# Lecture 9: September 19

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 36-700: Probability ad Mathematical Statistics I Fall 206 Lecturer: Siva Balakrisha Lecture 9: September 9 9. Review ad Outlie Last class we discussed: Statistical estimatio broadly Pot estimatio Bias-Variace tradeoff Cofidece sets I this lecture we will go ito more detail about poit estimatio. Particularly, we will discuss methods for costructig estimators. This is i Chapter 7 of Casella ad Berger. I the ext lecture we will discuss methods for evaluatig estimators. 9.2 Fidig estimators Broadly poit estimatio is aliged with the geeral statistical pursuit of tryig to uderstad a uderlyig populatio from a sample. Particularly, uder the hypothesis that the sample was geerated from some parametric statistical model, a atural way to uderstad the uderlyig populatio is by estimatig the parameters of the statistical model. Oe ca of course woder what happes if the model is wrog? Or where do models really come from? I some rare cases, we actually kow eough about our data to hypothesise a reasoable model. Most ofte however, whe we specify a model, we do so hopig that it ca provide a useful approximatio to the data geeratio mechaism. The George Box quote is worth rememberig i this cotext: all models are wrog, but some are useful. 9-

2 9-2 Lecture 9: September Method of momets We saw this idea before we will see a couple of other examples today. Broadly, the idea is that we ca estimate the sample momets i a straightforward way: m = m 2 =. m k = X i, Xi 2, Xi k. O the other had the populatio momets are some fuctios of the ukow parameters. We ca deote the populatio momets as: µ (θ,..., θ k ),..., µ k (θ,..., θ k ). The method-of-momets prescribes estimatig the parameters: θ,..., θ k by solvig the system of equatios: m = µ (θ,..., θ k ). m k = µ k (θ,..., θ k ). We already saw a applicatio of this idea to estimatig the mea ad variace of a Gaussia: Example : to obtai the estimators: If X,..., X N(θ, σ 2 ), we would solve: X i = θ, ˆθ = ˆσ 2 = = ad X i Xi 2 ( ( X i Xi 2 = θ 2 + σ 2, ) 2 X i ) 2 X j, j=

3 Lecture 9: September which of course are atural estimators of these quatities. You ca see that the method-ofmomets estimators ca be biased sice i this example the estimator for the variace has o-zero bias. Example 2: Suppose X,..., X Bi(k, p), i.e. each X i is the sum of k Ber(p) RVs, ad that both k ad p are ukow. Casella ad Berger poit out that this model has bee used to model crimes, where usually either the total umber of crimes k or the reportig rate p are kow. Let us first compute the first two momets of the biomial: µ = kp µ 2 = kp( p) + k 2 p 2. Deotig, X = X i, we solve the system of equatios: This yields the estimators: X = kp Xi 2 = kp( p) + k 2 p 2. ˆp = X (X i X) 2, X X ˆk 2 = X (X i X). 2 It is worth poitig out that i this case there are o a-priori obvious estimators for the parameters of iterest. Further, the method-of-momets estimators i this case ca be egative (while the true parameters caot be). However, whe the method-of-momets estimator is egative it is because the sample mea is domiated by the sample variace - which is a sig of excessive variability. Aother importat use of the method-of-momets i statistics is i approximatig complex distributios by simpler oes. This is ofte called momet matchig. Example 3: The simplest example of momet matchig comes from the cetral limit theorem. Suppose that RVs X,..., X are i.i.d with kow distributio (it suffices if just

4 9-4 Lecture 9: September 9 their meas ad variaces are kow). Typically the exact distributio of: S = X i, ca be quite uwieldy. Oe possibility would be to try to approximate this distributio by that of a Gaussia distributio. We do this via the method of momets: ˆθ = E(S ) = µ i, ˆσ 2 = E(S E(S )) 2 = σi 2. Thus we could approximate the distributio of the sum by the Gaussia N(ˆθ, ˆσ 2 ). More geerally, we ca always try to approximate a complex distributio by a much simpler oe i this way Maximum Likelihood Estimatio The most popular techique to derive estimators is via the priciple of maximum likelihood. Suppose that X,..., X f θ where f θ deotes either the pmf or pdf of the populatio. The likelihood fuctio is defied by: L(θ X,..., X ) = f θ (X i ). A maximum likelihood estimator of θ based o the sample {X,..., X } is ay value of the parameter at which the fuctio L(θ X,..., X ) is maximized (as a fuctio of θ with X,..., X held fixed). Ulike the method-of-momets estimator we ca see that the MLE will always obey atural parameter restrictios, i.e. the rage of the MLE estimator is the same as the rage of the parameter. Ituitively, the MLE is just the value of the parameter which is most likely to have geerated the sample ad thus is a atural choice as a poit estimate. It also has may optimality properties i certai settigs: ideed, much of the early theoretical developmet i statistics revolved aroud showig the optimality of MLE i various seses. There are some commo difficulties with usig the MLE: the first is computatioal, how do we fid the global maximum of the likelihood fuctio ad how do we verify/certify that it is i fact the global maximum? The ext two are related to umerical sesitivity: () we ca ofte oly approximately maximize the likelihood (usig a umerical procedure like gradiet descet) so we eed that the likelihood is a well-behaved fuctio of the parameters. (2)

5 Lecture 9: September Similarly, it is also atural to hope that the estimator is a well-behaved fuctio of the data, i.e., we would hope that a slightly differet sample would ot result i a vastly differet MLE. The typical way to compute the MLE (suppose that we have k ukow parameters) is to either aalytically or umerically solve the system of equatios: Example : θ i L(θ X,..., X ) = 0 i =,..., k. Suppose X,..., X N(θ, ), the the likelihood fuctio is give as: L(θ X,..., X ) = exp( (X i θ) 2 /2). 2π A frequetly useful simplificatio is to observe that if θ maximizes L(θ X,..., X ) the θ also maximizes log L(θ X,..., X ). We ca also of course igore costats. So we have that: So that we obtai: ˆθ = arg max log L(θ X,..., X ) = arg mi θ θ ˆθ = X i. (X i θ) 2. We eed to further verify that the secod derivative (of the egative log-likelihood) is egative: i this case the secod derivative is 2. Example 2: which is maximized at Suppose that X,..., X Ber(p), the the log-likelihood is give by log L(p X,..., X ) X i log p + ( X i ) log( p) = X log p + ( X) log( p), ˆp = X Ivariace of the MLE Roughly, the ivariace property of the MLE states: suppose that the MLE for a parameter θ is give by ˆθ the the MLE for a parameter τ(θ) is τ(ˆθ). Let us deote the likelihood as a fuctio of the trasformed parameter by L (η X,..., X ). For ivariace we eed to cosider two cases:

6 9-6 Lecture 9: September 9. τ is a ivertible trasformatio: I this case there is a mappig from the likelihood of a poit η to a poit θ = τ (η), i.e. ad we have that the MLE for η: ˆη = arg sup η L (η X,..., X ) = L(τ (η) X,..., X ), L (η X,..., X ) = arg sup η L(τ (η) X,..., X ) = τ(arg sup L(θ X,..., X )) = τ(ˆθ). θ 2. Whe τ is ot ivertible: I this case, it is possible that several parameters θ, θ 2,... map to the same value η, so we eed some care i defiig the iduced likelihood. Particularly, if we defie: L (η X,..., X ) = the oe ca verify that the MLE is ivariat. sup L(θ X,..., X ), θ:τ(θ)=η We will discuss other properties of the MLE i future lectures. 9.3 Bayes Estimators The third geeral method to derive estimators is a bit differet philosophically from the first two. At a high-level we eed to uderstad the Bayesia approach (we will of course stay clear of ay philosophical questios): i our approaches so far (so-called frequetist approaches) we assumed that there was a fixed but ukow true parameter, ad that we observed samples draw i.i.d from the populatio (whose desity/mass fuctio/distributio was idexed by the ukow parameter). I the Bayesia approach we cosider the parameter θ to be radom. We have a prior belief of the distributio of the parameter, which we update after seeig the samples X,..., X. We update our belief usig Bayes rule ad the updated distributio is kow as the posterior distributio. We deote the prior distributio by π(θ), ad the posterior distributio as π(θ X,..., X ). Usig Bayes rule we have that: π(θ X,..., X ) = π(θ)l(θ X,..., X ) θ π(θ)l(θ X,..., X ). The posterior distributio is a distributio over the possible parameter values. I this lecture we are focusig o poit estimatio so oe commo cadidate is the posterior mea (i.e. the expected value of the posterior distributio).

7 Lecture 9: September Igorig ay philosophical questios, oe ca view this methodology as a way to geerate cadidate poit estimators, by specifyig reasoable prior distributios. I practice however this calculatio is hard to do aalytically, so we ofte ed up specifyig priors out of coveiece rather tha ay real prior belief. Particularly, a coveiet choice of prior distributio is oe for which the posterior distributio belogs to the same family as the prior distributio: such priors are called cojugate priors. Example : Biomial Bayes estimator: Suppose X,..., X Ber(p). We will first eed to defie the Beta distributio: a RV has a Beta distributio with parameters α ad β if its desity o [0, ] is f(p) = Γ(α + β) Γ(α)Γ(β) pα ( p) β. For us it will be sufficiet to igore the ormalizig part ad just remember that the Beta desity: f(p) p α ( p) β. The mea of the Beta distributio is: α/(α + β). Let us deote X = There are two cadidate priors we will cosider: X i.. The flat/uiformative prior: π(p) = for 0 p. I this case, the posterior desity is: f(p X,..., X ) p X( ( X) p) = p ( X+) ( p) (( X)+). This is just a Beta( X +, ( X) + ) distributio. So our estimate (the posterior mea) would be: ˆp = X = + 2 X = w X + ( w) 2, which ca be viewed as a covex combiatio of the MLE ad the prior mea /2. 2

8 9-8 Lecture 9: September 9 2. The other commo prior is the oe that is cojugate to the beroulli likelihood, i.e. the Beta prior. A similar calculatio as the oe above will show that if use π(p) Beta(α, β), the the posterior distributio will also be a Beta distributio: ad our Bayes estimator would be: f(p X,..., X ) Beta(α + X, β + ( X)), ˆp = α + X α + β +. Example 2: Gaussia Bayes estimator: Here we suppose that our prior belief is that the parameter has distributio N(µ, τ 2 ) ad we observe X,..., X draw from N(θ, σ 2 ). We assume that σ 2, µ, τ 2 are all kow. A fairly ivolved calculatio i this case (see for istace Problem of Chapter of Wasserma) will show that the posterior distributio is also a Gaussia with parameters: ( ) ˆµ = τ 2 σ 2 X σ 2 + τ 2 i + σ 2 + τ (µ) 2 ˆσ 2 = σ2 τ 2 σ 2 + τ 2, which suggests the poit estimate: ˆµ = τ 2 σ 2 + τ 2 ( ) σ 2 X i + σ 2 + τ (µ). 2 Which ca oce agai be see as a covex combiatio of our prior belief ad the MLE, i.e.: ( ) ˆµ = w X i + ( w)µ, for some 0 w.

### Chapter 6 Principles of Data Reduction

Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

### ECE 901 Lecture 13: Maximum Likelihood Estimation

ECE 90 Lecture 3: Maximum Likelihood Estimatio R. Nowak 5/7/009 The focus of this lecture is to cosider aother approach to learig based o maximum likelihood estimatio. Ulike earlier approaches cosidered

### STATISTICAL INFERENCE

STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

### 5. Likelihood Ratio Tests

1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

### DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

### Lecture 10 October Minimaxity and least favorable prior sequences

STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

### Solutions: Homework 3

Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

### Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

### Parameter, Statistic and Random Samples

Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

### Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

### Questions and Answers on Maximum Likelihood

Questios ad Aswers o Maximum Likelihood L. Magee Fall, 2008 1. Give: a observatio-specific log likelihood fuctio l i (θ) = l f(y i x i, θ) the log likelihood fuctio l(θ y, X) = l i(θ) a data set (x i,

### Output Analysis and Run-Length Control

IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad Ru-Legth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%

### Binomial Distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

### Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

### The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

### Unbiased Estimation. February 7-12, 2008

Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

### Infinite Sequences and Series

Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

### Monte Carlo Integration

Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

### Lecture 11 October 27

STATS 300A: Theory of Statistics Fall 205 Lecture October 27 Lecturer: Lester Mackey Scribe: Viswajith Veugopal, Vivek Bagaria, Steve Yadlowsky Warig: These otes may cotai factual ad/or typographic errors..

### Element sampling: Part 2

Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

### The Sample Variance Formula: A Detailed Study of an Old Controversy

The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace

### The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

### ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

### Basis for simulation techniques

Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios

### Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

### Math 140 Introductory Statistics

8.2 Testig a Proportio Math 1 Itroductory Statistics Professor B. Abrego Lecture 15 Sectios 8.2 People ofte make decisios with data by comparig the results from a sample to some predetermied stadard. These

### 6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

### Statisticians use the word population to refer the total number of (potential) observations under consideration

6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

### Recurrence Relations

Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

### A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS

J. Japa Statist. Soc. Vol. 41 No. 1 2011 67 73 A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS Yoichi Nishiyama* We cosider k-sample ad chage poit problems for idepedet data i a

