The beta density, Bayes, Laplace, and Pólya

Size: px
Start display at page:

Download "The beta density, Bayes, Laplace, and Pólya"

Transcription

1 The beta desity, Bayes, Laplae, ad Pólya Saad Meimeh The beta desity as a ojugate form Suppose that is a biomial radom variable with idex ad parameter p, i.e. ( ) P ( p) p ( p) Applyig Bayes s rule, we have: Therefore, a prior of the form f(p ) p ( p) f(p) f(p) p α ( p) β is a ojugate prior sie the posterior will have the form: It is ot hard to show that f(p ) p +α ( p) +β p α ( p) β dp Γ(α)Γ(β) Γ(α + β) Let s deote the above by B(α, β). Therefore, f(p) Be(α, β) where Be(α, β) is alled the beta desity with parameters α > ad β >, ad is give by: B(α, β) pα ( p) β Note that the beta desity a also be viewed as the posterior for p after observig α suesses ad β failures, give a uiform prior o p (here both α ad β are itegers). f(p α, β) p α ( p) β

2 Example: Cosider a ur otaiig red ad bla balls. The probability of a red ball is p, but p is uow. The prior o p is uiform betwee ad (o speifi owledge). We repeatedly draw balls with replaemet. What is the posterior desity for p after observig α red balls ad β bla balls? f(p α red, β bla) ( α + β 2 α ) p α ( p) β Therefore, f(p) Be(α, β). Note that both α ad β eed to be equal to at least. For istae, after drawig oe red ball oly (α 2, β ), the posterior will be f(p) 2p. Here s a table listig some possible observatios: observatio posterior α, β f(p) α 2, β f(p) 2p α 2, β 2 f(p) 6p( p) α 3, β f(p) 3p 2 α 3, β 2 f(p) 2p 2 ( p) α 3, β 3 f(p) 3p 2 ( p) 2 2 Laplae s rule of suessio I 774, Laplae laimed that a evet whih has ourred times, ad has ot failed thus far, will our agai with probability ( + )/( + 2). This is ow as Laplae s rule of suessio. Laplae applied this result to the surise problem: What is the probability that the su will rise tomorrow? Let X, X 2,... be a sequee of idepedet Beroulli trials with parameter p. Note that this otio of depedee is oditioal o p. More preisely: P (X b, X 2 b 2,..., X b p) P (X i b i ) I fat, X i ad X j are ot idepedet beause by observig X i, oe ould say somethig about p, ad hee about X j. This is a osequee of the Bayesia approah whih treats p itself as a radom variable (uow). Let S i X i. We would lie to fid the followig probability: P (X + S ) i

3 Observe that: P (X + S ) P (X + p, S )f(p S )dp P (X + p)f(p S )dp pf(p S )dp Therefore, we eed to fid the posterior desity of p. Assumig we ow othig about p iitially, we will adopt the uiform prior f(p) betwee ad. Applyig Bayes rule: We olude that: Fially, f(p S ) P (S p)f(p) p ( p) f(p S ) B( +, + ) p(+) ( p) ( +) P (X + S ) We obtai Laplae s result by settig. 3 Geeralizatio pf(p S )dp Cosider a oi toss that a result i head, tail, or edge. We deote by p the probability of head, ad by q the probability of tail, thus the probability of edge is p q. Observe that p, q [, ] ad p + q. I oi tosses, the probability of observig heads ad 2 tails (ad thus 2 edges) is give by the multiomial probability mass futio (this geeralizes the biomial): ( ) ( ) P (, 2 ) p q 2 ( p q) 2 2 The Dirihlet desity is a geeralizatio of beta ad is ojugate to multiomial. For istae: f(p, q) Γ(α + β + γ) Γ(α)Γ(β)Γ(γ) pα q β ( p q) γ

4 4 Pólya s ur Pólya s ur represets a geeralizatio of a Biomial radom variable. Cosider the followig sheme: A ur otais b bla ad r red balls. The ball draw is always replaed, ad, i additio, balls of the olor draw are added to the ur. Whe, drawigs are equivalet to idepedet Beroulli proesses b b+r with p. However, with, the Beroulli proesses are depedet, eah with a parameter that depeds o the sequee of previous drawigs. For istae, if the first ball is bla, the (oditioal) probability of a bla ball at the seod drawig is (b + )/(b + + r). The probability of the sequee bla, bla is, therefore, b b + b + r b + + r Let X be a radom variable deotig the umber of bla balls draw i trials. What is P (X )? It is easy to show that all sequees with bla balls have the same probability p ad, therefore, ( ) P (X ) p We ow ompute p as: i [b + (i )] i [r + (i )] [b + r + (i )] i Rewritig i terms of the Gamma futio (assumig > ), we have: i [ b + i ] i [ r + i ] i [ b+r + i ] Γ( b +)Γ( r + ) Γ( b )Γ( r ) Γ( b+r +) Γ( b+r ) Γ( b + )Γ( r + ) Γ( b + r + ) Γ( b + r ) Γ( b )Γ( r ) B( b +, r + ) B( b, r ) Therefore, the importat parameters are b/ ad r/. Note that we a rewrite the above as (verify it): So, p ( ) P (X ) ( b p ( p) Be, r ) dp ( b p ( p) Be, r ) dp

5 5 Pólya s ur geerates beta We ow show that Pólya s ur geerates a beta distributio at the limit. For this, we will osider. lim X /. First ote that we a write P (X ) as follows: P (X ) Γ( b + r ) Γ( + b ) Γ( + r ) Γ( + ) Γ( b )Γ( r ) Γ( + ) Γ( + ) Γ( + b + r ) Usig Stirlig s approximatio Γ(x + ) 2πx ( x e ) x as x goes to ifiity, we a olude that whe x goes to ifiity, Γ(x + a) Γ(x + b) xa b Therefore, whe (but x for some < x < ), Now, P (X ) B( b, r ) b ( ) r b r P ( X x) P (X ) + P (X As goes to ifiity, / goes to zero; therefore: ) P (X x ) P ( X u)du lim [P (X ) + P (X ) P (X x )] P ( X x) P ( X u)du P (X u)du Ad sie u, we a replae by u i the limitig expressio we obtaied for P (X ) to get: P ( X x) B( b, r )ub ( u) r du It is rather iterestig that this limitig property of Pólya s ur depeds o the iitial oditio. Eve more iterestig is that if Y lim X /, the oditioed o Y p we have idepedet Beroulli trials with parameter p (stated without proof). P (X Y p) ( ) p ( p)

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2 Beroulli Numbers Beroulli umbers are amed after the great Swiss mathematiia Jaob Beroulli5-705 who used these umbers i the power-sum problem. The power-sum problem is to fid a formula for the sum of the

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

ε > 0 N N n N a n < ε. Now notice that a n = a n.

ε > 0 N N n N a n < ε. Now notice that a n = a n. 4 Sequees.5. Null sequees..5.. Defiitio. A ull sequee is a sequee (a ) N that overges to 0. Hee, by defiitio of (a ) N overges to 0, a sequee (a ) N is a ull sequee if ad oly if ( ) ε > 0 N N N a < ε..5..

More information

MATH/STAT 352: Lecture 15

MATH/STAT 352: Lecture 15 MATH/STAT 352: Lecture 15 Sectios 5.2 ad 5.3. Large sample CI for a proportio ad small sample CI for a mea. 1 5.2: Cofidece Iterval for a Proportio Estimatig proportio of successes i a biomial experimet

More information

Lecture 8. Dirac and Weierstrass

Lecture 8. Dirac and Weierstrass Leture 8. Dira ad Weierstrass Audrey Terras May 5, 9 A New Kid of Produt of Futios You are familiar with the poitwise produt of futios de ed by f g(x) f(x) g(x): You just tae the produt of the real umbers

More information

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) = PROBABILITY MODELS 35 10. Discrete probability distributios I this sectio, we discuss several well-ow discrete probability distributios ad study some of their properties. Some of these distributios, lie

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

Probability and Statistics

Probability and Statistics robability ad Statistics rof. Zheg Zheg Radom Variable A fiite sigle valued fuctio.) that maps the set of all eperimetal outcomes ito the set of real umbers R is a r.v., if the set ) is a evet F ) for

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model

More information

= p x (1 p) 1 x. Var (X) =p(1 p) M X (t) =1+p(e t 1).

= p x (1 p) 1 x. Var (X) =p(1 p) M X (t) =1+p(e t 1). Prob. fuctio:, =1 () = 1, =0 = (1 ) 1 E(X) = Var (X) =(1 ) M X (t) =1+(e t 1). 1.1.2 Biomial distributio Parameter: 0 1; >0; MGF: M X (t) ={1+(e t 1)}. Cosider a sequece of ideedet Ber() trials. If X =

More information

5. Likelihood Ratio Tests

5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

STAT 515 fa 2016 Lec Sampling distribution of the mean, part 2 (central limit theorem)

STAT 515 fa 2016 Lec Sampling distribution of the mean, part 2 (central limit theorem) STAT 515 fa 2016 Lec 15-16 Samplig distributio of the mea, part 2 cetral limit theorem Karl B. Gregory Moday, Sep 26th Cotets 1 The cetral limit theorem 1 1.1 The most importat theorem i statistics.............

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Calculus 2 TAYLOR SERIES CONVERGENCE AND TAYLOR REMAINDER

Calculus 2 TAYLOR SERIES CONVERGENCE AND TAYLOR REMAINDER Calulus TAYLO SEIES CONVEGENCE AND TAYLO EMAINDE Let the differee betwee f () ad its Taylor polyomial approimatio of order be (). f ( ) P ( ) + ( ) Cosider to be the remaider with the eat value ad the

More information

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1 MATH88T Maria Camero Cotets Basic cocepts of statistics Estimators, estimates ad samplig distributios 2 Ordiary least squares estimate 3 3 Maximum lielihood estimator 3 4 Bayesia estimatio Refereces 9

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 for BST 695: Speial Topis i Statistial Theory Kui Zhag, Chapter 8 Hypothesis Testig Setio 8 Itrodutio Defiitio 8 A hypothesis is a statemet about a populatio parameter Defiitio 8 The two omplemetary

More information

Chapter 0. Review of set theory. 0.1 Sets

Chapter 0. Review of set theory. 0.1 Sets Chapter 0 Review of set theory Set theory plays a cetral role i the theory of probability. Thus, we will ope this course with a quick review of those otios of set theory which will be used repeatedly.

More information

( θ. sup θ Θ f X (x θ) = L. sup Pr (Λ (X) < c) = α. x : Λ (x) = sup θ H 0. sup θ Θ f X (x θ) = ) < c. NH : θ 1 = θ 2 against AH : θ 1 θ 2

( θ. sup θ Θ f X (x θ) = L. sup Pr (Λ (X) < c) = α. x : Λ (x) = sup θ H 0. sup θ Θ f X (x θ) = ) < c. NH : θ 1 = θ 2 against AH : θ 1 θ 2 82 CHAPTER 4. MAXIMUM IKEIHOOD ESTIMATION Defiitio: et X be a radom sample with joit p.m/d.f. f X x θ. The geeralised likelihood ratio test g.l.r.t. of the NH : θ H 0 agaist the alterative AH : θ H 1,

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Summation Method for Some Special Series Exactly

Summation Method for Some Special Series Exactly The Iteratioal Joural of Mathematis, Siee, Tehology ad Maagemet (ISSN : 39-85) Vol. Issue Summatio Method for Some Speial Series Eatly D.A.Gismalla Deptt. Of Mathematis & omputer Studies Faulty of Siee

More information

Sampling Distributions, Z-Tests, Power

Sampling Distributions, Z-Tests, Power Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

ANOTHER PROOF FOR FERMAT S LAST THEOREM 1. INTRODUCTION

ANOTHER PROOF FOR FERMAT S LAST THEOREM 1. INTRODUCTION ANOTHER PROOF FOR FERMAT S LAST THEOREM Mugur B. RĂUŢ Correspodig author: Mugur B. RĂUŢ, E-mail: m_b_raut@yahoo.om Abstrat I this paper we propose aother proof for Fermat s Last Theorem (FLT). We foud

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

Lecture 4 The Simple Random Walk

Lecture 4 The Simple Random Walk Lecture 4: The Simple Radom Walk 1 of 9 Course: M36K Itro to Stochastic Processes Term: Fall 014 Istructor: Gorda Zitkovic Lecture 4 The Simple Radom Walk We have defied ad costructed a radom walk {X }

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Problem 4: Evaluate ( k ) by negating (actually un-negating) its upper index. Binomial coefficient

Problem 4: Evaluate ( k ) by negating (actually un-negating) its upper index. Binomial coefficient Problem 4: Evaluate by egatig actually u-egatig its upper idex We ow that Biomial coefficiet r { where r is a real umber, is a iteger The above defiitio ca be recast i terms of factorials i the commo case

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

B. Maddah ENMG 622 ENMG /20/09

B. Maddah ENMG 622 ENMG /20/09 B. Maddah ENMG 6 ENMG 5 5//9 Queueig Theory () Distributio of waitig time i M/M/ Let T q be the waitig time i queue of a ustomer. The it a be show that, ( ) t { q > } =. T t e Let T be the total time of

More information

Some discrete distribution

Some discrete distribution Some discrete distributio p. 2-13 Defiitio (Beroulli distributio B(p)) A Beroulli distributio takes o oly two values: 0 ad 1, with probabilities 1 p ad p, respectively. pmf: p() = p (1 p) (1 ), if =0or

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Lecture 9: September 19

Lecture 9: September 19 36-700: Probability ad Mathematical Statistics I Fall 206 Lecturer: Siva Balakrisha Lecture 9: September 9 9. Review ad Outlie Last class we discussed: Statistical estimatio broadly Pot estimatio Bias-Variace

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information

6. Sufficient, Complete, and Ancillary Statistics

6. Sufficient, Complete, and Ancillary Statistics Sufficiet, Complete ad Acillary Statistics http://www.math.uah.edu/stat/poit/sufficiet.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 6. Sufficiet, Complete, ad Acillary

More information

The Binomial Theorem

The Binomial Theorem The Biomial Theorem Lecture 47 Sectio 9.7 Robb T. Koether Hampde-Sydey College Fri, Apr 8, 204 Robb T. Koether (Hampde-Sydey College The Biomial Theorem Fri, Apr 8, 204 / 25 Combiatios 2 Pascal s Triagle

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

Probability theory and mathematical statistics:

Probability theory and mathematical statistics: N.I. Lobachevsky State Uiversity of Nizhi Novgorod Probability theory ad mathematical statistics: Law of Total Probability. Associate Professor A.V. Zorie Law of Total Probability. 1 / 14 Theorem Let H

More information

Lecture 2: Poisson Sta*s*cs Probability Density Func*ons Expecta*on and Variance Es*mators

Lecture 2: Poisson Sta*s*cs Probability Density Func*ons Expecta*on and Variance Es*mators Lecture 2: Poisso Sta*s*cs Probability Desity Fuc*os Expecta*o ad Variace Es*mators Biomial Distribu*o: P (k successes i attempts) =! k!( k)! p k s( p s ) k prob of each success Poisso Distributio Note

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

If we want to add up the area of four rectangles, we could find the area of each rectangle and then write this sum symbolically as:

If we want to add up the area of four rectangles, we could find the area of each rectangle and then write this sum symbolically as: Sigma Notatio: If we wat to add up the area of four rectagles, we could fid the area of each rectagle ad the write this sum symbolically as: Sum A A A A Liewise, the sum of the areas of te triagles could

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

Confidence Intervals for the Population Proportion p

Confidence Intervals for the Population Proportion p Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:

More information

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY Structure 2.1 Itroductio Objectives 2.2 Relative Frequecy Approach ad Statistical Probability 2. Problems Based o Relative Frequecy 2.4 Subjective Approach

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

STAT 516 Answers Homework 6 April 2, 2008 Solutions by Mark Daniel Ward PROBLEMS

STAT 516 Answers Homework 6 April 2, 2008 Solutions by Mark Daniel Ward PROBLEMS STAT 56 Aswers Homework 6 April 2, 28 Solutios by Mark Daiel Ward PROBLEMS Chapter 6 Problems 2a. The mass p(, correspods to either o the irst two balls beig white, so p(, 8 7 4/39. The mass p(, correspods

More information

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency

Math 152. Rumbos Fall Solutions to Review Problems for Exam #2. Number of Heads Frequency Math 152. Rumbos Fall 2009 1 Solutios to Review Problems for Exam #2 1. I the book Experimetatio ad Measuremet, by W. J. Youde ad published by the by the Natioal Sciece Teachers Associatio i 1962, the

More information

Big Picture. 5. Data, Estimates, and Models: quantifying the accuracy of estimates.

Big Picture. 5. Data, Estimates, and Models: quantifying the accuracy of estimates. 5. Data, Estimates, ad Models: quatifyig the accuracy of estimates. 5. Estimatig a Normal Mea 5.2 The Distributio of the Normal Sample Mea 5.3 Normal data, cofidece iterval for, kow 5.4 Normal data, cofidece

More information

Sigma notation. 2.1 Introduction

Sigma notation. 2.1 Introduction Sigma otatio. Itroductio We use sigma otatio to idicate the summatio process whe we have several (or ifiitely may) terms to add up. You may have see sigma otatio i earlier courses. It is used to idicate

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probability that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c}) Pr(X c) = Pr({s S X(s)

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

B Supplemental Notes 2 Hypergeometric, Binomial, Poisson and Multinomial Random Variables and Borel Sets

B Supplemental Notes 2 Hypergeometric, Binomial, Poisson and Multinomial Random Variables and Borel Sets B671-672 Supplemetal otes 2 Hypergeometric, Biomial, Poisso ad Multiomial Radom Variables ad Borel Sets 1 Biomial Approximatio to the Hypergeometric Recall that the Hypergeometric istributio is fx = x

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

Generalized Semi- Markov Processes (GSMP)

Generalized Semi- Markov Processes (GSMP) Geeralized Semi- Markov Processes (GSMP) Summary Some Defiitios Markov ad Semi-Markov Processes The Poisso Process Properties of the Poisso Process Iterarrival times Memoryless property ad the residual

More information

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Empirical Distributions

Empirical Distributions Empirical Distributios A empirical distributio is oe for which each possible evet is assiged a probability derived from experimetal observatio. It is assumed that the evets are idepedet ad the sum of the

More information

Keywords: Last-Success-Problem; Odds-Theorem; Optimal stopping; Optimal threshold AMS 2010 Mathematics Subject Classification 60G40, 62L15

Keywords: Last-Success-Problem; Odds-Theorem; Optimal stopping; Optimal threshold AMS 2010 Mathematics Subject Classification 60G40, 62L15 CONCERNING AN ADVERSARIAL VERSION OF THE LAST-SUCCESS-PROBLEM arxiv:8.0538v [math.pr] 3 Dec 08 J.M. GRAU RIBAS Abstract. There are idepedet Beroulli radom variables with parameters p i that are observed

More information

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1 . Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely

More information

Mathematical Statistics Anna Janicka

Mathematical Statistics Anna Janicka Mathematical Statistics Aa Jaicka Lecture XIV, 5.06.07 BAYESIAN STATISTICS Pla for Today. BayesiaStatistics a priori ad a posteriori distributios Bayesia estimatio: Maximum a posteriori probability(map)

More information

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1).

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1). Assigmet 7 Exercise 4.3 Use the Cotiuity Theorem to prove the Cramér-Wold Theorem, Theorem 4.12. Hit: a X d a X implies that φ a X (1) φ a X(1). Sketch of solutio: As we poited out i class, the oly tricky

More information

Mathematics 170B Selected HW Solutions.

Mathematics 170B Selected HW Solutions. Mathematics 17B Selected HW Solutios. F 4. Suppose X is B(,p). (a)fidthemometgeeratigfuctiom (s)of(x p)/ p(1 p). Write q = 1 p. The MGF of X is (pe s + q), sice X ca be writte as the sum of idepedet Beroulli

More information

Math Third Midterm Exam November 17, 2010

Math Third Midterm Exam November 17, 2010 Math 37 1. Treibergs σιι Third Midterm Exam Name: November 17, 1 1. Suppose that the mahie fillig mii-boxes of Fruitlad Raisis fills boxes so that the weight of the boxes has a populatio mea µ x = 14.1

More information