Bayesian networks are graphical models that characterize how variables are independent of each other.

Size: px
Start display at page:

Download "Bayesian networks are graphical models that characterize how variables are independent of each other."

Transcription

1 Ali Tomescu, Machie learig Prof. Tommi Jaakkola Week 12, Tuesday, November 19th, 2013 Lecture 21 Lecture 21: Hidde Markov Models Fial exam: Eveig of December 10 th, locatio ad time to be aouced. - Hidde Markov models are sure to be o the fial exam, because it is so easy to use them as a test of how well you uderstad geerative modellig Bayesia etworks are graphical models that characterize how variables are idepedet of each other. - s is a paret of x - x is a child of s P(s, x, y) = P(s)P(x, y s) = x,y are coditioally idepedet = P(s)P(x s)p(y s) Hidde Markov models A particular type of Bayesia etwork. The graph gives us parsimoy of descriptio (a compact way of describig it). It also gives us efficiecy of computatio. Notatio chage: The latet variables we do t kow about are deoted with the letter s, which stads for state. States are coupled with observatios. I kow somethig about each state. By cotrast, a simple mixture model looks like this: Page 1

2 Ali Tomescu, Machie learig Prof. Tommi Jaakkola Week 12, Tuesday, November 19th, 2013 Lecture 21 Example: x i ca be a word ad all the observatios would costitute a setece, such as: This course is { terrible great = x 1, x 2, x 3, x 4 You would like to give a part of speech tag for each of these words, as follows: = det, s 2 = ou, s 3 = verb, s 4 = adjective How ca we write dow the distributio for this graphical model, for this Bayesia etwork? What idepedece properties are satisfied? P(x 1,, x,,, s ) =? 1. x 1,, x are coditioally idepedet give,, s P(x 1,, x,,, s ) = P(x 1,, x,, s )P(,, s ) = cod idep = P(x 1,, s )P(,, s ) 2., s 2,, s i 2 ad s i are coditioally idepedet give s i 1 s i s i 2,, s i 1 P(s i, s i 2,, s i 1 ) = P(, s 2,, s i 2 s i 1 )P(s i, s i 1 ) P(x 1,, x,,, s ) = P(x 1,, s )P(,, s ) = P(x 1,, s )P(s s 1, s 2,, )P(s 1, s 2,, ) = = P(x 1,, s )P( )P(s 2 )P(s 3 s 2, )P(s s 1,, ) = P(x 1,, s )P( )P(s 2 )P(s 3 s 2 )P(s s 1 ) 3. x i all the other x i s ad all the other s i s s i P(x 1,, x,,, s ) = [ P x,i (x i s i )] [P 1 ( ) P i (s i s i 1 )] = 4. We will make a additioal assumptio here ot show i the graph: HMM is homogeous (the probabilities P(z i = z z i 1 = z ) do ot deped o the positio i alog the sequece) What do we eed to specify a HMM? P(x 1,, x,,, s ) = [ P E (x i s i )] [P 1 ( ) P T (s i s i 1 )] i=2 i=2 Page 2

3 Ali Tomescu, Machie learig Prof. Tommi Jaakkola Week 12, Tuesday, November 19th, 2013 Lecture 21 What are the states? s {1,, k} What are the outputs? x X = { Rd W We eed to specify the iitial state distributio P 1 (S 1 ) We eed to specify emissio output probabilities: P E (x s), which is a table of probabilities, or it could be a Gaussia distributio with a mea that depeds o the state N(x; μ s, σ 2 I). We eed to model the trasitio probabilities: P T (s s) Example: P 1 ( ): [ 1 0 ] = 1 s 2 = 2 P T (s t s t 1 ) s t = 1 s t = 2 s t 1 = s t 1 = P E (x s) = N(x; μ s ; σ 2 ), μ 1 > μ 2 What does this model geerate? What is a likely sequece of states?, s 2, s 3, = 1,2,2,2,. I terms of observatios, at time 1 I am always i state 1 ad at time 2 or greater I am always goig to be ad remai i state 2. Page 3

4 Ali Tomescu, Machie learig Prof. Tommi Jaakkola Week 12, Tuesday, November 19th, 2013 Lecture 21 Trasitio diagram How to use these HMM models? We eed to be able to solve a few problems: How likely is a observatio sequece i this model, after specifyig it. We eed to evaluate: P(x 1,, x ) = P(x 1,, x,,, s ) all k possible,,s We eed to be able to estimate P 1 ( ), P E (x s), P T (s s) from data { (1) (1) x 1,, x1 } (T) (T) x 1,, xt We eed to estimate the predictio (,, s ) = argmax P(x 1,, x,,, s ) for a particular data row of x i s i the,,s above data matrix. But how ca we sum over k possible terms? We ca perform the summatio i time liear to the legth of the sequece due to the idepedece relatios. The forward-backward algorithm Gives us P(x 1,, x ) i liear time. Forward probabilities: Predictive probabilities. For a particular sequece x 1,, x, with s i {1,, k}, we wat to predict α t (i) = P(x 1,, x t, s t = i). The we ca predict P(s t = i x 1,, x t ) = Page 4 α 1 ( ) = P 1 ( )P E (x 1 ) = P(x 1, ) α 1 ( ) = P(x 1 ) α t(i). j α t (j)

5 Ali Tomescu, Machie learig Prof. Tommi Jaakkola Week 12, Tuesday, November 19th, 2013 Lecture 21 α 2 (s 2 ) = P(x 1, x 2,, s 2 ) = (P 1 ( )P E (x 1 )P T (s 2 )P E (x 2 s 2 )) = α 2 ( )P T (s 2 )P E (x 2 s 2 ) α 3 (s 3 ) = P(x 1, x 2, x 3,, s 2, s 3 ) = ( P(x 1, x 2,, s 2 )) P T (s 3 s 2 )P E (x 3 s 3 ) = α 2 (s 2 )P T (s 3 s 2 )P E (x 3 s 3 ),s 2 s 2 I geeral, we get: α t (s t ) = P(x 1, x 2,, x t, s t ) = P(x 1, x 2,, x t,, s 2,, s t ),s 2,,s t 1 = α t 1 (s t 1 )P t (s t s t 1 )P E (x t s t ) s t 1, s t = 1,, k α t (s t ) s t = P(x 1, x 2,, x t ) For α 1 ( ), we have k possible values, correspodig to each {1,, k}. s 2 What is the computatioal cost of evaluatig P(x 1, x 2,, x )? O(k 2 ), because I have k umbers to fill i for α t ad each oe ivolves summig over the k previous α t 1 values. Note that t {1,, } hece the O(k 2 ). Note: Icreasig the umber of values k for the hidde states i a HMM has much greater effect o the computatioal cost of O(k 2 ) forward-backward algorithm tha icreasig the legth of the observatio sequece. Backward probabilities: The complemet of forward probabilities. Diagostic probabilities. Page 5

6 Ali Tomescu, Machie learig Prof. Tommi Jaakkola Week 12, Tuesday, November 19th, 2013 Lecture 21 β t (i) = P(x t+1,, x s t = i) β t (s t ) = P(x t+1,, x s t ) If I start from that state, the what is the probabilities of geeratig all the future observatios? β (s ) = 1 B 1 (s 1 ) = P(x s 1 ) = P T (s s 1 )P E (x s ) s B 2 (s 2 ) = P(x 1, x s 2 ) = P T (s 1 s 2 )P E (x 1 s 1 )P T (s s 1 )P E (x s ) s,s 1 = ( P T (s s 1 )P E (x s ) s ) P T (s 1 s 2 )P E (x 1 s 1 ) s 1 = B 1 (s 1 )P T (s 1 s 2 )P E (x 1 s 1 ) s 1 β t (s t ) = P T (s t+1 s t )P E (x t+1 s t+1 )β t+1 (s t+1 ) s t+1 How to evaluate the posterior probability of a particular state: P(s t = s x 1,, x ) = P(x 1,, x, s t = s) P(x 1,, x ) How to evaluate the probability of the data set: = P(x 1,, x t, s t = s)p(x t+1,, x s t = s) P(x 1,, x ) P(x 1, x 2,, x ) = α (s ) s = α t(s)β t (s) α t (s)β t (s) s P(x 1, x 2,, x ) = P( )P(x 1 )β 1 ( ) Page 6 P(x 1, x 2,, x ) = α t (s t )β t (s t ) How to evaluate the posterior probability that the HMM wet s s at time t. P(s t = s, s t+1 = s x 1,, x ) = α t(s)p T (s s)p E (x t+1 s )β t+1 (s ) α t (s )β t (s ) s s t

Sequences, Sums, and Products

Sequences, Sums, and Products CSCE 222 Discrete Structures for Computig Sequeces, Sums, ad Products Dr. Philip C. Ritchey Sequeces A sequece is a fuctio from a subset of the itegers to a set S. A discrete structure used to represet

More information

Exercises Advanced Data Mining: Solutions

Exercises Advanced Data Mining: Solutions Exercises Advaced Data Miig: Solutios Exercise 1 Cosider the followig directed idepedece graph. 5 8 9 a) Give the factorizatio of P (X 1, X 2,..., X 9 ) correspodig to this idepedece graph. P (X) = 9 P

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

11 Correlation and Regression

11 Correlation and Regression 11 Correlatio Regressio 11.1 Multivariate Data Ofte we look at data where several variables are recorded for the same idividuals or samplig uits. For example, at a coastal weather statio, we might record

More information

3/8/2016. Contents in latter part PATTERN RECOGNITION AND MACHINE LEARNING. Dynamical Systems. Dynamical Systems. Linear Dynamical Systems

3/8/2016. Contents in latter part PATTERN RECOGNITION AND MACHINE LEARNING. Dynamical Systems. Dynamical Systems. Linear Dynamical Systems Cotets i latter part PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Liear Dyamical Systems What is differet from HMM? Kalma filter Its stregth ad limitatio Particle Filter Its simple

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

11 Hidden Markov Models

11 Hidden Markov Models Hidde Markov Models Hidde Markov Models are a popular machie learig approach i bioiformatics. Machie learig algorithms are preseted with traiig data, which are used to derive importat isights about the

More information

Open book and notes. 120 minutes. Cover page and six pages of exam. No calculators.

Open book and notes. 120 minutes. Cover page and six pages of exam. No calculators. IE 330 Seat # Ope book ad otes 120 miutes Cover page ad six pages of exam No calculators Score Fial Exam (example) Schmeiser Ope book ad otes No calculator 120 miutes 1 True or false (for each, 2 poits

More information

Machine Learning 4771

Machine Learning 4771 Machie Learig 4771 Istructor: Toy Jebara Topic 14 Structurig Probability Fuctios for Storage Structurig Probability Fuctios for Iferece Basic Graphical Models Graphical Models Parameters as Nodes Structurig

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Algorithms for Clustering

Algorithms for Clustering CR2: Statistical Learig & Applicatios Algorithms for Clusterig Lecturer: J. Salmo Scribe: A. Alcolei Settig: give a data set X R p where is the umber of observatio ad p is the umber of features, we wat

More information

Elementary manipulations of probabilities

Elementary manipulations of probabilities Elemetary maipulatios of probabilities Set probability of multi-valued r.v. {=Odd} = +3+5 = /6+/6+/6 = ½ X X,, X i j X i j Multi-variat distributio: Joit probability: X true true X X,, X X i j i j X X

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019 Outlie CSCI-567: Machie Learig Sprig 209 Gaussia mixture models Prof. Victor Adamchik 2 Desity estimatio U of Souther Califoria Mar. 26, 209 3 Naive Bayes Revisited March 26, 209 / 57 March 26, 209 2 /

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Istitute of Techology 6.867 Machie Learig, Fall 6 Problem Set : Solutios. (a) (5 poits) From the lecture otes (Eq 4, Lecture 5), the optimal parameter values for liear regressio give the

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Pixel Recurrent Neural Networks

Pixel Recurrent Neural Networks Pixel Recurret Neural Networks Aa ro va de Oord, Nal Kalchbreer, Koray Kavukcuoglu Google DeepMid August 2016 Preseter - Neha M Example problem (completig a image) Give the first half of the image, create

More information

Median and IQR The median is the value which divides the ordered data values in half.

Median and IQR The median is the value which divides the ordered data values in half. STA 666 Fall 2007 Web-based Course Notes 4: Describig Distributios Numerically Numerical summaries for quatitative variables media ad iterquartile rage (IQR) 5-umber summary mea ad stadard deviatio Media

More information

RAINFALL PREDICTION BY WAVELET DECOMPOSITION

RAINFALL PREDICTION BY WAVELET DECOMPOSITION RAIFALL PREDICTIO BY WAVELET DECOMPOSITIO A. W. JAYAWARDEA Departmet of Civil Egieerig, The Uiversit of Hog Kog, Hog Kog, Chia P. C. XU Academ of Mathematics ad Sstem Scieces, Chiese Academ of Scieces,

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Introduction to Computational Molecular Biology. Gibbs Sampling

Introduction to Computational Molecular Biology. Gibbs Sampling 18.417 Itroductio to Computatioal Molecular Biology Lecture 19: November 16, 2004 Scribe: Tushara C. Karuarata Lecturer: Ross Lippert Editor: Tushara C. Karuarata Gibbs Samplig Itroductio Let s first recall

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2013 Aat Sahai Lecture 18 Iferece Oe of the major uses of probability is to provide a systematic framework to perform iferece uder ucertaity. A

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Lecture 5: April 17, 2013

Lecture 5: April 17, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 5: April 7, 203 Scribe: Somaye Hashemifar Cheroff bouds recap We recall the Cheroff/Hoeffdig bouds we derived i the last lecture idepedet

More information

The Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) Algorithm The Expectatio-Maximizatio (EM) Algorithm Readig Assigmets T. Mitchell, Machie Learig, McGraw-Hill, 997 (sectio 6.2, hard copy). S. Gog et al. Dyamic Visio: From Images to Face Recogitio, Imperial College

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

2.4 - Sequences and Series

2.4 - Sequences and Series 2.4 - Sequeces ad Series Sequeces A sequece is a ordered list of elemets. Defiitio 1 A sequece is a fuctio from a subset of the set of itegers (usually either the set 80, 1, 2, 3,... < or the set 81, 2,

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulatio 1 Itroductio Readig Assigmet: Read Chapter 1 of text. We shall itroduce may of the key issues to be discussed i this course via a couple of model problems. Model Problem 1 (Jackso

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Pattern Classification, Ch4 (Part 1)

Pattern Classification, Ch4 (Part 1) Patter Classificatio All materials i these slides were take from Patter Classificatio (2d ed) by R O Duda, P E Hart ad D G Stork, Joh Wiley & Sos, 2000 with the permissio of the authors ad the publisher

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions Statistical ad Mathematical Methods DS-GA 00 December 8, 05. Short questios Sample Fial Problems Solutios a. Ax b has a solutio if b is i the rage of A. The dimesio of the rage of A is because A has liearly-idepedet

More information

Machine Learning Assignment-1

Machine Learning Assignment-1 Uiversity of Utah, School Of Computig Machie Learig Assigmet-1 Chadramouli, Shridhara sdhara@cs.utah.edu 00873255) Sigla, Sumedha sumedha.sigla@utah.edu 00877456) September 10, 2013 1 Liear Regressio a)

More information

Solution of Final Exam : / Machine Learning

Solution of Final Exam : / Machine Learning Solutio of Fial Exam : 10-701/15-781 Machie Learig Fall 2004 Dec. 12th 2004 Your Adrew ID i capital letters: Your full ame: There are 9 questios. Some of them are easy ad some are more difficult. So, if

More information

A Note on Effi cient Conditional Simulation of Gaussian Distributions. April 2010

A Note on Effi cient Conditional Simulation of Gaussian Distributions. April 2010 A Note o Effi ciet Coditioal Simulatio of Gaussia Distributios A D D C S S, U B C, V, BC, C April 2010 A Cosider a multivariate Gaussia radom vector which ca be partitioed ito observed ad uobserved compoetswe

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 9 Maximum Likelihood Estimatio 9.1 The Likelihood Fuctio The maximum likelihood estimator is the most widely used estimatio method. This chapter discusses the most importat cocepts behid maximum

More information

Response Variable denoted by y it is the variable that is to be predicted measure of the outcome of an experiment also called the dependent variable

Response Variable denoted by y it is the variable that is to be predicted measure of the outcome of an experiment also called the dependent variable Statistics Chapter 4 Correlatio ad Regressio If we have two (or more) variables we are usually iterested i the relatioship betwee the variables. Associatio betwee Variables Two variables are associated

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments: Recall: STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Commets:. So far we have estimates of the parameters! 0 ad!, but have o idea how good these estimates are. Assumptio: E(Y x)! 0 +! x (liear coditioal

More information

Exam II Covers. STA 291 Lecture 19. Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Location CB 234

Exam II Covers. STA 291 Lecture 19. Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Location CB 234 STA 291 Lecture 19 Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Locatio CB 234 STA 291 - Lecture 19 1 Exam II Covers Chapter 9 10.1; 10.2; 10.3; 10.4; 10.6

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Math 25 Solutions to practice problems

Math 25 Solutions to practice problems Math 5: Advaced Calculus UC Davis, Sprig 0 Math 5 Solutios to practice problems Questio For = 0,,, 3,... ad 0 k defie umbers C k C k =! k!( k)! (for k = 0 ad k = we defie C 0 = C = ). by = ( )... ( k +

More information

ECO 312 Fall 2013 Chris Sims LIKELIHOOD, POSTERIORS, DIAGNOSING NON-NORMALITY

ECO 312 Fall 2013 Chris Sims LIKELIHOOD, POSTERIORS, DIAGNOSING NON-NORMALITY ECO 312 Fall 2013 Chris Sims LIKELIHOOD, POSTERIORS, DIAGNOSING NON-NORMALITY (1) A distributio that allows asymmetry differet probabilities for egative ad positive outliers is the asymmetric double expoetial,

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p).

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p). Limit Theorems Covergece i Probability Let X be the umber of heads observed i tosses. The, E[X] = p ad Var[X] = p(-p). L O This P x p NM QP P x p should be close to uity for large if our ituitio is correct.

More information

Regression and generalization

Regression and generalization Regressio ad geeralizatio CE-717: Machie Learig Sharif Uiversity of Techology M. Soleymai Fall 2016 Curve fittig: probabilistic perspective Describig ucertaity over value of target variable as a probability

More information

Lecture Notes 15 Hypothesis Testing (Chapter 10)

Lecture Notes 15 Hypothesis Testing (Chapter 10) 1 Itroductio Lecture Notes 15 Hypothesis Testig Chapter 10) Let X 1,..., X p θ x). Suppose we we wat to kow if θ = θ 0 or ot, where θ 0 is a specific value of θ. For example, if we are flippig a coi, we

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Recursive Updating Fixed Parameter

Recursive Updating Fixed Parameter Recursive Udatig Fixed Parameter So far we ve cosidered the sceario where we collect a buch of data ad the use that (ad the rior PDF) to comute the coditioal PDF from which we ca the get the MAP, or ay

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

Lecture 4. We also define the set of possible values for the random walk as the set of all x R d such that P(S n = x) > 0 for some n.

Lecture 4. We also define the set of possible values for the random walk as the set of all x R d such that P(S n = x) > 0 for some n. Radom Walks ad Browia Motio Tel Aviv Uiversity Sprig 20 Lecture date: Mar 2, 20 Lecture 4 Istructor: Ro Peled Scribe: Lira Rotem This lecture deals primarily with recurrece for geeral radom walks. We preset

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

MA Advanced Econometrics: Properties of Least Squares Estimators

MA Advanced Econometrics: Properties of Least Squares Estimators MA Advaced Ecoometrics: Properties of Least Squares Estimators Karl Whela School of Ecoomics, UCD February 5, 20 Karl Whela UCD Least Squares Estimators February 5, 20 / 5 Part I Least Squares: Some Fiite-Sample

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Statistical Machine Translation

Statistical Machine Translation Statistical Machie Traslatio LECTURE 5 HIGHER IBM MODELS APRIL 6 200 Brief Outlie - IBM Model 2 - IBM Model 3 - IBM Model 4 - IBM Model 5 Ref: The Mathematics of Statistical Machie Traslatio: Parameter

More information

The coalescent coalescence theory

The coalescent coalescence theory The coalescet coalescece theory Peter Beerli September 1, 009 Historical ote Up to 198 most developmet i populatio geetics was prospective ad developed expectatios based o situatios of today. Most work

More information

Lecture 18: Sampling distributions

Lecture 18: Sampling distributions Lecture 18: Samplig distributios I may applicatios, the populatio is oe or several ormal distributios (or approximately). We ow study properties of some importat statistics based o a radom sample from

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

HOMEWORK I: PREREQUISITES FROM MATH 727

HOMEWORK I: PREREQUISITES FROM MATH 727 HOMEWORK I: PREREQUISITES FROM MATH 727 Questio. Let X, X 2,... be idepedet expoetial radom variables with mea µ. (a) Show that for Z +, we have EX µ!. (b) Show that almost surely, X + + X (c) Fid the

More information

Clustering: Mixture Models

Clustering: Mixture Models Clusterig: Mixture Models Machie Learig 10-601B Seyoug Kim May of these slides are derived from Tom Mitchell, Ziv- Bar Joseph, ad Eric Xig. Thaks! Problem with K- meas Hard Assigmet of Samples ito Three

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Chapter 6 Part 5. Confidence Intervals t distribution chi square distribution. October 23, 2008

Chapter 6 Part 5. Confidence Intervals t distribution chi square distribution. October 23, 2008 Chapter 6 Part 5 Cofidece Itervals t distributio chi square distributio October 23, 2008 The will be o help sessio o Moday, October 27. Goal: To clearly uderstad the lik betwee probability ad cofidece

More information

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University Istructor: Achievig Statioary Distributios i Markov Chais Moday, November 1, 008 Rice Uiversity Dr. Volka Cevher STAT 1 / ELEC 9: Graphical Models Scribe: Rya E. Guerra, Tahira N. Saleem, Terrace D. Savitsky

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

Classification with linear models

Classification with linear models Lecture 8 Classificatio with liear models Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square Geerative approach to classificatio Idea:. Represet ad lear the distributio, ). Use it to defie probabilistic

More information

Computability and computational complexity

Computability and computational complexity Computability ad computatioal complexity Lecture 4: Uiversal Turig machies. Udecidability Io Petre Computer Sciece, Åbo Akademi Uiversity Fall 2015 http://users.abo.fi/ipetre/computability/ 21. toukokuu

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

ENGI 9420 Engineering Analysis Assignment 3 Solutions

ENGI 9420 Engineering Analysis Assignment 3 Solutions ENGI 9 Egieerig Aalysis Assigmet Solutios Fall [Series solutio of ODEs, matri algebra; umerical methods; Chapters, ad ]. Fid a power series solutio about =, as far as the term i 7, to the ordiary differetial

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Itroductio to Probability ad Statistics Lecture 23: Cotiuous radom variables- Iequalities, CLT Puramrita Sarkar Departmet of Statistics ad Data Sciece The Uiversity of Texas at Austi www.cs.cmu.edu/

More information

Discrete Mathematics and Probability Theory Fall 2016 Walrand Probability: An Overview

Discrete Mathematics and Probability Theory Fall 2016 Walrand Probability: An Overview CS 70 Discrete Mathematics ad Probability Theory Fall 2016 Walrad Probability: A Overview Probability is a fasciatig theory. It provides a precise, clea, ad useful model of ucertaity. The successes of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 6 9/23/203 Browia motio. Itroductio Cotet.. A heuristic costructio of a Browia motio from a radom walk. 2. Defiitio ad basic properties

More information