### This is an introductory course in Analysis of Variance and Design of Experiments.

1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hard-copy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class

### A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

### Confidence Intervals for the Population Proportion p

Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:

### 7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

### Algorithms for Clustering

CR2: Statistical Learig & Applicatios Algorithms for Clusterig Lecturer: J. Salmo Scribe: A. Alcolei Settig: give a data set X R p where is the umber of observatio ad p is the umber of features, we wat

### Statistical Theory MT 2009 Problems 1: Solution sketches

Statistical Theory MT 009 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. (a) Let 0 < θ < ad put f(x, θ) = ( θ)θ x ; x = 0,,,... (b) (c) where

### Analysis of Experimental Data

Aalysis of Experimetal Data 6544597.0479 ± 0.000005 g Quatitative Ucertaity Accuracy vs. Precisio Whe we make a measuremet i the laboratory, we eed to kow how good it is. We wat our measuremets to be both

### Properties and Hypothesis Testing

Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

### KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

### Topic 18: Composite Hypotheses

Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:

### In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example:

74 The Method of Partial Fractios I algebra oe speds much time fidig commo deomiators ad thus simplifyig ratioal epressios For eample: + + + 6 5 + = + = = + + + + + ( )( ) 5 It may the seem odd to be watig

### Introduction to Machine Learning DIS10

CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

### The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

### The standard deviation of the mean

Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

### On an Application of Bayesian Estimation

O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

### PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

### A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

### f(x)dx = 1 and f(x) 0 for all x.

OCR Statistics 2 Module Revisio Sheet The S2 exam is 1 hour 30 miutes log. You are allowed a graphics calculator. Before you go ito the exam make sureyou are fully aware of the cotets of theformula booklet

### 1 Covariance Estimation

Eco 75 Lecture 5 Covariace Estimatio ad Optimal Weightig Matrices I this lecture, we cosider estimatio of the asymptotic covariace matrix B B of the extremum estimator b : Covariace Estimatio Lemma 4.

### Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1

. Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely

### Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

### 4.1 Data processing inequality

ECE598: Iformatio-theoretic methods i high-dimesioal statistics Sprig 206 Lecture 4: Total variatio/iequalities betwee f-divergeces Lecturer: Yihog Wu Scribe: Matthew Tsao, Feb 8, 206 [Ed. Mar 22] Recall

### Economics Spring 2015

1 Ecoomics 400 -- Sprig 015 /17/015 pp. 30-38; Ch. 7.1.4-7. New Stata Assigmet ad ew MyStatlab assigmet, both due Feb 4th Midterm Exam Thursday Feb 6th, Chapters 1-7 of Groeber text ad all relevat lectures

### Maximum Likelihood Methods (Hogg Chapter Six)

Maximum Likelihood Methods Hogg Chapter ix TAT 406-0: Mathematical tatistics II prig emester 06 Cotets 0 Admiistrata Maximum Likelihood Estimatio. Maximum Likelihood Estimates............ Motivatio....................

### Lecture 4 The Simple Random Walk

Lecture 4: The Simple Radom Walk 1 of 9 Course: M36K Itro to Stochastic Processes Term: Fall 014 Istructor: Gorda Zitkovic Lecture 4 The Simple Radom Walk We have defied ad costructed a radom walk {X }

### G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

### CHAPTER 5. Theory and Solution Using Matrix Techniques

A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

### Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day

LECTURE # 8 Mea Deviatio, Stadard Deviatio ad Variace & Coefficiet of variatio Mea Deviatio Stadard Deviatio ad Variace Coefficiet of variatio First, we will discuss it for the case of raw data, ad the

### Chapter 6 Sampling Distributions

Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

### Topic 6 Sampling, hypothesis testing, and the central limit theorem

CSE 103: Probability ad statistics Fall 2010 Topic 6 Samplig, hypothesis testig, ad the cetral limit theorem 61 The biomial distributio Let X be the umberofheadswhe acoiofbiaspistossedtimes The distributio

### Probability and Statistics

ICME Refresher Course: robability ad Statistics Staford Uiversity robability ad Statistics Luyag Che September 20, 2016 1 Basic robability Theory 11 robability Spaces A probability space is a triple (Ω,

### Statistical Inference

Statistical Iferece Professor Abolfazl Sakhai School of Social Work Columbia Uiversity Notes by Yiqiao Yi i L A TEX December 18, 2016 Abstract This is the otes for Statistical Iferece at Columbia Uiversity.

### Statistical inference: example 1. Inferential Statistics

Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

### STA 4032 Final Exam Formula Sheet

Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

### Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

### P1 Chapter 8 :: Binomial Expansion

P Chapter 8 :: Biomial Expasio jfrost@tiffi.kigsto.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 6 th August 7 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

### RADICAL EXPRESSION. If a and x are real numbers and n is a positive integer, then x is an. n th root theorems: Example 1 Simplify

Example 1 Simplify 1.2A Radical Operatios a) 4 2 b) 16 1 2 c) 16 d) 2 e) 8 1 f) 8 What is the relatioship betwee a, b, c? What is the relatioship betwee d, e, f? If x = a, the x = = th root theorems: RADICAL

### Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

### ( µ /σ)ζ/(ζ+1) µ /σ ( µ /σ)ζ/(ζ 1)

A eective CI for the mea with samples of size 1 ad Melaie Wall James Boe ad Richard Tweedie 1 Abstract It is couterituitive that with a sample of oly oe value from a ormal distributio oe ca costruct a

### Riemann Sums y = f (x)

Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

### Elementary manipulations of probabilities

Elemetary maipulatios of probabilities Set probability of multi-valued r.v. {=Odd} = +3+5 = /6+/6+/6 = ½ X X,, X i j X i j Multi-variat distributio: Joit probability: X true true X X,, X X i j i j X X

### Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y.

Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad o-users, x - y. Such studies are sometimes viewed

### Analysis of Algorithms. Introduction. Contents

Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

### Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.

Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios

### REVISION SHEET FP1 (MEI) ALGEBRA. Identities In mathematics, an identity is a statement which is true for all values of the variables it contains.

the Further Mathematics etwork wwwfmetworkorguk V 07 The mai ideas are: Idetities REVISION SHEET FP (MEI) ALGEBRA Before the exam you should kow: If a expressio is a idetity the it is true for all values

### Some Properties of the Exact and Score Methods for Binomial Proportion and Sample Size Calculation

Some Properties of the Exact ad Score Methods for Biomial Proportio ad Sample Size Calculatio K. KRISHNAMOORTHY AND JIE PENG Departmet of Mathematics, Uiversity of Louisiaa at Lafayette Lafayette, LA 70504-1010,

### Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Lecture 16

EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Lecture 16 Variace Questio: Let us retur oce agai to the questio of how may heads i a typical sequece of coi flips. Recall that we

### CURRICULUM INSPIRATIONS: INNOVATIVE CURRICULUM ONLINE EXPERIENCES: TANTON TIDBITS:

CURRICULUM INSPIRATIONS: wwwmaaorg/ci MATH FOR AMERICA_DC: wwwmathforamericaorg/dc INNOVATIVE CURRICULUM ONLINE EXPERIENCES: wwwgdaymathcom TANTON TIDBITS: wwwjamestatocom TANTON S TAKE ON MEAN ad VARIATION

### NUMERICAL METHODS FOR SOLVING EQUATIONS

Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

### STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

### 5 3B Numerical Methods for estimating the area of an enclosed region. The Trapezoidal Rule for Approximating the Area Under a Closed Curve

5 3B Numerical Methods for estimatig the area of a eclosed regio The Trapezoidal Rule for Approximatig the Area Uder a Closed Curve The trapezoidal rule requires a closed o a iterval from x = a to x =

### Lecture 1 Probability and Statistics

Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

### MAT1026 Calculus II Basic Convergence Tests for Series

MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

### Posted-Price, Sealed-Bid Auctions

Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa 207-02-08 We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this

### Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

### Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

### Series III. Chapter Alternating Series

Chapter 9 Series III With the exceptio of the Null Sequece Test, all the tests for series covergece ad divergece that we have cosidered so far have dealt oly with series of oegative terms. Series with

### Lecture 6 Ecient estimators. Rao-Cramer bound.

Lecture 6 Eciet estimators. Rao-Cramer boud. 1 MSE ad Suciecy Let X (X 1,..., X) be a radom sample from distributio f θ. Let θ ˆ δ(x) be a estimator of θ. Let T (X) be a suciet statistic for θ. As we have

### Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

.87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

### 6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

### CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

### Section 14. Simple linear regression.

Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

### A LARGER SAMPLE SIZE IS NOT ALWAYS BETTER!!!

A LARGER SAMLE SIZE IS NOT ALWAYS BETTER!!! Nagaraj K. Neerchal Departmet of Mathematics ad Statistics Uiversity of Marylad Baltimore Couty, Baltimore, MD 2250 Herbert Lacayo ad Barry D. Nussbaum Uited

### Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

### Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter