Lecture 5: April 17, 2013

Size: px
Start display at page:

Download "Lecture 5: April 17, 2013"

Transcription

1 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 5: April 7, 203 Scribe: Somaye Hashemifar Cheroff bouds recap We recall the Cheroff/Hoeffdig bouds we derived i the last lecture idepedet 0/ radom variables {X i } ad E [Z] = µ The we have [ e σ ] µ P [Z ( + σ)µ] ( + σ) (+σ) Let Z be a sum of Now, let s look at a large deviatio usig Cheroff bouds: P [Z eµ] ( e e e e = e µ ) µ Whe ( + σ) is eve larger ie ( + σ) 2e, usig Cheroff boud we would have P [Z ( + σ)µ] ( e ) (+σ)µ + σ 2 (+σ)µ 2 Permutatio routig i hypercube We ow cotiue the descriptio of the radomized routig scheme for the hypercube graph Recall that the -dimesioal biary hypercube graph is a graph with N = 2 odes where V = {0, } (x, y) E if x, y V ad x ad y differ i just oe bit Let π : {0, } {0, } be ay permutatio of the odes The goal is to sed a packet from ode x to ode π(x), simultaeously for all odes x Recall that we are workig i the sychroous model, where at each time istat we are allowed to sed at most oe packet across each edge of the hypercube If there are multiple packets waitig to cross a edge at time t, the we put them i a queue ad choose oe packet to cross that edge (the method for choosig a packet out of the queue ca be arbitrary) Also, we are iterested i oblivious routig schemes, such that the path of the packet from x to π(x) depeds oly o x ad π(x) ad ot o the destiatios of ay other packets We will prove the followig result due to Breber ad Valiat [BV8]

2 Theorem 2 ([BV8]) There is a radomized oblivious scheme to route packets from each x V to π[x], which takes time O() with probability 2 Ω() I the descriptio below, we idetify a packet with its source ad refer to the packet beig routed from x to π(x) as packet x We ow describe the routig scheme Scheme: The radomized routig scheme has two phases Phase : Packet x chooses a radom itermediate destiatio γ(x) {0, } ad goes to γ(x) usig the bit-fixig path Phase 2: Packet x goes from γ(x)to π(x) usig the bit-fixig path Recall that a bit-fixig path betwee i ad j is a path obtaied by flippig bits of i that are differet from j i a fixed sequece to reach j For example a bit-fixig path from i = 0000 to j = 00 i the hypercube {0, } 7 is i = = j A bit-fixig path is always a shortest path from i to j i the hypercube Basic idea: Sice π(x) is a permutatio, the two phases are symmetric It will be sufficiet to show that the time take i Phase is O() with high probability Let P x be the bit-fixig path from x to γ(x) ad T (x) be the total time take by packet x Also, let D(x) be the delay for packet goig from x to γ(x) ie, the time spet by packet x without movig whe it is waitig i a queue at some itermediate ode The T (x) + D(x) We wat to show that D(x) is small for every x The followig claim provides a upper boud o D(x) Claim 22 For all x {0, }, D(x) umber of paths itersectig P x = {y x : P y P x } We first aalyze the routig scheme assumig the above claim For each x, we defie the radom variable Z x Z x = {y x : P y P x } We wat to show that Z x is O() for each x We first derive a upper boud o Z x Let P x be the path (e,, e k ) The Z x x i= (# paths passig through e i ) Note that i the above descriptio the path (e,, e k ) ad its legth k are also radom Sice we do ot wat to compute ay bouds coditioed o the choice of P x, we will i fact show that with high probability, for every bit-fixig path P, the umber of paths P y itersectig P is O() Fix a arbitrary bit-fixig path P = (e,, e k ) ad defie N P = {y {0, } : P P y } i N ei, 2

3 Where a edge e i, N ei deotes the umber of paths passig through e i By symmetry, we must have that E [N e ] is the same for all e E The, [ ] [ ] E [N e ] = E N e = E P x = 2 2 e e Note that i the above we are coutig (x, y) ad (y, x) as differet edges Thus, the umber of edges is 2, which gives E [N e ] = /2 for all e Thus, we have for each path P, x E [N P ] = i E [N ei ] = P 2 2 Also, N P ca be writte as a sum of 2 idepedet radom variables I P,y where I P,y = { if P Py 0 otherwise Thus, ca ow boud the probability that N P is large usig Cheroff bouds Sice 2e 6, we have P [N P 3] 2 3 Note that the umber of bit-fixig paths is at most 2 2, sice the path ca be specified by specifyig a start ad a ed Thus, the probability that for ay P, N P is greater tha 3 is at most = 2 Also, for ay x, we have that Z x N Px 3 Thus, with probability at least 2, the time take by all packets i phase is at most + 3 = 4 We ow prove Claim 22 Proof of Claim 22: First ote that, i the hypercube, whe two bit-fixig paths diverge they will ot come together agai; ie paths which itersect will itersect oly i oe cotiguous segmet Let P x = (e,,, e k ) For every packet y which goes through P x (at least for some time), defie the lag of packet y at the start the time step t is as t i, where e i is the ext edge that packet y wats to traverse Note that at time t, all packets waitig to cross a edge must have the same lag At each time step, oe of these packets crosses the edge ad its lag remais uchaged (or it exits the path) ad the lag of the remaiig packets icreases by The lag of the packet x goes from 0 to D(x) We will charge each icrease i the lag of packet x to a uique y such that P y P x Cosider the time step t whe the lag of packet x goes from L to L + ; suppose this happes whe it is waitig to traverse edge e i The x must be held up i the queue at e i (else its lag would ot icrease), so there exists at least oe other packet at e i with lag L, ad this packet actually moves at step t For ay such packet, at each step either it moves ad its lag remais L, or it waits a edge ad some other packet with lag L crosses the edge Now cosider the last time at which there exists a packet y with lag L This packet must exit the path or its lag will remai L We ca charge this packet y for icreasig the lag of packet x from L to L + Each packet y is charged at most oce, because it is charged oly whe it leaves P x which by the observatio at the start of the proof, happes oly oce 3

4 3 Balaced Allocatios We cosider the followig problem of allocatig jobs to servers: We are give a set of servers,, ad m jobs arrive oe by oe We seek to assig each job to oe of the servers so that the loads placed o all servers are as balaced as possible I developig simple, effective load balacig algorithms, radomizatio ofte proves to be a useful tool We cosider two approaches for this problem: Radom Choice: oe possible way to distribute the jobs is to simply place each job o a radom server, chose idepedetly of the previous allocatios Two Radom Choices: For each job, we choose two servers idepedetly ad uiformly at radom ad place the job o the server with less load (breakig ties arbitrarily) We will show that usig two radom choices sigificatly reduces the maximum load o ay server For the etire aalysis, we will work with the case whe m = The aalysis easily exteds to a arbitrary m, but it easier to appreciate the bouds whe m = O() (ad i particular whe m = ) It is coveiet to thik of the above i terms of the so called balls ad bis model Each job ca be thought of a s ball ad each server is a bi We thik of assigig job j to a server i as throwig the j th ball i bi i The load of a server is the same as the umber of balls i the correspodig bi 3 Radom choice Suppose Z i = umber of balls i bi i We ca write Z i = j { if ball j is throw i bi i X ij, where X ij = 0 otherwise The, we have that each Z i is a sum of m(= ) idepedet radom variables with E [Z i ] = Let K = By Cheroff/Hoeffdig bouds, we have that for each i, l l l P [Z i K] Thus, the probability that there exists a i such that Z i K is at most ( ) e K, K which is at most l l for the above value of K Hece, with probability at least, the maximum umber of balls i a bi is at most ( e K ) K l l l 32 The power of two radom choices We will ow show that two radom choices ca reduce the maximum load to O(l l ) The proof techique is due to Azar et al [ABKU94] ad various applicatios were explored by Mitzemacher i his thesis [Mitz96] We first provide the ituitio for the proof 4

5 For each i, let B i deote the umber of bis with at least i balls Suppose B i β i for some boud β i The B i+ is bouded above by a biomial radom variable correspodig to the umber of heads i idepedet coi tosses, where the probability of each toss beig heads is at most (β i /) 2 This is because for a ball to lad a bi such that the load of the bi becomes greater tha i, it must happe that both the radom bis which we chose to put it i, had load at least i This happes with probability at( most (β i /) 2 Thus, B i+ is upper bouded by the above radom ( ) ) 2 variable, which we deote as Bi, βi ( ) 2 This, E [B i+ ] βi ad Bi+ is at most e β2 i with high probability We ca the take β i+ to be e β2 i For the above sequece, the value of β i becomes less tha for i 0 = O(l l ), ad thus we ca boud the maximum load by i 0 The proof will follow this ituitio, except that for the last step, whe E [B i ] becomes very small, we will ot be able to use a Cheroff boud ad will have to resort to a slightly differet aalysis ( ) We first defie the values β i Let β 6 = 2e ad β i+ = e βi 2 β 6 = 2e ( ) 2 β 7 = e = 2e 4e = 2 2 e ( ) 2 β 8 = e = 4e 6e = ( ) 2 β 9 = e = 6e 256e = 2 22 e 2 23 e β i = 2 2i 6 e Let E i be the evet that B i β i Note that E 6 holds for sure sice there ca be at most /6 /2e bis with 6 or more balls We show that with high probability, if E i holds the E i+ holds provided βi 2 2 l Claim 3 Let i be such that β 2 i 2 l The, P [ E i+ E i ] 2 Proof: The proof follows from a direct calculatio We have P [ E i+ E i ] = P [ E i+ E i ] [ ( ( ) ) 2 P Bi, e (β i/) 2 β i 2 ( e β i ) 2 ] 5

6 whe β 2 2 l We ca the use iductio to show that for each i as above, the probability of the evet E i ot happeig is very low Claim 32 For all i such that β 2 i 2 l, we have P [ E i+ ] i + 2 Proof: We prove the claim by iductio o i We kow from the defiitio of β 6 that P [ E 6 ] = 0 Also, from the previous claim, we have that for ay i as above, P [ E i+ ] = P [ E i+ E i ] + P [ E i ] P [ E i+ E i ] 2 + i 2 i + 2 We will eed a slightly differet aalysis whe β 2 i < 2 l, which we will cover i the ext lecture Refereces [BV8] [ABKU94] [Mitz96] G Breber ad L Valiat, Uiversal Schemes for Parallel Commuicatio, Proceedigs of the 3th Aual ACM Symposium o Theory of Computig, 98, pp Y Azar, A Z Broder, A R Karli ad E Upfal, Balaced Allocatios, Proceedigs of the 26th Aual ACM Symposium o Theory of Computig, 994, pp M Mitzemacher, The Power of Two Choices i Radomized Load Balacig, PhD thesis, Uiversity of Califoria Berkeley, 996 6

Lecture 4: April 10, 2013

Lecture 4: April 10, 2013 TTIC/CMSC 1150 Mathematical Toolkit Sprig 01 Madhur Tulsiai Lecture 4: April 10, 01 Scribe: Haris Agelidakis 1 Chebyshev s Iequality recap I the previous lecture, we used Chebyshev s iequality to get a

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Lecture 2 February 8, 2016

Lecture 2 February 8, 2016 MIT 6.854/8.45: Advaced Algorithms Sprig 206 Prof. Akur Moitra Lecture 2 February 8, 206 Scribe: Calvi Huag, Lih V. Nguye I this lecture, we aalyze the problem of schedulig equal size tasks arrivig olie

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Lecture 14: March 1. approaches a standard normal distribution N(0, 1). Thus, as n, for any fixed β > 0 we have. e t2 2 dt

Lecture 14: March 1. approaches a standard normal distribution N(0, 1). Thus, as n, for any fixed β > 0 we have. e t2 2 dt CS271 Radomess & Computatio Sprig 2018 Istructor: Alistair Siclair Lecture 14: March 1 Disclaimer: These otes have ot bee subjected to the usual scrutiy accorded to formal publicatios. They may be distributed

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

ECE 6980 An Algorithmic and Information-Theoretic Toolbox for Massive Data

ECE 6980 An Algorithmic and Information-Theoretic Toolbox for Massive Data ECE 6980 A Algorithmic ad Iformatio-Theoretic Toolbo for Massive Data Istructor: Jayadev Acharya Lecture # Scribe: Huayu Zhag 8th August, 017 1 Recap X =, ε is a accuracy parameter, ad δ is a error parameter.

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Math 216A Notes, Week 5

Math 216A Notes, Week 5 Math 6A Notes, Week 5 Scribe: Ayastassia Sebolt Disclaimer: These otes are ot early as polished (ad quite possibly ot early as correct) as a published paper. Please use them at your ow risk.. Thresholds

More information

Here, e(a, B) is defined as the number of edges between A and B in the n dimensional boolean hypercube.

Here, e(a, B) is defined as the number of edges between A and B in the n dimensional boolean hypercube. Lecture 2 Topics i Complexity Theory ad Pseudoradomess (Sprig 2013) Rutgers Uiversity Swastik Kopparty Scribes: Amey Bhagale, Mrial Kumar 1 Overview I this lecture, we will complete the proof of formula

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013 Large Deviatios for i.i.d. Radom Variables Cotet. Cheroff boud usig expoetial momet geeratig fuctios. Properties of a momet

More information

1 Hash tables. 1.1 Implementation

1 Hash tables. 1.1 Implementation Lecture 8 Hash Tables, Uiversal Hash Fuctios, Balls ad Bis Scribes: Luke Johsto, Moses Charikar, G. Valiat Date: Oct 18, 2017 Adapted From Virgiia Williams lecture otes 1 Hash tables A hash table is a

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2013 Aat Sahai Lecture 18 Iferece Oe of the major uses of probability is to provide a systematic framework to perform iferece uder ucertaity. A

More information

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code:

6.895 Essential Coding Theory October 20, Lecture 11. This lecture is focused in comparisons of the following properties/parameters of a code: 6.895 Essetial Codig Theory October 0, 004 Lecture 11 Lecturer: Madhu Suda Scribe: Aastasios Sidiropoulos 1 Overview This lecture is focused i comparisos of the followig properties/parameters of a code:

More information

Lecture 9: Hierarchy Theorems

Lecture 9: Hierarchy Theorems IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

# fixed points of g. Tree to string. Repeatedly select the leaf with the smallest label, write down the label of its neighbour and remove the leaf.

# fixed points of g. Tree to string. Repeatedly select the leaf with the smallest label, write down the label of its neighbour and remove the leaf. Combiatorics Graph Theory Coutig labelled ad ulabelled graphs There are 2 ( 2) labelled graphs of order. The ulabelled graphs of order correspod to orbits of the actio of S o the set of labelled graphs.

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

MA131 - Analysis 1. Workbook 7 Series I

MA131 - Analysis 1. Workbook 7 Series I MA3 - Aalysis Workbook 7 Series I Autum 008 Cotets 4 Series 4. Defiitios............................... 4. Geometric Series........................... 4 4.3 The Harmoic Series.........................

More information

Introduction to Probability. Ariel Yadin

Introduction to Probability. Ariel Yadin Itroductio to robability Ariel Yadi Lecture 2 *** Ja. 7 ***. Covergece of Radom Variables As i the case of sequeces of umbers, we would like to talk about covergece of radom variables. There are may ways

More information

Lecture 4 The Simple Random Walk

Lecture 4 The Simple Random Walk Lecture 4: The Simple Radom Walk 1 of 9 Course: M36K Itro to Stochastic Processes Term: Fall 014 Istructor: Gorda Zitkovic Lecture 4 The Simple Radom Walk We have defied ad costructed a radom walk {X }

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

As stated by Laplace, Probability is common sense reduced to calculation.

As stated by Laplace, Probability is common sense reduced to calculation. Note: Hadouts DO NOT replace the book. I most cases, they oly provide a guidelie o topics ad a ituitive feel. The math details will be covered i class, so it is importat to atted class ad also you MUST

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Lecture 15: Strong, Conditional, & Joint Typicality

Lecture 15: Strong, Conditional, & Joint Typicality EE376A/STATS376A Iformatio Theory Lecture 15-02/27/2018 Lecture 15: Strog, Coditioal, & Joit Typicality Lecturer: Tsachy Weissma Scribe: Nimit Sohoi, William McCloskey, Halwest Mohammad I this lecture,

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Lecture 11: Hash Functions and Random Oracle Model

Lecture 11: Hash Functions and Random Oracle Model CS 7810 Foudatios of Cryptography October 16, 017 Lecture 11: Hash Fuctios ad Radom Oracle Model Lecturer: Daiel Wichs Scribe: Akshar Varma 1 Topic Covered Defiitio of Hash Fuctios Merkle-Damgaård Theorem

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach STAT 425: Itroductio to Noparametric Statistics Witer 28 Lecture 7: Desity Estimatio: k-nearest Neighbor ad Basis Approach Istructor: Ye-Chi Che Referece: Sectio 8.4 of All of Noparametric Statistics.

More information

SRC Technical Note June 17, Tight Thresholds for The Pure Literal Rule. Michael Mitzenmacher. d i g i t a l

SRC Technical Note June 17, Tight Thresholds for The Pure Literal Rule. Michael Mitzenmacher. d i g i t a l SRC Techical Note 1997-011 Jue 17, 1997 Tight Thresholds for The Pure Literal Rule Michael Mitzemacher d i g i t a l Systems Research Ceter 130 Lytto Aveue Palo Alto, Califoria 94301 http://www.research.digital.com/src/

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

Skip Lists. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 S 3 S S 1

Skip Lists. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 S 3 S S 1 Presetatio for use with the textbook, Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 2015 Skip Lists S 3 15 15 23 10 15 23 36 Skip Lists 1 What is a Skip List A skip list for

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

Math 525: Lecture 5. January 18, 2018

Math 525: Lecture 5. January 18, 2018 Math 525: Lecture 5 Jauary 18, 2018 1 Series (review) Defiitio 1.1. A sequece (a ) R coverges to a poit L R (writte a L or lim a = L) if for each ǫ > 0, we ca fid N such that a L < ǫ for all N. If the

More information

Queuing Theory. Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues

Queuing Theory. Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues Queuig Theory Basic properties, Markovia models, Networks of queues, Geeral service time distributios, Fiite source models, Multiserver queues Chapter 8 Kedall s Notatio for Queuig Systems A/B/X/Y/Z: A

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Lecture 14: Graph Entropy

Lecture 14: Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS Sprig 2013 Lecture 14: Graph Etropy March 19, 2013 Lecturer: Mahdi Cheraghchi Scribe: Euiwoog Lee 1 Recap Bergma s boud o the permaet Shearer s Lemma Number

More information

Information Theory and Statistics Lecture 4: Lempel-Ziv code

Information Theory and Statistics Lecture 4: Lempel-Ziv code Iformatio Theory ad Statistics Lecture 4: Lempel-Ziv code Łukasz Dębowski ldebowsk@ipipa.waw.pl Ph. D. Programme 203/204 Etropy rate is the limitig compressio rate Theorem For a statioary process (X i)

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting Advaced Complexity Theory Sprig 206 Lecture 4: Uique-SAT, Parity-SAT, ad Approximate Coutig Prof. Daa Moshkovitz Scribe: Aoymous Studet Scribe Date: Fall 202 Overview I this lecture we begi talkig about

More information

Reliability and Queueing

Reliability and Queueing Copyright 999 Uiversity of Califoria Reliability ad Queueig by David G. Messerschmitt Supplemetary sectio for Uderstadig Networked Applicatios: A First Course, Morga Kaufma, 999. Copyright otice: Permissio

More information

Lecture 8: October 20, Applications of SVD: least squares approximation

Lecture 8: October 20, Applications of SVD: least squares approximation Mathematical Toolkit Autum 2016 Lecturer: Madhur Tulsiai Lecture 8: October 20, 2016 1 Applicatios of SVD: least squares approximatio We discuss aother applicatio of sigular value decompositio (SVD) of

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Lecture 9: Expanders Part 2, Extractors

Lecture 9: Expanders Part 2, Extractors Lecture 9: Expaders Part, Extractors Topics i Complexity Theory ad Pseudoradomess Sprig 013 Rutgers Uiversity Swastik Kopparty Scribes: Jaso Perry, Joh Kim I this lecture, we will discuss further the pseudoradomess

More information

Ma/CS 6b Class 19: Extremal Graph Theory

Ma/CS 6b Class 19: Extremal Graph Theory /9/05 Ma/CS 6b Class 9: Extremal Graph Theory Paul Turá By Adam Sheffer Extremal Graph Theory The subfield of extremal graph theory deals with questios of the form: What is the maximum umber of edges that

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X,

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probablity that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c} Pr(X c) = Pr({s S X(s)

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

CS/ECE 715 Spring 2004 Homework 5 (Due date: March 16)

CS/ECE 715 Spring 2004 Homework 5 (Due date: March 16) CS/ECE 75 Sprig 004 Homework 5 (Due date: March 6) Problem 0 (For fu). M/G/ Queue with Radom-Sized Batch Arrivals. Cosider the M/G/ system with the differece that customers are arrivig i batches accordig

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

A Probabilistic Analysis of Quicksort

A Probabilistic Analysis of Quicksort A Probabilistic Aalysis of Quicsort You are assumed to be familiar with Quicsort. I each iteratio this sortig algorithm chooses a pivot ad the, by performig comparisios with the pivot, splits the remaider

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

The Boolean Ring of Intervals

The Boolean Ring of Intervals MATH 532 Lebesgue Measure Dr. Neal, WKU We ow shall apply the results obtaied about outer measure to the legth measure o the real lie. Throughout, our space X will be the set of real umbers R. Whe ecessary,

More information

Kurskod: TAMS11 Provkod: TENB 21 March 2015, 14:00-18:00. English Version (no Swedish Version)

Kurskod: TAMS11 Provkod: TENB 21 March 2015, 14:00-18:00. English Version (no Swedish Version) Kurskod: TAMS Provkod: TENB 2 March 205, 4:00-8:00 Examier: Xiagfeg Yag (Tel: 070 2234765). Please aswer i ENGLISH if you ca. a. You are allowed to use: a calculator; formel -och tabellsamlig i matematisk

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

if j is a neighbor of i,

if j is a neighbor of i, We see that if i = j the the coditio is trivially satisfied. Otherwise, T ij (i) = (i)q ij mi 1, (j)q ji, ad, (i)q ij T ji (j) = (j)q ji mi 1, (i)q ij. (j)q ji Now there are two cases, if (j)q ji (i)q

More information

Hashing and Amortization

Hashing and Amortization Lecture Hashig ad Amortizatio Supplemetal readig i CLRS: Chapter ; Chapter 7 itro; Sectio 7.. Arrays ad Hashig Arrays are very useful. The items i a array are statically addressed, so that isertig, deletig,

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy

Lecture 16: Monotone Formula Lower Bounds via Graph Entropy. 2 Monotone Formula Lower Bounds via Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS CMU: Sprig 2013 Lecture 16: Mootoe Formula Lower Bouds via Graph Etropy March 26, 2013 Lecturer: Mahdi Cheraghchi Scribe: Shashak Sigh 1 Recap Graph Etropy:

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Lecture 11: Channel Coding Theorem: Converse Part

Lecture 11: Channel Coding Theorem: Converse Part EE376A/STATS376A Iformatio Theory Lecture - 02/3/208 Lecture : Chael Codig Theorem: Coverse Part Lecturer: Tsachy Weissma Scribe: Erdem Bıyık I this lecture, we will cotiue our discussio o chael codig

More information

Sequences. Notation. Convergence of a Sequence

Sequences. Notation. Convergence of a Sequence Sequeces A sequece is essetially just a list. Defiitio (Sequece of Real Numbers). A sequece of real umbers is a fuctio Z (, ) R for some real umber. Do t let the descriptio of the domai cofuse you; it

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information