# (all terms are scalars).the minimization is clearer in sum notation:

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1 x 11 x 1 x 1 x 1 x 11 x 1 x 1 1 x X = 1 x x x x ik = x 1 x x x ik 1 x 1 x x x x 1 x x b The regressio coefficiets are B =, the forecast equatio is Ŷ = XB, ad b 1 ' ' the forecast error vector E = ' is give by E = Y XB ' ' ' Least squares approach: choose B to miimize E = E T E = The total sum of squares variace) of Y is SST = y i ' = Y ' T Y ' The residual forecast errors) sum of squares is = E T E = Y XB) T Y XB) = Y T Y Y T XB B T X T Y + B T X T XB all terms are scalars)the miimizatio is clearer i sum otatio:

2 8 = E = y i b l x il l = ' The miimizatio gives the ormal equatios : ' = = y b i b l x il k ) x = ik ' = x T ki y i x T ki b l x il ) =, k =,1,, l = l = X T Y X T XB So, i matrix form, the ormal equatios for the coefficiets are X T XB = X T Y or B = X T X ) 1 X T Y Agai, we separate the total sum of squares SST ito the regressio explaied) sum of squares SSR) ad the error sum of squares ) SST = Y ' T Y ' Y ' = Y Y = Y XB) T Y XB) = Y T Y B T X T Y Y T XB + B T X T XB = = Y T Y Y T XB sice X T XB = X T Y Sice these are all scalars, they are the same as their traspose: Y T XB = Y T XB) T = B T X T Y so that = Y T Y Y T XB = Y T B T X T )Y = E T Y the scalar product of the error ad the predictad) Note prove) that E T Ŷ =, the error is orthogoal to the forecast) SSR = SST - = R SST SST R = is the square of the geeralized correlatio coefficiet SST or explaied variace

3 9 This is a estimate for the depedet sample used for traiig the regressio, so that it is overoptimistic I a idepedet sample, the explaied variace is smaller Note that the aïve forecast error variace = 1 1 i = is seriously 1 biased overoptimistic) This is for two reasos: a) we are usig predictors, ad b) it is the estimate for the depedet traiig) sample The ubiased estimate for the forecast error variace for the depedet sample is s = y i ŷ i ) 1 = 1 This is because the is estimated with --1 dof SST is estimated with -1 dof oe dof was used to compute y ) SSR uses dof for the regressio coefficiets b k, so that is left with --1 dof It is clear that is we use too may predictors, ie, if ~ O) we ca have over fittig If =-1, we ca fit perfectly the depedet sample, so that the aïve depedet sum of errors squared is = However, the estimate of the depedet forecast error squared is i that case s = 1 = So we should ever over fit, ad should keep a umber of predictors such that << Moreover, the regressio coefficiets traied o the depedet sample) also have samplig errors they are oly estimates of the true regressio coefficiets)

4 3 Therefore whe we apply the regressio formula to ew predictors x a idepedet data set), the stadard deviatio of the error is give by ) 1 1+ x T X T X ) 1 x ucertaity icreases with the umber of predictors ucertaity icreases due to errors i the samplig of B whe used with idepedet data For =1 this correctio for idepedet data is x x ) x i x ) ~ 1+ if x is ot far from x Therefore the forecast error for idepedet data is give by the t distributio x T B Ex T B) ) ~ t x T X T X ) 1 x We ca estimate a 11-a) cofidece iterval for predictig Yx ) as Yx ) = x T B ± 1 1+ x T X T X ) 1 x )t a If a=5, we look for values of t 5, 1, 1

5 31 These predictio error estimates are oly estimates A better estimatio of the error is to reserve part of the data for idepedet data testig crossvalidatio) For example, we use 9 of the data to obtai the regressio coefficiets, ad test the forecast o the remaiig 1 I that case this ca be repeated 1 times for differet 1 subsets jackkifig ) This will give a good estimate of the forecast errors to be expected with a idepedet data set, as well as the error variace of the regressio coefficiets Statistical packages provide iformatio ot oly about regressio coefficiets but also about their error estimates usig the formulas above) ad about how sigificatly smaller is the forecast error This is give i aalysis of variace ANOVA) ad parameter error tables ANOVA Source of variace dof Sum of Squares SS) Mea Square MS=SS/dof F ratio test statistic Total -1 SST SST/-1) Regressio SSR SSR/ MSR/MSE Error residual) ) Regressio Summary Predictor Coefficiet Stadard error t-ratio --1) Costat b s b b / s b x k b k s bk b k / s bk If the F ratio is large compared to F 5,, 1 the we reject the ull hypothesis that the coefficiets b k are really zero for the populatio ad that b k due to samplig

