca write the coditioal probability of B i A as PA [ i] P[ i] P[ i ] B B B A = PA [ ] which is kow as Bayes Theorem. Usig the total probability theorem, the deomiator ca be expaded to write Bayes Theorem i the commoly used form PA [ i] P[ i] P[ ] B B Bi A = i PA [ Bi] P[ Bi] Bayes Theorem is ofte applied i cotexts where some series of evets, B i, with estimated probabilities exists ad a evet, A, occurs. Bayes Theorem ca the be used to update the estimated probabilities of evets B i based o the iformatio gaied from evet A. For example, the B i may be radom variables that represet the stregth of a series of layers i a soil profile, ad A might be the results of a set of stregth tests, or the occurrece of a failure. The ew iformatio from the stregth tests or the failure ca be used to improve (i.e. update) the estimated distributios of layer stregths this process is ofte referred to as Bayesia updatig.

5 Radom Variable A radom variable is a quatity that ca take o multiple values, i.e. a quatity whose exact value is ot kow with certaity. A upper case character is geerally used to describe a radom variable; lower case characters are used to describe the values that the radom variable may take. Radom variables ca be divided ito two mai types. Cotiuous radom variables are those tha ca have a ifiite umber of possible values like a perso s height or weight, or the shear stregth of a elemet of soil. Cotiuous radom variables are frequetly described by distributios such as the ormal, logormal, beta, ad expoetial distributios. Discrete radom variables are those that ca take o oly a fiite umber of possible values like the sum of the umbers o two rolled dice or the umber of ladslides i a year. Discrete radom variables are described by distributios such as the biomial ad Poisso distributios. Probability The radomess of a cotiuous radom variable ca be described by a probability Desity desity fuctio, represeted by f (x), ad ofte referred to as a pdf. The pdf is a Fuctio fuctio for which all values are o-egative ad the area uder which is equal to. The pdf does ot directly provide iformatio o probabilities, but it does idicate the ature of the radomess of the variable. The probability of the radom variable,, takig o values betwee two limits, x ad x, is simply equal to the area uder the pdf betwee those limits, i.e. x P[ x< x] = f ( x) dx x Cumulative The radomess of a cotiuous radom variable ca be described i aother way Distributio usig the cumulative distributio fuctio, F (x), ofte referred to as the CDF, Fuctio which is defied as F x ( x) = f ( xdx ) ad is simply the area uder the pdf to the left of x (obviously, the pdf is the derivative of the CDF). Therefore, F (x) = P[ x]. From this, we ca see that the probability of beig betwee two limits, x ad x, is just the differece i the CDF values at x ad x, i.e. P[ x< x] = F ( x) F ( x) Probability Sice discrete radom variables have oly certai values, their relative frequecies Mass of occurrece ca oly be evaluated at those values. Therefore, the radomess of Fuctio a discrete radom variable is described by a probability mass fuctio, represeted by p (x) ad ofte referred to as a PMF. A PMF is ot cotiuous; graphically, it appears as a spiky histogram. However, a cotiuous CDF ca still be defied from a PMF as F (x) = P[ x] = p ( xi) xi x

6 Momets The radomess of a radom variable ca be characterized by a umber of discrete, scalar quatities called momets, which ca be computed from a pdf or PMF. The k th momet of a distributio is defied as m k = i + k x p x f k i for discrete ( xdx ) for cotiuous The first momet (k = ) is the mea, or expected value, of the radom variable, ad is ormally represeted as µ x. Higher momets are geerally take about the mea value, i.e. as k p ( ) for discrete i xi µ x m k = + k ( xi µ x) f ( xdx ) for cotiuous The secod momet is particularly importat it is called the variace, Var() or σ, ad its square root the stadard deviatio, σ. The stadard deviatio is a coveiet measure of dispersio about the mea because it has the same uits as the radom variable itself. Therefore, the variace is computed as p ( ) for discrete i xi µ x σ = + ( xi µ x) f ( xdx ) for cotiuous The coefficiet of variatio, COV, is a useful ormalized (dimesioless) measure of dispersio defied as the ratio of the stadard deviatio to the mea, i.e. COV = σ µ Higher order momets are used less frequetly the third momet describes the skewess (asymmetry) of the distributio, ad the fourth momet describes the kurtosis (sharpess of peak). The skewess coefficiet ad the coefficiet of kurtosis are defied as ad 3 ν = m 3 / σ 4 κ = m 4 / σ respectively.

7 Fuctios Much of what we do i probabilistic aalysis ivolves maipulatig fuctios of of Radom radom variables. The simplest fuctios we ca deal with are liear combiatios Variables of radom variables. If,,, is a set of radom variables ad a, a,, a is a set of costats, aother radom variable, Y, ca be defied as a liear combiatio of the s, i.e. as Y = ai i For this case, the mea ad variace of Y are give by Y µ = aiµ xi i i i j j= i+ Var[ Y ] = avar[ x] + a acov[ i, j] Note that the secod part of the variace equatio drops out if the variables are ucorrelated. Multiple Radom Variables It is ofte ecessary to cosider more tha oe radom variable to formulate a particular problem. The stregth ad stiffess of a elemet of soil may be modeled as separate radom variables, but it is preferable to model their ucertaities joitly sice more iformatio ca be extracted from their joit distributio. If two cotiuous radom variables, ad Y, exist, the joit pdf, f,y (x, y) ca be used to compute the (joit) probability that is betwee x ad x ad Y is betwee y ad y x y P[( x x x ) ( y y y )] = f ( x, y) dxdy Y, x y where f,y (x, y) is the joit probability desity fuctio of ad Y. If the variables are discrete, the joit PMF, p,y (x,y), has the property p,y (x,y) = P[( = x) (Y = y)] The joit CDF for the cotiuous case is the x y F Y, = f Y, ( x, ydxdy ) For the special case i which ad Y are idepedet, the followig relatios (the last two of which are the most importat) hold: f Y (x y) = f (x) F Y (x y) = F (x) f,y (x,y) = f (x) f Y (y) f Y (y x) = f Y (y) F Y (y x) = F Y (y) F,Y (x,y) = F (x) F Y (y) If we defie some radom variable Z to be a fuctio of ad Y, say Z = g(,y), the the mea (or expected value) of Z is

8 µ = E[ g(, Y )] = gxyf (, ) ( x, y) dxdy Z + + Now, however, there are multiple secod momets of a fuctio of multiple variables; for the case of two variables, there are three secod momets of g(,y). The secod momets ca be computed as Cov[, Y] = E[( µ )(Y µ Y )] Y, + + = µ µ Y Y, ( x )( y ) f ( x, ydxdy ) where Cov stads for covariace (ot to be cofused with the previously defied coefficiet of variatio, which the otatio COV is used for). Note that the three secod momets are Cov[, ], Cov[Y, Y], ad Cov[, Y]; the first two are equal to the variaces of ad Y, respectively. Whe there are two or more radom variables, their covariaces are ofte expressed i terms of a covariace matrix, e.g. σ σ σ L σ σ σ σ σ L σ σ C = M M O M σ σ σ σ L σ The degree of correlatio betwee the variables ca also be expressed i dimesioless form by the correlatio coefficiet, defied as Cov(, Y ) ρ Y, = σ σ Y The correlatio coefficiet describes the degree of liear relatioship betwee two variables. The correlatio coefficiet ca rage from - (perfect egative correlatio oe variable icreases while the other decreases, i a liear fashio) to + (perfect positive correlatio both icrease or decrease together, i a liear fashio). A correlatio coefficiet of zero meas that there is o liear relatioship betwee the variables ote that a strog oliear relatioship could still exist. Sometimes, you will see these types of relatioships expressed i terms of a correlatio matrix ρ L, ρ, ρ L, ρ, K = M M O M ρ, ρ L, The oes o the diagoal idicate that a radom variable is perfectly correlated with itself.

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { } UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

4. Basic probability theory

4. Basic probability theory Cotets Basic cocepts Discrete radom variables Discrete distributios (br distributios) Cotiuous radom variables Cotiuous distributios (time distributios) Other radom variables Lect04.ppt S-38.45 - Itroductio

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

NANYANG TECHNOLOGICAL UNIVERSITY SYLLABUS FOR ENTRANCE EXAMINATION FOR INTERNATIONAL STUDENTS AO-LEVEL MATHEMATICS

NANYANG TECHNOLOGICAL UNIVERSITY SYLLABUS FOR ENTRANCE EXAMINATION FOR INTERNATIONAL STUDENTS AO-LEVEL MATHEMATICS NANYANG TECHNOLOGICAL UNIVERSITY SYLLABUS FOR ENTRANCE EXAMINATION FOR INTERNATIONAL STUDENTS AO-LEVEL MATHEMATICS STRUCTURE OF EXAMINATION PAPER. There will be oe 2-hour paper cosistig of 4 questios.

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

What is Probability?

What is Probability? Quatificatio of ucertaity. What is Probability? Mathematical model for thigs that occur radomly. Radom ot haphazard, do t kow what will happe o ay oe experimet, but has a log ru order. The cocept of probability

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13 BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

Module 1 Fundamentals in statistics

Module 1 Fundamentals in statistics Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

The Poisson Process *

The Poisson Process * OpeStax-CNX module: m11255 1 The Poisso Process * Do Johso This work is produced by OpeStax-CNX ad licesed uder the Creative Commos Attributio Licese 1.0 Some sigals have o waveform. Cosider the measuremet

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Some Basic Probability Cocepts 2. Experimets, Outcomes ad Radom Variables A radom variable is a variable whose value is ukow util it is observed. The value of a radom variable results from a experimet;

More information

A PROBABILITY PRIMER

A PROBABILITY PRIMER CARLETON COLLEGE A ROBABILITY RIMER SCOTT BIERMAN (Do ot quote without permissio) A robability rimer INTRODUCTION The field of probability ad statistics provides a orgaizig framework for systematically

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Math 36Q Fall 25 Professor Hoh Below is a list of practice questios for the Fial Exam. I would suggest also goig over the practice problems ad exams for Exam ad Exam 2 to

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

As stated by Laplace, Probability is common sense reduced to calculation.

As stated by Laplace, Probability is common sense reduced to calculation. Note: Hadouts DO NOT replace the book. I most cases, they oly provide a guidelie o topics ad a ituitive feel. The math details will be covered i class, so it is importat to atted class ad also you MUST

More information

CH5. Discrete Probability Distributions

CH5. Discrete Probability Distributions CH5. Discrete Probabilit Distributios Radom Variables A radom variable is a fuctio or rule that assigs a umerical value to each outcome i the sample space of a radom eperimet. Nomeclature: - Capital letters:

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

Notation List. For Cambridge International Mathematics Qualifications. For use from 2020

Notation List. For Cambridge International Mathematics Qualifications. For use from 2020 Notatio List For Cambridge Iteratioal Mathematics Qualificatios For use from 2020 Notatio List for Cambridge Iteratioal Mathematics Qualificatios (For use from 2020) Mathematical otatio Eamiatios for CIE

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object 6.3 Stochastic Estimatio ad Cotrol, Fall 004 Lecture 7 Last time: Momets of the Poisso distributio from its geeratig fuctio. Gs () e dg µ e ds dg µ ( s) µ ( s) µ ( s) µ e ds dg X µ ds X s dg dg + ds ds

More information

Probability, Expectation Value and Uncertainty

Probability, Expectation Value and Uncertainty Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such

More information

Statistical Properties of OLS estimators

Statistical Properties of OLS estimators 1 Statistical Properties of OLS estimators Liear Model: Y i = β 0 + β 1 X i + u i OLS estimators: β 0 = Y β 1X β 1 = Best Liear Ubiased Estimator (BLUE) Liear Estimator: β 0 ad β 1 are liear fuctio of

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

PROBABILITY LOGIC: Part 2

PROBABILITY LOGIC: Part 2 James L Bec 2 July 2005 PROBABILITY LOGIC: Part 2 Axioms for Probability Logic Based o geeral cosideratios, we derived axioms for: Pb ( a ) = measure of the plausibility of propositio b coditioal o the

More information

Statisticians use the word population to refer the total number of (potential) observations under consideration

Statisticians use the word population to refer the total number of (potential) observations under consideration 6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

AMS 216 Stochastic Differential Equations Lecture 02 Copyright by Hongyun Wang, UCSC ( ( )) 2 = E X 2 ( ( )) 2

AMS 216 Stochastic Differential Equations Lecture 02 Copyright by Hongyun Wang, UCSC ( ( )) 2 = E X 2 ( ( )) 2 AMS 216 Stochastic Differetial Equatios Lecture 02 Copyright by Hogyu Wag, UCSC Review of probability theory (Cotiued) Variace: var X We obtai: = E X E( X ) 2 = E( X 2 ) 2E ( X )E X var( X ) = E X 2 Stadard

More information

Lecture 5. Random variable and distribution of probability

Lecture 5. Random variable and distribution of probability Itroductio to theory of probability ad statistics Lecture 5. Radom variable ad distributio of probability prof. dr hab.iż. Katarzya Zarzewsa Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Eco 35: Itroductio to Empirical Ecoomics Lecture 3 Discrete Radom Variables ad Probability Distributios Copyright 010 Pearso Educatio, Ic. Publishig as Pretice Hall Ch. 4-1 4.1 Itroductio to Probability

More information

NOTES ON DISTRIBUTIONS

NOTES ON DISTRIBUTIONS NOTES ON DISTRIBUTIONS MICHAEL N KATEHAKIS Radom Variables Radom variables represet outcomes from radom pheomea They are specified by two objects The rage R of possible values ad the frequecy fx with which

More information

Pb ( a ) = measure of the plausibility of proposition b conditional on the information stated in proposition a. & then using P2

Pb ( a ) = measure of the plausibility of proposition b conditional on the information stated in proposition a. & then using P2 Axioms for Probability Logic Pb ( a ) = measure of the plausibility of propositio b coditioal o the iformatio stated i propositio a For propositios a, b ad c: P: Pb ( a) 0 P2: Pb ( a& b ) = P3: Pb ( a)

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Lecture 4. Random variable and distribution of probability

Lecture 4. Random variable and distribution of probability Itroductio to theory of probability ad statistics Lecture. Radom variable ad distributio of probability dr hab.iż. Katarzya Zarzewsa, prof.agh Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

11 Correlation and Regression

11 Correlation and Regression 11 Correlatio Regressio 11.1 Multivariate Data Ofte we look at data where several variables are recorded for the same idividuals or samplig uits. For example, at a coastal weather statio, we might record

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

5 : Exponential Family and Generalized Linear Models

5 : Exponential Family and Generalized Linear Models 0-708: Probabilistic Graphical Models 0-708, Sprig 206 5 : Expoetial Family ad Geeralized Liear Models Lecturer: Matthew Gormley Scribes: Yua Li, Yichog Xu, Silu Wag Expoetial Family Probability desity

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS Cotets 1. A few useful discrete radom variables 2. Joit, margial, ad

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Understanding Samples

Understanding Samples 1 Will Moroe CS 109 Samplig ad Bootstrappig Lecture Notes #17 August 2, 2017 Based o a hadout by Chris Piech I this chapter we are goig to talk about statistics calculated o samples from a populatio. We

More information

Lecture 10: Mathematical Preliminaries

Lecture 10: Mathematical Preliminaries Lecture : Mathematical Prelimiaries Obective: Reviewig mathematical cocepts ad tools that are frequetly used i the aalysis of algorithms. Lecture # Slide # I this

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

Lesson 11: Simple Linear Regression

Lesson 11: Simple Linear Regression Lesso 11: Simple Liear Regressio Ka-fu WONG December 2, 2004 I previous lessos, we have covered maily about the estimatio of populatio mea (or expected value) ad its iferece. Sometimes we are iterested

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Questions and Answers on Maximum Likelihood

Questions and Answers on Maximum Likelihood Questios ad Aswers o Maximum Likelihood L. Magee Fall, 2008 1. Give: a observatio-specific log likelihood fuctio l i (θ) = l f(y i x i, θ) the log likelihood fuctio l(θ y, X) = l i(θ) a data set (x i,

More information

Modeling and Performance Analysis with Discrete-Event Simulation

Modeling and Performance Analysis with Discrete-Event Simulation Simulatio Modelig ad Performace Aalysis with Discrete-Evet Simulatio Chapter 5 Statistical Models i Simulatio Cotets Basic Probability Theory Cocepts Useful Statistical Models Discrete Distributios Cotiuous

More information

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So,

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So, 0 2. OLS Part II The OLS residuals are orthogoal to the regressors. If the model icludes a itercept, the orthogoality of the residuals ad regressors gives rise to three results, which have limited practical

More information

Sets and Probabilistic Models

Sets and Probabilistic Models ets ad Probabilistic Models Berli Che Departmet of Computer ciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Referece: - D. P. Bertsekas, J. N. Tsitsiklis, Itroductio to Probability, ectios 1.1-1.2

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8)

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8) Elemets of Statistical Methods Lots of Data or Large Samples (Ch 8) Fritz Scholz Sprig Quarter 2010 February 26, 2010 x ad X We itroduced the sample mea x as the average of the observed sample values x

More information

[ ] ( ) ( ) [ ] ( ) 1 [ ] [ ] Sums of Random Variables Y = a 1 X 1 + a 2 X 2 + +a n X n The expected value of Y is:

[ ] ( ) ( ) [ ] ( ) 1 [ ] [ ] Sums of Random Variables Y = a 1 X 1 + a 2 X 2 + +a n X n The expected value of Y is: PROBABILITY FUNCTIONS A radom variable X has a probabilit associated with each of its possible values. The probabilit is termed a discrete probabilit if X ca assume ol discrete values, or X = x, x, x 3,,

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences.

TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences. Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Corrected 3 May ad 4 Jue Solutios TMA445 Statistics Saturday 6 May 9: 3: Problem Sow desity a The probability is.9.5 6x x dx

More information

Outline. L7: Probability Basics. Probability. Probability Theory. Bayes Law for Diagnosis. Which Hypothesis To Prefer? p(a,b) = p(b A) " p(a)

Outline. L7: Probability Basics. Probability. Probability Theory. Bayes Law for Diagnosis. Which Hypothesis To Prefer? p(a,b) = p(b A)  p(a) Outlie L7: Probability Basics CS 344R/393R: Robotics Bejami Kuipers. Bayes Law 2. Probability distributios 3. Decisios uder ucertaity Probability For a propositio A, the probability p(a is your degree

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Basis for simulation techniques

Basis for simulation techniques Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios

More information

Probability and Statistics

Probability and Statistics robability ad Statistics rof. Zheg Zheg Radom Variable A fiite sigle valued fuctio.) that maps the set of all eperimetal outcomes ito the set of real umbers R is a r.v., if the set ) is a evet F ) for

More information

Chapter If n is odd, the median is the exact middle number If n is even, the median is the average of the two middle numbers

Chapter If n is odd, the median is the exact middle number If n is even, the median is the average of the two middle numbers Chapter 4 4-1 orth Seattle Commuity College BUS10 Busiess Statistics Chapter 4 Descriptive Statistics Summary Defiitios Cetral tedecy: The extet to which the data values group aroud a cetral value. Variatio:

More information

Background Information

Background Information Egieerig 33 Gayheart 5-63 1 Beautif ul Homework 5-63 Suppose t h a t whe t h e ph of a c e r t a i c h e m i c a l compoud i s 5.00, t h e ph measured by a radomly s e l e c t e d begiig chemistry studet

More information

Correlation Regression

Correlation Regression Correlatio Regressio While correlatio methods measure the stregth of a liear relatioship betwee two variables, we might wish to go a little further: How much does oe variable chage for a give chage i aother

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

CS161 Handout 05 Summer 2013 July 10, 2013 Mathematical Terms and Identities

CS161 Handout 05 Summer 2013 July 10, 2013 Mathematical Terms and Identities CS161 Hadout 05 Summer 2013 July 10, 2013 Mathematical Terms ad Idetities Thaks to Ady Nguye ad Julie Tibshirai for their advice o this hadout. This hadout covers mathematical otatio ad idetities that

More information