Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Size: px
Start display at page:

Download "Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance"

Transcription

1 Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples? Evaluatio of Performace of Leared h Wat to decide whether to use h or ot: Wat to uderstad the accuracy of the hypothesis leared from a limited-size traiig set. Evaluatio may be part of the ML algorithm itself. Give a hypothesis outperformig aother, how probable is it that this hypothesis is more accurate i geeral? With limited data, how to lear ad also estimate its accuracy? Use of statistical methods to put a boud o the error betwee the estimated ad the true accuracy. 1 2 Issues Lear hypothesis o limited data, ad estimate future accuracy: Trade-off Betwee Bias ad Variace DATA High bias, low variace Low bias, high variace Bias i the estimate: f() f() f() The traiig data is a subset of the istace space, ad may itroduce bias: the estimated error may be differet from the true error. Variace i the estimate: Eve though the estimate may be ubiased, there ca be a large variace i the accuracy over differet test sets. Less parameters less accurate, but variace over differet test sets is reduced. More parameters more accurate, but variace over differet test sets is icreased. Usually, smaller traiig sets lead to larger variace. 3 4

2 Topics Estimatig Hypothesis Accuracy Evaluatig hypotheses (estimate accuracy of a hypothesis). Compare accuracy of two hypotheses. Compare accuracy of two algorithms whe data set is limited. Geeral setup: X: istace space. D: prob. distributio of ecouterig X. Task: Give hypothesis h ad data set of size from distributio D, what is the best estimate of the accuracy of h o future istaces from the same distributio? What is the probable error i the accuracy estimate? 5 6 Probability Distributio of Sample Mea Istace space X S 1 S 2 P() 1 2 Eample of Samplig Distributio of the Mea a X = {1, 2, 3, 4}, ad each umbers are equally likely to occur (i.e., D is a uiform distributio). Let s sample with = 2. From istace space X, draw a small sample set S i of size. For differet sample sets S i, the mea will differ: i 1 X The questios are: S i Is i = X (where X is the true mea over X)? How is i distributed (P (), for { 1, 2,... })? Samples of size 2 Observatio 1st\2d ,1 1,2 1,3 1,4 2 2,1 2,2 2,3 2,4 3 3,1 3,2 3,3 3,4 4 4,1 4,2 4,3 4,4 a From Kachiga (1991) Sample meas Observatio 1st\2d

3 Sample Distributio vs. Samplig Distributio of the Mea 1 5 Samplig Distributio of the Mea Uderlyig distributio with mea ad std σ..8 4 Distributio of sample mea s has mea s = ad std: P().6.4 Freq() 3 2 σ s = σ, Depedig o how you sample your data, your sample mea ca ed up beig differet values. The sample mea has a distributio of its ow cetered at the actual populatio mea ( P ={1,2,3,4} 1 4 = 2.5). ad teds to the ormal distributio as grows. Iterpretatio: Whe you get a particular sample mea s, you kow it is distributed like N (, σ s ). With more samples, σ s reduces, so you re more cofidet about your particular s beig close to the true mea. 9 1 True mea ad sample mea s Sample Error ad True Error Sample error: P() p r s P() s Sample error of hypothesis h based o sample set S of size : error S (h) 1 X δ(f(), h()), S With a particular probability p, s is withi a particular rage r from the true mea. I other words, if you pick ay sample mea s, with the probability p, the true mea is withi the rage r. Give a fied probability p =.95, the rage r is determied by the variace σ s. 11 where f( ) is the target fuctio, ad δ(a, b) = 1 if a = b ad if a b. I other words, error S (h) is the mea error of hypothesis h. True error: True error of hypothesis h is the probability that h will misclassify a sigle eample draw from the distributio D: error D (h) Pr D [f() h()] 12