### Properties and Hypothesis Testing

Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

### Linear Regression Models

Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

### 1 Inferential Methods for Correlation and Regression Analysis

1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

### Simple Regression. Acknowledgement. These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU) CS 700

Simple Regressio CS 7 Ackowledgemet These slides are based o presetatios created ad copyrighted by Prof. Daiel Measce (GMU) Basics Purpose of regressio aalysis: predict the value of a depedet or respose

### Statistics 20: Final Exam Solutions Summer Session 2007

1. 20 poits Testig for Diabetes. Statistics 20: Fial Exam Solutios Summer Sessio 2007 (a) 3 poits Give estimates for the sesitivity of Test I ad of Test II. Solutio: 156 patiets out of total 223 patiets

### STATISTICAL INFERENCE

STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

### SIMPLE LINEAR REGRESSION AND CORRELATION ANALYSIS

SIMPLE LINEAR REGRESSION AND CORRELATION ANALSIS INTRODUCTION There are lot of statistical ivestigatio to kow whether there is a relatioship amog variables Two aalyses: (1) regressio aalysis; () correlatio

### Stat 200 -Testing Summary Page 1

Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

### Regression. Correlation vs. regression. The parameters of linear regression. Regression assumes... Random sample. Y = α + β X.

Regressio Correlatio vs. regressio Predicts Y from X Liear regressio assumes that the relatioship betwee X ad Y ca be described by a lie Regressio assumes... Radom sample Y is ormally distributed with

### Simple Linear Regression

Simple Liear Regressio 1. Model ad Parameter Estimatio (a) Suppose our data cosist of a collectio of pairs (x i, y i ), where x i is a observed value of variable X ad y i is the correspodig observatio

### MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

### Sampling Distributions, Z-Tests, Power

Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

### Worksheet 23 ( ) Introduction to Simple Linear Regression (continued)

Worksheet 3 ( 11.5-11.8) Itroductio to Simple Liear Regressio (cotiued) This worksheet is a cotiuatio of Discussio Sheet 3; please complete that discussio sheet first if you have ot already doe so. This

### 3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.

3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear

### Question 1: Exercise 8.2

Questio 1: Exercise 8. (a) Accordig to the regressio results i colum (1), the house price is expected to icrease by 1% ( 100% 0.0004 500 ) with a additioal 500 square feet ad other factors held costat.

### Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

### Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

.87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

### 11 Correlation and Regression

11 Correlatio Regressio 11.1 Multivariate Data Ofte we look at data where several variables are recorded for the same idividuals or samplig uits. For example, at a coastal weather statio, we might record

### This is an introductory course in Analysis of Variance and Design of Experiments.

1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hard-copy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class

### Chapter 4 - Summarizing Numerical Data

Chapter 4 - Summarizig Numerical Data 15.075 Cythia Rudi Here are some ways we ca summarize data umerically. Sample Mea: i=1 x i x :=. Note: i this class we will work with both the populatio mea µ ad the

### Sampling, Sampling Distribution and Normality

4/17/11 Tools of Busiess Statistics Samplig, Samplig Distributio ad ormality Preseted by: Mahedra Adhi ugroho, M.Sc Descriptive statistics Collectig, presetig, ad describig data Iferetial statistics Drawig

### Common Large/Small Sample Tests 1/55

Commo Large/Small Sample Tests 1/55 Test of Hypothesis for the Mea (σ Kow) Covert sample result ( x) to a z value Hypothesis Tests for µ Cosider the test H :μ = μ H 1 :μ > μ σ Kow (Assume the populatio

### STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

### Final Examination Solutions 17/6/2010

The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 009-00 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:

### Chapter 1 Simple Linear Regression (part 6: matrix version)

Chapter Simple Liear Regressio (part 6: matrix versio) Overview Simple liear regressio model: respose variable Y, a sigle idepedet variable X Y β 0 + β X + ε Multiple liear regressio model: respose Y,

### Chapter 13, Part A Analysis of Variance and Experimental Design

Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

### A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

### Assessment and Modeling of Forests. FR 4218 Spring Assignment 1 Solutions

Assessmet ad Modelig of Forests FR 48 Sprig Assigmet Solutios. The first part of the questio asked that you calculate the average, stadard deviatio, coefficiet of variatio, ad 9% cofidece iterval of the

### DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

### Statistical inference: example 1. Inferential Statistics

Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

### Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

### Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol Discrete-Evet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.

### Lecture 9: Independent Groups & Repeated Measures t-test

Brittay s ote 4/6/207 Lecture 9: Idepedet s & Repeated Measures t-test Review: Sigle Sample z-test Populatio (o-treatmet) Sample (treatmet) Need to kow mea ad stadard deviatio Problem with this? Sigle

### Section 14. Simple linear regression.

Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

### Solutions to Odd Numbered End of Chapter Exercises: Chapter 4

Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd Numbered Ed of Chapter Exercises: Chapter 4 (This versio July 2, 24) Stock/Watso - Itroductio to Ecoometrics

### The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

### 7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

### MA 575, Linear Models : Homework 3

MA 575, Liear Models : Homework 3 Questio 1 RSS( ˆβ 0, ˆβ 1 ) (ŷ i y i ) Problem.7 Questio.7.1 ( ˆβ 0 + ˆβ 1 x i y i ) (ȳ SXY SXY x + SXX SXX x i y i ) ((ȳ y i ) + SXY SXX (x i x)) (ȳ y i ) SXY SXX SY

### Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

### Math 140 Introductory Statistics

8.2 Testig a Proportio Math 1 Itroductory Statistics Professor B. Abrego Lecture 15 Sectios 8.2 People ofte make decisios with data by comparig the results from a sample to some predetermied stadard. These

### KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

### Basis for simulation techniques

Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios

### Matrix Representation of Data in Experiment

Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

### Exam II Review. CEE 3710 November 15, /16/2017. EXAM II Friday, November 17, in class. Open book and open notes.

Exam II Review CEE 3710 November 15, 017 EXAM II Friday, November 17, i class. Ope book ad ope otes. Focus o material covered i Homeworks #5 #8, Note Packets #10 19 1 Exam II Topics **Will emphasize material

### 1036: Probability & Statistics

036: Probability & Statistics Lecture 0 Oe- ad Two-Sample Tests of Hypotheses 0- Statistical Hypotheses Decisio based o experimetal evidece whether Coffee drikig icreases the risk of cacer i humas. A perso

### NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018)

NYU Ceter for Data Sciece: DS-GA 003 Machie Learig ad Computatioal Statistics (Sprig 208) Brett Berstei, David Roseberg, Be Jakubowski Jauary 20, 208 Istructios: Followig most lab ad lecture sectios, we

### Correlation and Covariance

Correlatio ad Covariace Tom Ilveto FREC 9 What is Next? Correlatio ad Regressio Regressio We specify a depedet variable as a liear fuctio of oe or more idepedet variables, based o co-variace Regressio

### Chapter 1 (Definitions)

FINAL EXAM REVIEW Chapter 1 (Defiitios) Qualitative: Nomial: Ordial: Quatitative: Ordial: Iterval: Ratio: Observatioal Study: Desiged Experimet: Samplig: Cluster: Stratified: Systematic: Coveiece: Simple

### REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

### The standard deviation of the mean

Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

### Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 4

Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd- Numbered Ed- of- Chapter Exercises: Chapter 4 (This versio August 7, 204) 205 Pearso Educatio, Ic. Stock/Watso

### Unit 9 Regression and Correlation

BIOSTATS 540 - Fall 05 Regressio ad Correlatio Page of 44 Uit 9 Regressio ad Correlatio Assume that a statistical model such as a liear model is a good first start oly - Gerald va Belle Is higher blood

### y ij = µ + α i + ɛ ij,

STAT 4 ANOVA -Cotrasts ad Multiple Comparisos /3/04 Plaed comparisos vs uplaed comparisos Cotrasts Cofidece Itervals Multiple Comparisos: HSD Remark Alterate form of Model I y ij = µ + α i + ɛ ij, a i

### Chapter 5: Hypothesis testing

Slide 5. Chapter 5: Hypothesis testig Hypothesis testig is about makig decisios Is a hypothesis true or false? Are wome paid less, o average, tha me? Barrow, Statistics for Ecoomics, Accoutig ad Busiess

### 6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

### REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data

### II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation

II. Descriptive Statistics D. Liear Correlatio ad Regressio I this sectio Liear Correlatio Cause ad Effect Liear Regressio 1. Liear Correlatio Quatifyig Liear Correlatio The Pearso product-momet correlatio

### Successful HE applicants. Information sheet A Number of applicants. Gender Applicants Accepts Applicants Accepts. Age. Domicile

Successful HE applicats Sigificace tests use data from samples to test hypotheses. You will use data o successful applicatios for courses i higher educatio to aswer questios about proportios, for example,

### SALES AND MARKETING Department MATHEMATICS. 2nd Semester. Bivariate statistics LESSONS

SALES AND MARKETING Departmet MATHEMATICS d Semester Bivariate statistics LESSONS Olie documet: http://jff-dut-tc.weebly.com sectio DUT Maths S. IUT de Sait-Etiee Départemet TC J.F.Ferraris Math S StatVar

### Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

### Y i n. i=1. = 1 [number of successes] number of successes = n

Eco 371 Problem Set # Aswer Sheet 3. I this questio, you are asked to cosider a Beroulli radom variable Y, with a success probability P ry 1 p. You are told that you have draws from this distributio ad

### Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n.

CS 189 Itroductio to Machie Learig Sprig 218 Note 11 1 Caoical Correlatio Aalysis The Pearso Correlatio Coefficiet ρ(x, Y ) is a way to measure how liearly related (i other words, how well a liear model

### LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

### 5. A formulae page and two tables are provided at the end of Part A of the examination PART A

Istructios: 1. You have bee provided with: (a) this questio paper (Part A ad Part B) (b) a multiple choice aswer sheet (for Part A) (c) Log Aswer Sheet(s) (for Part B) (d) a booklet of tables. (a) I PART

### STATISTICAL method is one branch of mathematical

40 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL 3, NO, AUGUST 07 Optimizig Forest Samplig by usig Lagrage Multipliers Suhud Wahyudi, Farida Agustii Widjajati ad Dea Oktaviati

### Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y.

Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad o-users, x - y. Such studies are sometimes viewed

### ARIMA Models. Dan Saunders. y t = φy t 1 + ɛ t

ARIMA Models Da Sauders I will discuss models with a depedet variable y t, a potetially edogeous error term ɛ t, ad a exogeous error term η t, each with a subscript t deotig time. With just these three

### Asymptotic Results for the Linear Regression Model

Asymptotic Results for the Liear Regressio Model C. Fli November 29, 2000 1. Asymptotic Results uder Classical Assumptios The followig results apply to the liear regressio model y = Xβ + ε, where X is

### BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

### Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Chapter 6 Studet Lecture Notes 6-1 Busiess Statistics: A Decisio-Makig Approach 6 th Editio Chapter 6 Itroductio to Samplig Distributios Chap 6-1 Chapter Goals After completig this chapter, you should

### Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

### PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

### Section 9.2. Tests About a Population Proportion 12/17/2014. Carrying Out a Significance Test H A N T. Parameters & Hypothesis

Sectio 9.2 Tests About a Populatio Proportio P H A N T O M S Parameters Hypothesis Assess Coditios Name the Test Test Statistic (Calculate) Obtai P value Make a decisio State coclusio Sectio 9.2 Tests

### Statistical Intervals for a Single Sample

3/5/06 Applied Statistics ad Probability for Egieers Sixth Editio Douglas C. Motgomery George C. Ruger Chapter 8 Statistical Itervals for a Sigle Sample 8 CHAPTER OUTLINE 8- Cofidece Iterval o the Mea

### Paired Data and Linear Correlation

Paired Data ad Liear Correlatio Example. A group of calculus studets has take two quizzes. These are their scores: Studet st Quiz Score ( data) d Quiz Score ( data) 7 5 5 0 3 0 3 4 0 5 5 5 5 6 0 8 7 0

### Parameter, Statistic and Random Samples

Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

### IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (

### University of California, Los Angeles Department of Statistics. Hypothesis testing

Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Elemets of a hypothesis test: Hypothesis testig Istructor: Nicolas Christou 1. Null hypothesis, H 0 (claim about µ, p, σ 2, µ

### Statistical Inference About Means and Proportions With Two Populations

Departmet of Quatitative Methods & Iformatio Systems Itroductio to Busiess Statistics QM 220 Chapter 10 Statistical Iferece About Meas ad Proportios With Two Populatios Fall 2010 Dr. Mohammad Zaial 1 Chapter

### Topic 6 Sampling, hypothesis testing, and the central limit theorem

CSE 103: Probability ad statistics Fall 2010 Topic 6 Samplig, hypothesis testig, ad the cetral limit theorem 61 The biomial distributio Let X be the umberofheadswhe acoiofbiaspistossedtimes The distributio

### ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

### TRACEABILITY SYSTEM OF ROCKWELL HARDNESS C SCALE IN JAPAN

HARDMEKO 004 Hardess Measuremets Theory ad Applicatio i Laboratories ad Idustries - November, 004, Washigto, D.C., USA TRACEABILITY SYSTEM OF ROCKWELL HARDNESS C SCALE IN JAPAN Koichiro HATTORI, Satoshi

### Topic 18: Composite Hypotheses

Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:

### ESTIMATION AND PREDICTION BASED ON K-RECORD VALUES FROM NORMAL DISTRIBUTION

STATISTICA, ao LXXIII,. 4, 013 ESTIMATION AND PREDICTION BASED ON K-RECORD VALUES FROM NORMAL DISTRIBUTION Maoj Chacko Departmet of Statistics, Uiversity of Kerala, Trivadrum- 695581, Kerala, Idia M. Shy

### Statistics Revision Solutions

Statistics Revisio Solutios (i) H ~N (00, ) ad W ~N (7, 9 ) P ( 7. 0) 0. 978 P (iii) H + W ~N (7, ) P ( H + W > A) > 0.9 P( H + W < A) < 0.0 A< ivnorm(0.0,

### Statistical Fundamentals and Control Charts

Statistical Fudametals ad Cotrol Charts 1. Statistical Process Cotrol Basics Chace causes of variatio uavoidable causes of variatios Assigable causes of variatio large variatios related to machies, materials,

### Time series models 2007

Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Solutios to problem sheet 1, 2007 Exercise 1.1 a Let Sc = E[Y c 2 ]. The This gives Sc = EY 2 2cEY + c 2 ds dc = 2EY + 2c = 0

### V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany

PROBABILITY AND STATISTICS Vol. III - Correlatio Aalysis - V. Nollau CORRELATION ANALYSIS V. Nollau Istitute of Mathematical Stochastics, Techical Uiversity of Dresde, Germay Keywords: Radom vector, multivariate

### It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

### 1 Constructing and Interpreting a Confidence Interval

Itroductory Applied Ecoometrics EEP/IAS 118 Sprig 2014 WARM UP: Match the terms i the table with the correct formula: Adrew Crae-Droesch Sectio #6 5 March 2014 ˆ Let X be a radom variable with mea µ ad

### The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

### Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

### Session 5. (1) Principal component analysis and Karhunen-Loève transformation

200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

### General IxJ Contingency Tables

page1 Geeral x Cotigecy Tables We ow geeralize our previous results from the prospective, retrospective ad cross-sectioal studies ad the Poisso samplig case to x cotigecy tables. For such tables, the test

### Unbiased Estimation. February 7-12, 2008

Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

### Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Some Basic Probability Cocepts 2. Experimets, Outcomes ad Radom Variables A radom variable is a variable whose value is ukow util it is observed. The value of a radom variable results from a experimet;

### The Sample Variance Formula: A Detailed Study of an Old Controversy

The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak