Computing the output response of LTI Systems.

Size: px
Start display at page:

Download "Computing the output response of LTI Systems."

Transcription

1 Computig the output respose of LTI Systems. By breaig or decomposig ad represetig the iput sigal to the LTI system ito terms of a liear combiatio of a set of basic sigals. Usig the superpositio property of LTI system to compute the output of the system i terms of its respose to these basic sigals.

2 Geeral Sigal Represetatios By Basic Sigal The basic sigal - i particular the uit impulse ca be used to decompose ad represet the geeral form of ay sigal. Liear combiatio of delayed impulses ca represet these geeral sigals.

3 Respose of LTI System to Geeral Iput Sigal Geeral Iput Sigal Delayed Impulse Sigal LTI SYSTEM LTI SYSTEM Output Respose Sigal Delayed Impulse Sigal N LTI SYSTEM Respose to Impulse sigal N 3

4 Represetatio of Discrete-time Sigals i Terms of Impulses. Discrete-time sigals are sequeces of idividual impulses x x δ x δ + 4 4

5 Discrete-time sigals are sequeces of idividual scaled uit impulses x x δ x δ x δ 4 5

6 x Shifted Scaled Impulses x δ x 3 δ + Geerally: x δ + x δ + x3 δ + + x δ x x δ, + + x δ The arbitrary sequece is represeted by a liear combiatio of shifted uit impulses δ-, where the weights i this liear combiatio are x. The above equatio is called the siftig property of discrete-time uit impulse. 6

7 x +. δ u δ +. δ δ +. δ δ + +. δ As Example cosider uit step sigal xu:- Geerally:- u +. δ, The uit step sequece is represeted by a liear combiatio of shifted uit impulses δ-, where the weights i this liear combiatio are oes from right up to This is idetically similar to the expressio we have derived i our previous lecture a few wees bac whe we dealt with uit step. 7

8 The Discrete-time Uit Impulse Resposes ad the Covolutio Sum Represetatio To determie the output respose of a LTI system to a arbitrary iput sigal x, we mae use of the siftig property for iput sigal ad the superpositio ad timeivariat properties of LTI system. 8

9 Covolutio Sum Represetatio The respose of a liear system to x will be the superpositio of the scaled resposes of the system to each of these shifted impulses. From the time-ivariat property, the respose of LTI system to the time-shifted uit impulses are simply time-shifted resposes of oe aother. 9

10 Uit Impulse Respose h δ LTI System h o δ- LTI System h

11 Respose to scaled uit impulse iput xδ- x-.δ+ - LTI System x-.h - - x.δ x.h o LTI System x+.δ- LTI System x+.h +κ

12 Output y of LTI System With the iput x beig expressed as the delayed trai of + - y x.h. scaled impulses we have: - Thus, if we ow the respose of a liear system to the set of shifted uit impulses, we ca costruct the respose y to a arbitrary iput sigal x.

13 h - x h h 3

14 x-δ+ x-h - xδ xh xδ- xh x y 4

15 I geeral, the respose h eed ot be related to each other for differet values of. If the liear system is also time-ivariat system, the these resposes h to time shifted uit impulse are all time-shifted versios of each other. I.e. h h -. For otatioal coveiece we drop the subscript o h h. h is defied as the uit impluse (sample) respose 5

16 Covolutio sum or Superpositio sum. + y x. h Covolutio operatio otatio give by : - y x*h 6

17 Covolutio sum or Superpositio sum. x h y x h.5 7

18 Covolutio sum or Superpositio sum. x h y y x h.5 x h.5 8

19 Covolutio sum or Superpositio sum. x h y y y x h.5 x h.5 x h.5 9

20 Covolutio sum or Superpositio sum. x h y y y y3 x h.5 x h.5 x h.5 x h3. y x h

21 yxh-+xh-.5h+h- x x x x.5 h x.5.5h h y

22 Modified Example.3

23 3 Modified Example.5 u h u x m m - l -. ) ( ) ( ) ( ) ( y l ad m -, Chagig variable l x y, for ozero samples has, / -, let r,, For + + < < < m m l r r h h x if but h x y α α α

24 4 Modified Example.5 u h u x m m - l -. ) ( ) ( ) ( ) ( y l ad m -, Chagig variable l x y, for ozero samples has, / -, let r,, For + + < < < m m l r r h h x if but h x y α α α

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal.

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal. x[ ] x[ ] x[] x[] x[] x[] 9 8 7 6 5 4 3 3 4 5 6 7 8 9 Figure. Graphical represetatio of a discrete-time sigal. From Discrete-Time Sigal Processig, e by Oppeheim, Schafer, ad Buck 999- Pretice Hall, Ic.

More information

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time Sigals ad Systems Problem Set: From Cotiuous-Time to Discrete-Time Updated: October 5, 2017 Problem Set Problem 1 - Liearity ad Time-Ivariace Cosider the followig systems ad determie whether liearity ad

More information

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems Departmet of Electrical Egieerig Uiversity of Arasas ELEG 4603/5173L Digital Sigal Processig Ch. 1 Discrete-Time Sigals ad Systems Dr. Jigxia Wu wuj@uar.edu OUTLINE 2 Classificatios of discrete-time sigals

More information

ECE4270 Fundamentals of DSP. Lecture 2 Discrete-Time Signals and Systems & Difference Equations. Overview of Lecture 2. More Discrete-Time Systems

ECE4270 Fundamentals of DSP. Lecture 2 Discrete-Time Signals and Systems & Difference Equations. Overview of Lecture 2. More Discrete-Time Systems ECE4270 Fudametals of DSP Lecture 2 Discrete-Time Sigals ad Systems & Differece Equatios School of ECE Ceter for Sigal ad Iformatio Processig Georgia Istitute of Techology Overview of Lecture 2 Aoucemet

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

Lecture 2 Linear and Time Invariant Systems

Lecture 2 Linear and Time Invariant Systems EE3054 Sigals ad Systems Lecture 2 Liear ad Time Ivariat Systems Yao Wag Polytechic Uiversity Most of the slides icluded are extracted from lecture presetatios prepared by McClella ad Schafer Licese Ifo

More information

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser FIR Filters Lecture #7 Chapter 5 8 What Is this Course All About? To Gai a Appreciatio of the Various Types of Sigals ad Systems To Aalyze The Various Types of Systems To Lear the Skills ad Tools eeded

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5 Sigals ad Systems Sigals ad Systems Sigals are variables that carry iformatio Systemstake sigals as iputs ad produce sigals as outputs The course deals with the passage of sigals through systems T-6.4

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we itroduce the idea of the frequecy respose of LTI systems, ad focus specifically o the frequecy respose of FIR filters.. Steady-state

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 06 Summer 07 Problem Set #5 Assiged: Jue 3, 07 Due Date: Jue 30, 07 Readig: Chapter 5 o FIR Filters. PROBLEM 5..* (The

More information

Finite-length Discrete Transforms. Chapter 5, Sections

Finite-length Discrete Transforms. Chapter 5, Sections Fiite-legth Discrete Trasforms Chapter 5, Sectios 5.2-50 5.0 Dr. Iyad djafar Outlie The Discrete Fourier Trasform (DFT) Matrix Represetatio of DFT Fiite-legth Sequeces Circular Covolutio DFT Symmetry Properties

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 301 Sigals & Systems Prof. Mark Fowler Note Set #8 D-T Covolutio: The Tool for Fidig the Zero-State Respose Readig Assigmet: Sectio 2.1-2.2 of Kame ad Heck 1/14 Course Flow Diagram The arrows here

More information

2D DSP Basics: 2D Systems

2D DSP Basics: 2D Systems - Digital Image Processig ad Compressio D DSP Basics: D Systems D Systems T[ ] y = T [ ] Liearity Additivity: If T y = T [ ] The + T y = y + y Homogeeity: If The T y = T [ ] a T y = ay = at [ ] Liearity

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 40 Digital Sigal Processig Prof. Mark Fowler Note Set #3 Covolutio & Impulse Respose Review Readig Assigmet: Sect. 2.3 of Proakis & Maolakis / Covolutio for LTI D-T systems We are tryig to fid y(t)

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

ELEG3503 Introduction to Digital Signal Processing

ELEG3503 Introduction to Digital Signal Processing ELEG3503 Itroductio to Digital Sigal Processig 1 Itroductio 2 Basics of Sigals ad Systems 3 Fourier aalysis 4 Samplig 5 Liear time-ivariat (LTI) systems 6 z-trasform 7 System Aalysis 8 System Realizatio