4 Cofidece Iterval Cofidece Iterval (95%) How good a estimator of error D (h) is provided by error S (h)? Wat to estimate true error based o sample S of eamples accordig to distributio D. h commits r errors: error S (h) = r/. With appro. 95% probability, true error is withi the iterval: r errors (h)(1 error S (h)) error S (h) ± P(X) 1.96 σ Normal distributio with mea ad std σ. 95% of the area lies withi ±1.96σ. Differet costat factors for 99%, etc % X Cofidece Iterval Eample S of size = 4. h committig r = 12 errors. error S (h) = 12/4 =.3 (mea error, or error rate). 95% cofidece iterval:.3 ± 1.96 r.3 (1..3) =.3 ±.14 Note: if is high, eve whe r/ may be the same, the iterval size would reduce Samplig Theory Basics: Summary Radom variable: variable that ca take o values with certai probability. Probability distributio: Pr(Y = y i ). Epected value: E[Y ] = P i y ipr(y = y i ). Variace: V ar(y ) = E[(Y E(Y )) 2 ] = E[Y 2 ] E[Y ] 2. Stadard deviatio: p V ar(y ). Biomial distributio: biary outcome, with probability p of ad (1 p) for 1; Probability of r 1 s with samples. Normal distributio Cetral limit theorem: sum of iid radom variables ted to the ormal distributio. Estimator is a radom variable Y that estimates parameter p. Estimatio bias: E(Y ) p. N% cofidece iterval estimate of p: iterval that icludes true p with N% probability. 16

5 Biomial Distributio: e.g., Coi Toss P(r) Biomial distributio for = 4, p = Outcome itself is described by a radom variable Y {Head, T ail}. P (Y = Head) = p ad P (Y = T ail) = (1 p). Probability of observig r heads out of coi tosses (this value correspods to a radom variable R): Pr(R = r) =! r!( r)! pr (1 p) ( r). Pr(R = r) ca be see as the probability of observig r errors i a sample size of (for biary target categories). 17 Mea ad Variace i Biomical Distributios E[Y ] P i=1 y ipr(y = y i ) = p V ar[y ] E[(Y E[Y ]) 2 ] = p(1 p) Errors, i Terms of Bioomial Distributio error S (h) = r error D = p 18 Estimatio Bias Estimatio bias of a estimator Y for a parameter p is: E[Y ] p Variace i Estimatio error S (h) = r q Std[r] = p(1 p) Std[error S (h)] =» r Std = Std[r] = p p(1 p) = s p(1 p) s error S (h)(1 error S (h)) Normal Distributio Normal distributio with mea, stadard deviatio Mea E[X] =, ad variace V ar[x] = σ 2. Probability desity: p() = 1 2πσ 2 e 1 2 Probability of fallig betwee iterval [a, b]: Z b a p()d 2 σ Cetral limit theorem: sum of a large umber of iid radom variables (the sum itself is a radom variable) teds to Normal. 2

6 Cofidece Iterval i Normal Distributios N% of probability mass i Normal distributios are withi: ± z N σ. That meas, a radomly draw value y will be withi the above iterval with a N% chace. I other words, if you pick ay value y, with N% chace, the mea will be withi the iterval: y ± z N σ. Cofidece Itervals for Differet % % of area (probability) lies i ± 1.28σ N% of area (probability) lies i ± z N σ N%: 5% 68% 8% 9% 95% 98% 99% z N : Calculatig Cofidece Itervals Two-Sided vs. Oe-Sided Bouds 1. Pick parameter p to estimate error D (h) 2. Choose a estimator error S (h) 3. Determie probability distributio that govers estimator Distributio of error S (h) ca be approimated by Normal distributio whe is large 4. Fid iterval (L, U ) such that N% of probability mass falls i the iterval Two-sided: Lower ad upper boud with 1(1 α/2)% cofidece Oe-sided: Lower boud oly (or upper boud oly) with 1(1 α)%. What is the probability that error D (h) is at most U? Use table of z N values 23 24

7 Differece i Error of Two Hypotheses Test h 1 o sample S 1, test h 2 o S 2 1. Pick parameter to estimate 2. Choose a estimator d error D (h 1 ) error D (h 2 ) ˆd error S1 (h 1 ) error S2 (h 2 ) 3. Determie probability distributio that govers estimator v u σ t error S (h 1 1 )(1 error S1 (h 1 )) error S2 (h 2 )(1 error S2 (h 2 )) + ˆd Fid iterval (L, U ) such that N% of probability mass falls i the iterval v uut error S1 (h 1 )(1 error S1 (h 1 )) error S2 (h 2 )(1 error S2 (h 2 )) ˆd±z N Hypothesis Testig What is the prob. that error D (h 1 ) > error D (h 2 )? Eve if error S1 (h 1 ) > error S2 (h 2 ), there is a chace that error D (h 1 ) < error D (h 2 ). E.g., what is the chace of d > whe ˆd =.1 (error S1 (h 1 ) =.3 ad error S2 (h 2 ) =.2)? ˆd < d +.1 = E[ ˆd] +.1 = ˆd +.1 ˆd < d σ ˆd = d z 9% = 1.64 for two-sided iterval, so the chace is 95%. Better to thik how to reject the ull hypothesis: Null hypothesis H : d = Alterative hypothesis H 1 : d > (must esure P (d < ) = ) 26 Paired t-test for Comparig h A ad h B 1. Partitio data ito k disjoit test sets T 1, T 2,..., T k of equal size, where this size is at least For i from 1 to k, do δ i error Ti (h A ) error Ti (h B ) 3. Retur the value δ, where δ 1 kx δ i k i=1 N % cofidece iterval estimate for d: δ ± t N,(k 1) s δ v u 1 kx t (δ s δ i δ) 2 k(k 1) i=1 Note: δ i approimately Normally distributed, ad t differ for differet sample size, as well as %. Comparig learig algorithms L A ad L B What we d like to estimate: E S D [error D (L A (S)) error D (L B (S))] where L(S) is the hypothesis output by learer L usig traiig set S, i.e., the epected differece i true error betwee hypotheses output by learers L A ad L B, whe traied usig radomly selected traiig sets S draw accordig to distributio D. But, give limited data D, what is a good estimator? could partitio D ito traiig set S ad traiig set T, ad measure error T (L A (S )) error T (L B (S )) eve better, repeat this may times ad average the results (et slide) 27 28

8 Comparig learig algorithms L A ad L B 1. Partitio data D ito k disjoit test sets T 1, T 2,..., T k of equal size, where this size is at least For i from 1 to k, do use T i for the test set, ad the remaiig data for traiig set S i S i {D T i } h A L A (S i ) h B L B (S i ) δ i error Ti (h A ) error Ti (h B ) 3. Retur the value δ, where δ 1 k 29 kx i=1 δ i Comparig learig algorithms L A ad L B Notice we d like to use the paired t test o δ to obtai a cofidece iterval, but ot really correct, because the traiig sets i this algorithm are ot idepedet (they overlap!). More correct to view algorithm as producig a estimate of istead of E S D [error D (L A (S)) error D (L B (S))] E S D [error D (L A (S)) error D (L B (S))] but eve this approimatio is better tha o compariso. 3

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 6 Studet Lecture Notes 6-1 Busiess Statistics: A Decisio-Makig Approach 6 th Editio Chapter 6 Itroductio to Samplig Distributios Chap 6-1 Chapter Goals After completig this chapter, you should

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 23 Daiel B. Rowe, Ph.D. Departmet of Mathematics, Statistics, ad Computer Sciece Copyright 2017 by D.B. Rowe 1 Ageda: Recap Chapter 9.1 Lecture Chapter 9.2 Review Exam 6 Problem Solvig Sessio. 2

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Homework 5 Solutions

Homework 5 Solutions Homework 5 Solutios p329 # 12 No. To estimate the chace you eed the expected value ad stadard error. To do get the expected value you eed the average of the box ad to get the stadard error you eed the

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Module 1 Fundamentals in statistics

Module 1 Fundamentals in statistics Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

More information

Sample Size Determination (Two or More Samples)

Sample Size Determination (Two or More Samples) Sample Sie Determiatio (Two or More Samples) STATGRAPHICS Rev. 963 Summary... Data Iput... Aalysis Summary... 5 Power Curve... 5 Calculatios... 6 Summary This procedure determies a suitable sample sie

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to: STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Sampling Distributions, Z-Tests, Power

Sampling Distributions, Z-Tests, Power Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc.

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc. Chapter 22 Comparig Two Proportios Copyright 2010 Pearso Educatio, Ic. Comparig Two Proportios Comparisos betwee two percetages are much more commo tha questios about isolated percetages. Ad they are more

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

(all terms are scalars).the minimization is clearer in sum notation:

(all terms are scalars).the minimization is clearer in sum notation: 7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1

More information

Computing Confidence Intervals for Sample Data

Computing Confidence Intervals for Sample Data Computig Cofidece Itervals for Sample Data Topics Use of Statistics Sources of errors Accuracy, precisio, resolutio A mathematical model of errors Cofidece itervals For meas For variaces For proportios

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

(7 One- and Two-Sample Estimation Problem )

(7 One- and Two-Sample Estimation Problem ) 34 Stat Lecture Notes (7 Oe- ad Two-Sample Estimatio Problem ) ( Book*: Chapter 8,pg65) Probability& Statistics for Egieers & Scietists By Walpole, Myers, Myers, Ye Estimatio 1 ) ( ˆ S P i i Poit estimate:

More information

Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading

Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading Topic 15 - Two Sample Iferece I STAT 511 Professor Bruce Craig Comparig Two Populatios Research ofte ivolves the compariso of two or more samples from differet populatios Graphical summaries provide visual

More information

Lecture 15: Learning Theory: Concentration Inequalities

Lecture 15: Learning Theory: Concentration Inequalities STAT 425: Itroductio to Noparametric Statistics Witer 208 Lecture 5: Learig Theory: Cocetratio Iequalities Istructor: Ye-Chi Che 5. Itroductio Recall that i the lecture o classificatio, we have see that

More information

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 22 Comparig Two Proportios Copyright 2010, 2007, 2004 Pearso Educatio, Ic. Comparig Two Proportios Read the first two paragraphs of pg 504. Comparisos betwee two percetages are much more commo

More information

2 1. The r.s., of size n2, from population 2 will be. 2 and 2. 2) The two populations are independent. This implies that all of the n1 n2

2 1. The r.s., of size n2, from population 2 will be. 2 and 2. 2) The two populations are independent. This implies that all of the n1 n2 Chapter 8 Comparig Two Treatmets Iferece about Two Populatio Meas We wat to compare the meas of two populatios to see whether they differ. There are two situatios to cosider, as show i the followig examples:

More information

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9 BIOS 4110: Itroductio to Biostatistics Brehey Lab #9 The Cetral Limit Theorem is very importat i the realm of statistics, ad today's lab will explore the applicatio of it i both categorical ad cotiuous

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Aalysis ad Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasii/teachig.html Suhasii Subba Rao Review of testig: Example The admistrator of a ursig home wats to do a time ad motio

More information

Understanding Samples

Understanding Samples 1 Will Moroe CS 109 Samplig ad Bootstrappig Lecture Notes #17 August 2, 2017 Based o a hadout by Chris Piech I this chapter we are goig to talk about statistics calculated o samples from a populatio. We

More information

STATS 200: Introduction to Statistical Inference. Lecture 1: Course introduction and polling

STATS 200: Introduction to Statistical Inference. Lecture 1: Course introduction and polling STATS 200: Itroductio to Statistical Iferece Lecture 1: Course itroductio ad pollig U.S. presidetial electio projectios by state (Source: fivethirtyeight.com, 25 September 2016) Pollig Let s try to uderstad

More information

Because it tests for differences between multiple pairs of means in one test, it is called an omnibus test.

Because it tests for differences between multiple pairs of means in one test, it is called an omnibus test. Math 308 Sprig 018 Classes 19 ad 0: Aalysis of Variace (ANOVA) Page 1 of 6 Itroductio ANOVA is a statistical procedure for determiig whether three or more sample meas were draw from populatios with equal

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

More information

HYPOTHESIS TESTS FOR ONE POPULATION MEAN WORKSHEET MTH 1210, FALL 2018

HYPOTHESIS TESTS FOR ONE POPULATION MEAN WORKSHEET MTH 1210, FALL 2018 HYPOTHESIS TESTS FOR ONE POPULATION MEAN WORKSHEET MTH 1210, FALL 2018 We are resposible for 2 types of hypothesis tests that produce ifereces about the ukow populatio mea, µ, each of which has 3 possible

More information

Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y.

Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y. Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad o-users, x - y. Such studies are sometimes viewed

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

Chapter 13, Part A Analysis of Variance and Experimental Design

Chapter 13, Part A Analysis of Variance and Experimental Design Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

More information

Lecture 7: Non-parametric Comparison of Location. GENOME 560 Doug Fowler, GS

Lecture 7: Non-parametric Comparison of Location. GENOME 560 Doug Fowler, GS Lecture 7: No-parametric Compariso of Locatio GENOME 560 Doug Fowler, GS (dfowler@uw.edu) 1 Review How ca we set a cofidece iterval o a proportio? 2 What do we mea by oparametric? 3 Types of Data A Review

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

More information

Lecture 5: Parametric Hypothesis Testing: Comparing Means. GENOME 560, Spring 2016 Doug Fowler, GS

Lecture 5: Parametric Hypothesis Testing: Comparing Means. GENOME 560, Spring 2016 Doug Fowler, GS Lecture 5: Parametric Hypothesis Testig: Comparig Meas GENOME 560, Sprig 2016 Doug Fowler, GS (dfowler@uw.edu) 1 Review from last week What is a cofidece iterval? 2 Review from last week What is a cofidece

More information

Lecture 7: Non-parametric Comparison of Location. GENOME 560, Spring 2016 Doug Fowler, GS

Lecture 7: Non-parametric Comparison of Location. GENOME 560, Spring 2016 Doug Fowler, GS Lecture 7: No-parametric Compariso of Locatio GENOME 560, Sprig 2016 Doug Fowler, GS (dfowler@uw.edu) 1 Review How ca we set a cofidece iterval o a proportio? 2 Review How ca we set a cofidece iterval

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics 8.2 Testig a Proportio Math 1 Itroductory Statistics Professor B. Abrego Lecture 15 Sectios 8.2 People ofte make decisios with data by comparig the results from a sample to some predetermied stadard. These

More information

Chapter 6. Sampling and Estimation

Chapter 6. Sampling and Estimation Samplig ad Estimatio - 34 Chapter 6. Samplig ad Estimatio 6.. Itroductio Frequetly the egieer is uable to completely characterize the etire populatio. She/he must be satisfied with examiig some subset

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Lesson 2. Projects and Hand-ins. Hypothesis testing Chaptre 3. { } x=172.0 = 3.67

Lesson 2. Projects and Hand-ins. Hypothesis testing Chaptre 3. { } x=172.0 = 3.67 Lesso 7--7 Chaptre 3 Projects ad Had-is Project I: latest ovember Project I: latest december Laboratio Measuremet systems aalysis I: latest december Project - are volutary. Laboratio is obligatory. Give

More information

April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE

April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE TERRY SOO Abstract These otes are adapted from whe I taught Math 526 ad meat to give a quick itroductio to cofidece

More information

Big Picture. 5. Data, Estimates, and Models: quantifying the accuracy of estimates.

Big Picture. 5. Data, Estimates, and Models: quantifying the accuracy of estimates. 5. Data, Estimates, ad Models: quatifyig the accuracy of estimates. 5. Estimatig a Normal Mea 5.2 The Distributio of the Normal Sample Mea 5.3 Normal data, cofidece iterval for, kow 5.4 Normal data, cofidece

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

Exam II Covers. STA 291 Lecture 19. Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Location CB 234

Exam II Covers. STA 291 Lecture 19. Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Location CB 234 STA 291 Lecture 19 Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Locatio CB 234 STA 291 - Lecture 19 1 Exam II Covers Chapter 9 10.1; 10.2; 10.3; 10.4; 10.6

More information

STAT 515 fa 2016 Lec Sampling distribution of the mean, part 2 (central limit theorem)

STAT 515 fa 2016 Lec Sampling distribution of the mean, part 2 (central limit theorem) STAT 515 fa 2016 Lec 15-16 Samplig distributio of the mea, part 2 cetral limit theorem Karl B. Gregory Moday, Sep 26th Cotets 1 The cetral limit theorem 1 1.1 The most importat theorem i statistics.............

More information

Chapter 5: Hypothesis testing

Chapter 5: Hypothesis testing Slide 5. Chapter 5: Hypothesis testig Hypothesis testig is about makig decisios Is a hypothesis true or false? Are wome paid less, o average, tha me? Barrow, Statistics for Ecoomics, Accoutig ad Busiess

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Chapter 8 Estimatig with Cofidece 8.1 Cofidece Itervals: The Basics 8.2 8.3 Estimatig

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions Chapter 9 Slide Ifereces from Two Samples 9- Overview 9- Ifereces about Two Proportios 9- Ifereces about Two Meas: Idepedet Samples 9-4 Ifereces about Matched Pairs 9-5 Comparig Variatio i Two Samples

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ),

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ), Cofidece Iterval Estimatio Problems Suppose we have a populatio with some ukow parameter(s). Example: Normal(,) ad are parameters. We eed to draw coclusios (make ifereces) about the ukow parameters. We

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Lecture 5. Materials Covered: Chapter 6 Suggested Exercises: 6.7, 6.9, 6.17, 6.20, 6.21, 6.41, 6.49, 6.52, 6.53, 6.62, 6.63.

Lecture 5. Materials Covered: Chapter 6 Suggested Exercises: 6.7, 6.9, 6.17, 6.20, 6.21, 6.41, 6.49, 6.52, 6.53, 6.62, 6.63. STT 315, Summer 006 Lecture 5 Materials Covered: Chapter 6 Suggested Exercises: 67, 69, 617, 60, 61, 641, 649, 65, 653, 66, 663 1 Defiitios Cofidece Iterval: A cofidece iterval is a iterval believed to

More information

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D.

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D. ample ie Estimatio i the Proportioal Haards Model for K-sample or Regressio ettigs cott. Emerso, M.D., Ph.D. ample ie Formula for a Normally Distributed tatistic uppose a statistic is kow to be ormally

More information

Statistics Lecture 27. Final review. Administrative Notes. Outline. Experiments. Sampling and Surveys. Administrative Notes

Statistics Lecture 27. Final review. Administrative Notes. Outline. Experiments. Sampling and Surveys. Administrative Notes Admiistrative Notes s - Lecture 7 Fial review Fial Exam is Tuesday, May 0th (3-5pm Covers Chapters -8 ad 0 i textbook Brig ID cards to fial! Allowed: Calculators, double-sided 8.5 x cheat sheet Exam Rooms:

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

MBACATÓLICA. Quantitative Methods. Faculdade de Ciências Económicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS

MBACATÓLICA. Quantitative Methods. Faculdade de Ciências Económicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS MBACATÓLICA Quatitative Methods Miguel Gouveia Mauel Leite Moteiro Faculdade de Ciêcias Ecoómicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS MBACatólica 006/07 Métodos Quatitativos

More information

z is the upper tail critical value from the normal distribution

z is the upper tail critical value from the normal distribution Statistical Iferece drawig coclusios about a populatio parameter, based o a sample estimate. Populatio: GRE results for a ew eam format o the quatitative sectio Sample: =30 test scores Populatio Samplig

More information

Common Large/Small Sample Tests 1/55

Common Large/Small Sample Tests 1/55 Commo Large/Small Sample Tests 1/55 Test of Hypothesis for the Mea (σ Kow) Covert sample result ( x) to a z value Hypothesis Tests for µ Cosider the test H :μ = μ H 1 :μ > μ σ Kow (Assume the populatio

More information

ST 305: Exam 3 ( ) = P(A)P(B A) ( ) = P(A) + P(B) ( ) = 1 P( A) ( ) = P(A) P(B) σ X 2 = σ a+bx. σ ˆp. σ X +Y. σ X Y. σ X. σ Y. σ n.

ST 305: Exam 3 ( ) = P(A)P(B A) ( ) = P(A) + P(B) ( ) = 1 P( A) ( ) = P(A) P(B) σ X 2 = σ a+bx. σ ˆp. σ X +Y. σ X Y. σ X. σ Y. σ n. ST 305: Exam 3 By hadig i this completed exam, I state that I have either give or received assistace from aother perso durig the exam period. I have used o resources other tha the exam itself ad the basic

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01 ENGI 44 Cofidece Itervals (Two Samples) Page -0 Two Sample Cofidece Iterval for a Differece i Populatio Meas [Navidi sectios 5.4-5.7; Devore chapter 9] From the cetral limit theorem, we kow that, for sufficietly

More information

Agreement of CI and HT. Lecture 13 - Tests of Proportions. Example - Waiting Times

Agreement of CI and HT. Lecture 13 - Tests of Proportions. Example - Waiting Times Sigificace level vs. cofidece level Agreemet of CI ad HT Lecture 13 - Tests of Proportios Sta102 / BME102 Coli Rudel October 15, 2014 Cofidece itervals ad hypothesis tests (almost) always agree, as log

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

1 Constructing and Interpreting a Confidence Interval

1 Constructing and Interpreting a Confidence Interval Itroductory Applied Ecoometrics EEP/IAS 118 Sprig 2014 WARM UP: Match the terms i the table with the correct formula: Adrew Crae-Droesch Sectio #6 5 March 2014 ˆ Let X be a radom variable with mea µ ad

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

Section 9.2. Tests About a Population Proportion 12/17/2014. Carrying Out a Significance Test H A N T. Parameters & Hypothesis

Section 9.2. Tests About a Population Proportion 12/17/2014. Carrying Out a Significance Test H A N T. Parameters & Hypothesis Sectio 9.2 Tests About a Populatio Proportio P H A N T O M S Parameters Hypothesis Assess Coditios Name the Test Test Statistic (Calculate) Obtai P value Make a decisio State coclusio Sectio 9.2 Tests

More information

STAT431 Review. X = n. n )

STAT431 Review. X = n. n ) STAT43 Review I. Results related to ormal distributio Expected value ad variace. (a) E(aXbY) = aex bey, Var(aXbY) = a VarX b VarY provided X ad Y are idepedet. Normal distributios: (a) Z N(, ) (b) X N(µ,

More information

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain Assigmet 9 Exercise 5.5 Let X biomial, p, where p 0, 1 is ukow. Obtai cofidece itervals for p i two differet ways: a Sice X / p d N0, p1 p], the variace of the limitig distributio depeds oly o p. Use the

More information

Chapter 11: Asking and Answering Questions About the Difference of Two Proportions

Chapter 11: Asking and Answering Questions About the Difference of Two Proportions Chapter 11: Askig ad Aswerig Questios About the Differece of Two Proportios These otes reflect material from our text, Statistics, Learig from Data, First Editio, by Roxy Peck, published by CENGAGE Learig,

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should be doe

More information

STAC51: Categorical data Analysis

STAC51: Categorical data Analysis STAC51: Categorical data Aalysis Mahida Samarakoo Jauary 28, 2016 Mahida Samarakoo STAC51: Categorical data Aalysis 1 / 35 Table of cotets Iferece for Proportios 1 Iferece for Proportios Mahida Samarakoo

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

MATH/STAT 352: Lecture 15

MATH/STAT 352: Lecture 15 MATH/STAT 352: Lecture 15 Sectios 5.2 ad 5.3. Large sample CI for a proportio ad small sample CI for a mea. 1 5.2: Cofidece Iterval for a Proportio Estimatig proportio of successes i a biomial experimet

More information

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen) Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

1 Models for Matched Pairs

1 Models for Matched Pairs 1 Models for Matched Pairs Matched pairs occur whe we aalyse samples such that for each measuremet i oe of the samples there is a measuremet i the other sample that directly relates to the measuremet i

More information

Stat 200 -Testing Summary Page 1

Stat 200 -Testing Summary Page 1 Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

More information

Chapter 23: Inferences About Means

Chapter 23: Inferences About Means Chapter 23: Ifereces About Meas Eough Proportios! We ve spet the last two uits workig with proportios (or qualitative variables, at least) ow it s time to tur our attetios to quatitative variables. For

More information

Inferential Statistics. Inference Process. Inferential Statistics and Probability a Holistic Approach. Inference Process.

Inferential Statistics. Inference Process. Inferential Statistics and Probability a Holistic Approach. Inference Process. Iferetial Statistics ad Probability a Holistic Approach Iferece Process Chapter 8 Poit Estimatio ad Cofidece Itervals This Course Material by Maurice Geraghty is licesed uder a Creative Commos Attributio-ShareAlike

More information

1 Constructing and Interpreting a Confidence Interval

1 Constructing and Interpreting a Confidence Interval Itroductory Applied Ecoometrics EEP/IAS 118 Sprig 2014 WARM UP: Match the terms i the table with the correct formula: Adrew Crae-Droesch Sectio #6 5 March 2014 ˆ Let X be a radom variable with mea µ ad

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

Lecture 5. Random variable and distribution of probability

Lecture 5. Random variable and distribution of probability Itroductio to theory of probability ad statistics Lecture 5. Radom variable ad distributio of probability prof. dr hab.iż. Katarzya Zarzewsa Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

More information