More information

Solution of Linear Constant-Coefficient Difference Equations

Solution of Linear Constant-Coefficient Difference Equations ECE 38-9 Solutio of Liear Costat-Coefficiet Differece Equatios Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa Solutio of Liear Costat-Coefficiet Differece Equatios Example: Determie

More information

Linear time invariant systems

Linear time invariant systems Liear time ivariat systems Alejadro Ribeiro Dept. of Electrical ad Systems Egieerig Uiversity of Pesylvaia aribeiro@seas.upe.edu http://www.seas.upe.edu/users/~aribeiro/ February 25, 2016 Sigal ad Iformatio

More information

MAS160: Signals, Systems & Information for Media Technology. Problem Set 5. DUE: November 3, (a) Plot of u[n] (b) Plot of x[n]=(0.

MAS160: Signals, Systems & Information for Media Technology. Problem Set 5. DUE: November 3, (a) Plot of u[n] (b) Plot of x[n]=(0. MAS6: Sigals, Systems & Iformatio for Media Techology Problem Set 5 DUE: November 3, 3 Istructors: V. Michael Bove, Jr. ad Rosalid Picard T.A. Jim McBride Problem : Uit-step ad ruig average (DSP First

More information

Chapter 8. DFT : The Discrete Fourier Transform

Chapter 8. DFT : The Discrete Fourier Transform Chapter 8 DFT : The Discrete Fourier Trasform Roots of Uity Defiitio: A th root of uity is a complex umber x such that x The th roots of uity are: ω, ω,, ω - where ω e π /. Proof: (ω ) (e π / ) (e π )

More information

ADVANCED DIGITAL SIGNAL PROCESSING

ADVANCED DIGITAL SIGNAL PROCESSING ADVANCED DIGITAL SIGNAL PROCESSING PROF. S. C. CHAN (email : sccha@eee.hku.hk, Rm. CYC-702) DISCRETE-TIME SIGNALS AND SYSTEMS MULTI-DIMENSIONAL SIGNALS AND SYSTEMS RANDOM PROCESSES AND APPLICATIONS ADAPTIVE

More information

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals.

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals. Discrete-ime Sigals ad Systems Discrete-ime Sigals ad Systems Dr. Deepa Kudur Uiversity of oroto Referece: Sectios. -.5 of Joh G. Proakis ad Dimitris G. Maolakis, Digital Sigal Processig: Priciples, Algorithms,

More information

Ch3 Discrete Time Fourier Transform

Ch3 Discrete Time Fourier Transform Ch3 Discrete Time Fourier Trasform 3. Show that the DTFT of [] is give by ( k). e k 3. Determie the DTFT of the two sided sigal y [ ],. 3.3 Determie the DTFT of the causal sequece x[ ] A cos( 0 ) [ ],

More information

DIGITAL SIGNAL PROCESSING LECTURE 3

DIGITAL SIGNAL PROCESSING LECTURE 3 DIGITAL SIGNAL PROCESSING LECTURE 3 Fall 2 2K8-5 th Semester Tahir Muhammad tmuhammad_7@yahoo.com Cotet ad Figures are from Discrete-Time Sigal Processig, 2e by Oppeheim, Shafer, ad Buc, 999-2 Pretice

More information

Fall 2011, EE123 Digital Signal Processing

Fall 2011, EE123 Digital Signal Processing Lecture 5 Miki Lustig, UCB September 14, 211 Miki Lustig, UCB Motivatios for Discrete Fourier Trasform Sampled represetatio i time ad frequecy umerical Fourier aalysis requires a Fourier represetatio that

More information

Question1 Multiple choices (circle the most appropriate one):

Question1 Multiple choices (circle the most appropriate one): Philadelphia Uiversity Studet Name: Faculty of Egieerig Studet Number: Dept. of Computer Egieerig Fial Exam, First Semester: 2014/2015 Course Title: Digital Sigal Aalysis ad Processig Date: 01/02/2015

More information

ELEC1200: A System View of Communications: from Signals to Packets Lecture 3

ELEC1200: A System View of Communications: from Signals to Packets Lecture 3 ELEC2: A System View of Commuicatios: from Sigals to Packets Lecture 3 Commuicatio chaels Discrete time Chael Modelig the chael Liear Time Ivariat Systems Step Respose Respose to sigle bit Respose to geeral

More information

Chapter 7: The z-transform. Chih-Wei Liu

Chapter 7: The z-transform. Chih-Wei Liu Chapter 7: The -Trasform Chih-Wei Liu Outlie Itroductio The -Trasform Properties of the Regio of Covergece Properties of the -Trasform Iversio of the -Trasform The Trasfer Fuctio Causality ad Stability

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.34 Discrete Time Sigal Processig Fall 24 BACKGROUND EXAM September 3, 24. Full Name: Note: This exam is closed

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Discrete-Time Signals and Systems. Signals and Systems. Digital Signals. Discrete-Time Signals. Operations on Sequences: Basic Operations

Discrete-Time Signals and Systems. Signals and Systems. Digital Signals. Discrete-Time Signals. Operations on Sequences: Basic Operations -6.3 Digital Sigal Processig ad Filterig..8 Discrete-ime Sigals ad Systems ime-domai Represetatios of Discrete-ime Sigals ad Systems ime-domai represetatio of a discrete-time sigal as a sequece of umbers

More information

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 2 Linear Systems. Topics

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 2 Linear Systems. Topics Bioegieerig 280A Priciples of Biomedical Imagig Fall Quarter 2004 Lecture 2 Liear Systems Topics 1. Liearity 2. Impulse Respose ad Delta fuctios 3. Superpositio Itegral 4. Shift Ivariace 5. 1D ad 2D covolutio

More information

ECE 308 Discrete-Time Signals and Systems

ECE 308 Discrete-Time Signals and Systems ECE 38-5 ECE 38 Discrete-Time Sigals ad Systems Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa ECE 38-5 1 Additio, Multiplicatio, ad Scalig of Sequeces Amplitude Scalig: (A Costat

More information

Discrete-time signals and systems See Oppenheim and Schafer, Second Edition pages 8 93, or First Edition pages 8 79.

Discrete-time signals and systems See Oppenheim and Schafer, Second Edition pages 8 93, or First Edition pages 8 79. Discrete-time sigals ad systems See Oppeheim ad Schafer, Secod Editio pages 93, or First Editio pages 79. Discrete-time sigals A discrete-time sigal is represeted as a sequece of umbers: x D fxœg; <

More information

ECEN 644 HOMEWORK #5 SOLUTION SET

ECEN 644 HOMEWORK #5 SOLUTION SET ECE 644 HOMEWORK #5 SOUTIO SET 7. x is a real valued sequece. The first five poits of its 8-poit DFT are: {0.5, 0.5 - j 0.308, 0, 0.5 - j 0.058, 0} To compute the 3 remaiig poits, we ca use the followig

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016 Lecture 3 Digital Sigal Processig Chapter 3 z-trasforms Mikael Swartlig Nedelko Grbic Begt Madersso rev. 06 Departmet of Electrical ad Iformatio Techology Lud Uiversity z-trasforms We defie the z-trasform

More information

M2.The Z-Transform and its Properties

M2.The Z-Transform and its Properties M2.The Z-Trasform ad its Properties Readig Material: Page 94-126 of chapter 3 3/22/2011 I. Discrete-Time Sigals ad Systems 1 What did we talk about i MM1? MM1 - Discrete-Time Sigal ad System 3/22/2011

More information

FIR Filter Design: Part II

FIR Filter Design: Part II EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we cosider how we might go about desigig FIR filters with arbitrary frequecy resposes, through compositio of multiple sigle-peak

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Discrete Time Sigals Samples of a CT sigal: EE123 Digital Sigal Processig x[] =X a (T ) =1, 2, x[0] x[2] x[1] X a (t) T 2T 3T t Lecture 2 Or, iheretly discrete (Examples?) 1 2 Basic Sequeces Uit Impulse

More information

Orthogonal transformations

Orthogonal transformations Orthogoal trasformatios October 12, 2014 1 Defiig property The squared legth of a vector is give by takig the dot product of a vector with itself, v 2 v v g ij v i v j A orthogoal trasformatio is a liear

More information

Exponential Moving Average Pieter P

Exponential Moving Average Pieter P Expoetial Movig Average Pieter P Differece equatio The Differece equatio of a expoetial movig average lter is very simple: y[] x[] + (1 )y[ 1] I this equatio, y[] is the curret output, y[ 1] is the previous

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

Definition of z-transform.

Definition of z-transform. - Trasforms Frequecy domai represetatios of discretetime sigals ad LTI discrete-time systems are made possible with the use of DTFT. However ot all discrete-time sigals e.g. uit step sequece are guarateed

More information

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors.

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors. Quiz November 4th, 23 Sigals & Systems (5-575-) P. Reist & Prof. R. D Adrea Solutios Exam Duratio: 4 miutes Number of Problems: 4 Permitted aids: Noe. Use oly the prepared sheets for your solutios. Additioal

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Today EE123 Digital Sigal Processig Lecture 2 Last time: Admiistratio Overview Today: Aother demo Ch. 2 - Discrete-Time Sigals ad Systems 1 2 Discrete Time Sigals Samples of a CT sigal: x[] =X a (T ) =1,

More information

Chapter 2 Systems and Signals

Chapter 2 Systems and Signals Chapter 2 Systems ad Sigals 1 Itroductio Discrete-Time Sigals: Sequeces Discrete-Time Systems Properties of Liear Time-Ivariat Systems Liear Costat-Coefficiet Differece Equatios Frequecy-Domai Represetatio

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

Chapter 7 z-transform

Chapter 7 z-transform Chapter 7 -Trasform Itroductio Trasform Uilateral Trasform Properties Uilateral Trasform Iversio of Uilateral Trasform Determiig the Frequecy Respose from Poles ad Zeros Itroductio Role i Discrete-Time

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and Filter bas Separately, the lowpass ad highpass filters are ot ivertible T removes the highest frequecy / ad removes the lowest frequecy Together these filters separate the sigal ito low-frequecy ad high-frequecy

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Aoucemets HW solutios posted -- self gradig due HW2 due Friday EE2 Digital Sigal Processig ham radio licesig lectures Tue 6:-8pm Cory 2 Lecture 6 based o slides by J.M. Kah SDR give after GSI Wedesday

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information

Beurling Integers: Part 2

Beurling Integers: Part 2 Beurlig Itegers: Part 2 Isomorphisms Devi Platt July 11, 2015 1 Prime Factorizatio Sequeces I the last article we itroduced the Beurlig geeralized itegers, which ca be represeted as a sequece of real umbers

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

The Scattering Matrix

The Scattering Matrix 2/23/7 The Scatterig Matrix 723 1/13 The Scatterig Matrix At low frequecies, we ca completely characterize a liear device or etwork usig a impedace matrix, which relates the currets ad voltages at each

More information

Classification of DT signals

Classification of DT signals Comlex exoetial A discrete time sigal may be comlex valued I digital commuicatios comlex sigals arise aturally A comlex sigal may be rereseted i two forms: jarg { z( ) } { } z ( ) = Re { z ( )} + jim {

More information

Discrete-Time System Properties. Discrete-Time System Properties. Terminology: Implication. Terminology: Equivalence. Reference: Section 2.

Discrete-Time System Properties. Discrete-Time System Properties. Terminology: Implication. Terminology: Equivalence. Reference: Section 2. Professor Deepa Kudur Uiversity of oroto Referece: Sectio 2.2 Joh G. Proakis ad Dimitris G. Maolakis, Digital Sigal Processig: Priciples, Algorithms, ad Applicatios, 4th editio, 2007. Professor Deepa Kudur

More information

Dynamic Response of Linear Systems

Dynamic Response of Linear Systems Dyamic Respose of Liear Systems Liear System Respose Superpositio Priciple Resposes to Specific Iputs Dyamic Respose of st Order Systems Characteristic Equatio - Free Respose Stable st Order System Respose

More information

6.003: Signals and Systems. Feedback, Poles, and Fundamental Modes

6.003: Signals and Systems. Feedback, Poles, and Fundamental Modes 6.003: Sigals ad Systems Feedback, Poles, ad Fudametal Modes February 9, 2010 Last Time: Multiple Represetatios of DT Systems Verbal descriptios: preserve the ratioale. To reduce the umber of bits eeded

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

EE422G Homework #13 (12 points)

EE422G Homework #13 (12 points) EE422G Homework #1 (12 poits) 1. (5 poits) I this problem, you are asked to explore a importat applicatio of FFT: efficiet computatio of covolutio. The impulse respose of a system is give by h(t) (.9),1,2,,1

More information

SIGNALS AND SYSTEMS I Computer Assignment 1

SIGNALS AND SYSTEMS I Computer Assignment 1 SIGNALS AND SYSTEMS I Computer Assigmet I MATLAB, sigals are represeted by colum vectors or as colums i matrices. Row vectors ca be used; however, MATLAB typically prefers colum vectors. Vector or matrices

More information

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed) Exam February 8th, 8 Sigals & Systems (5-575-) Prof. R. D Adrea Exam Exam Duratio: 5 Mi Number of Problems: 5 Number of Poits: 5 Permitted aids: Importat: Notes: A sigle A sheet of paper (double sided;

More information

AND SYSTEMS 2.0 INTRODUCTION

AND SYSTEMS 2.0 INTRODUCTION 2 DSCRETE-TME SGNALS AND SYSTEMS 2.0 NTRODUCTON The term sigal is geerally applied to somethig that coveys iformatio. Sigals geerally covey iformatio about the state or behavior of a physical system, ad

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

Generating Functions. 1 Operations on generating functions

Generating Functions. 1 Operations on generating functions Geeratig Fuctios The geeratig fuctio for a sequece a 0, a,..., a,... is defied to be the power series fx a x. 0 We say that a 0, a,... is the sequece geerated by fx ad a is the coefficiet of x. Example

More information

Review of Discrete-time Signals. ELEC 635 Prof. Siripong Potisuk

Review of Discrete-time Signals. ELEC 635 Prof. Siripong Potisuk Review of Discrete-time Sigals ELEC 635 Prof. Siripog Potisuk 1 Discrete-time Sigals Discrete-time, cotiuous-valued amplitude (sampled-data sigal) Discrete-time, discrete-valued amplitude (digital sigal)

More information

Some examples of vector spaces

Some examples of vector spaces Roberto s Notes o Liear Algebra Chapter 11: Vector spaces Sectio 2 Some examples of vector spaces What you eed to kow already: The te axioms eeded to idetify a vector space. What you ca lear here: Some

More information

COMM 602: Digital Signal Processing

COMM 602: Digital Signal Processing COMM 60: Digital Sigal Processig Lecture 4 -Properties of LTIS Usig Z-Trasform -Iverse Z-Trasform Properties of LTIS Usig Z-Trasform Properties of LTIS Usig Z-Trasform -ve +ve Properties of LTIS Usig Z-Trasform

More information

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io Chapter 9 - CD compaio CHAPTER NINE CD-9.2 CD-9.2. Stages With Voltage ad Curret Gai A Geeric Implemetatio; The Commo-Merge Amplifier The advaced method preseted i the text for approximatig cutoff frequecies

More information

Introduction to Digital Signal Processing

Introduction to Digital Signal Processing Fakultät Iformatik Istitut für Systemarchitektur Professur Recheretze Itroductio to Digital Sigal Processig Walteegus Dargie Walteegus Dargie TU Dresde Chair of Computer Networks I 45 Miutes Refereces

More information

3.1 Counting Principles

3.1 Counting Principles 3.1 Coutig Priciples Goal: Cout the umber of objects i a set. Notatio: Whe S is a set, S deotes the umber of objects i the set. This is also called S s cardiality. Additio Priciple: Whe you wat to cout

More information

(, ) (, ) (, ) ( ) ( )

(, ) (, ) (, ) ( ) ( ) PROBLEM ANSWER X Y x, x, rect, () X Y, otherwise D Fourier trasform is defied as ad i D case it ca be defied as We ca write give fuctio from Eq. () as It follows usig Eq. (3) it ( ) ( ) F f t e dt () i(

More information

is also known as the general term of the sequence

is also known as the general term of the sequence Lesso : Sequeces ad Series Outlie Objectives: I ca determie whether a sequece has a patter. I ca determie whether a sequece ca be geeralized to fid a formula for the geeral term i the sequece. I ca determie

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

The Discrete Fourier Transform

The Discrete Fourier Transform The Discrete Fourier Trasform Complex Fourier Series Represetatio Recall that a Fourier series has the form a 0 + a k cos(kt) + k=1 b k si(kt) This represetatio seems a bit awkward, sice it ivolves two

More information

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation Module 8 Discrete Time Sigals ad Z-Trasforms Objective:To uderstad represetig discrete time sigals, apply z trasform for aalyzigdiscrete time sigals ad to uderstad the relatio to Fourier trasform Itroductio

More information

FFTs in Graphics and Vision. The Fast Fourier Transform

FFTs in Graphics and Vision. The Fast Fourier Transform FFTs i Graphics ad Visio The Fast Fourier Trasform 1 Outlie The FFT Algorithm Applicatios i 1D Multi-Dimesioal FFTs More Applicatios Real FFTs 2 Computatioal Complexity To compute the movig dot-product

More information

Unit 6: Sequences and Series

Unit 6: Sequences and Series AMHS Hoors Algebra 2 - Uit 6 Uit 6: Sequeces ad Series 26 Sequeces Defiitio: A sequece is a ordered list of umbers ad is formally defied as a fuctio whose domai is the set of positive itegers. It is commo

More information

Discrete-time Fourier transform (DTFT) of aperiodic and periodic signals

Discrete-time Fourier transform (DTFT) of aperiodic and periodic signals 5 Discrete-time Fourier trasform (DTFT) of aperiodic ad periodic sigals We started with Fourier series which ca represet a periodic sigal usig siusoids. Fourier Trasform, a extesio of the Fourier series

More information

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals. Z - Trasform The -trasform is a very importat tool i describig ad aalyig digital systems. It offers the techiques for digital filter desig ad frequecy aalysis of digital sigals. Defiitio of -trasform:

More information

RADICAL EXPRESSION. If a and x are real numbers and n is a positive integer, then x is an. n th root theorems: Example 1 Simplify

RADICAL EXPRESSION. If a and x are real numbers and n is a positive integer, then x is an. n th root theorems: Example 1 Simplify Example 1 Simplify 1.2A Radical Operatios a) 4 2 b) 16 1 2 c) 16 d) 2 e) 8 1 f) 8 What is the relatioship betwee a, b, c? What is the relatioship betwee d, e, f? If x = a, the x = = th root theorems: RADICAL

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

MAXIMALLY FLAT FIR FILTERS

MAXIMALLY FLAT FIR FILTERS MAXIMALLY FLAT FIR FILTERS This sectio describes a family of maximally flat symmetric FIR filters first itroduced by Herrma [2]. The desig of these filters is particularly simple due to the availability

More information

Notes 20 largely plagiarized by %khc

Notes 20 largely plagiarized by %khc 1 Notes 20 largely plagiarized by %khc 1 Warig This set of otes covers discrete time. However, i probably wo t be able to talk about everythig here; istead i will highlight importat properties or give

More information

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION ANOTHER GENERALIZED FIBONACCI SEQUENCE MARCELLUS E. WADDILL A N D LOUIS SACKS Wake Forest College, Wisto Salem, N. C., ad Uiversity of ittsburgh, ittsburgh, a. 1. INTRODUCTION Recet issues of umerous periodicals

More information

Hoggatt and King [lo] defined a complete sequence of natural numbers

Hoggatt and King [lo] defined a complete sequence of natural numbers REPRESENTATIONS OF N AS A SUM OF DISTINCT ELEMENTS FROM SPECIAL SEQUENCES DAVID A. KLARNER, Uiversity of Alberta, Edmoto, Caada 1. INTRODUCTION Let a, I deote a sequece of atural umbers which satisfies

More information

Sums, products and sequences

Sums, products and sequences Sums, products ad sequeces How to write log sums, e.g., 1+2+ (-1)+ cocisely? i=1 Sum otatio ( sum from 1 to ): i 3 = 1 + 2 + + If =3, i=1 i = 1+2+3=6. The ame ii does ot matter. Could use aother letter

More information

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1 Mathematical Descriptio of Discrete-Time Sigals 9/10/16 M. J. Roberts - All Rights Reserved 1 Samplig ad Discrete Time Samplig is the acquisitio of the values of a cotiuous-time sigal at discrete poits

More information