Single-Event-Effects Test Report R6, 150V, N

Size: px
Start display at page:

Download "Single-Event-Effects Test Report R6, 150V, N"

Transcription

1 Single-Event-Effects Test Report R6, 150V, N April 2004

2 Table of Contents Introduction...1 Test Method... 1 Test Plan...1 Test Facility...2 Results...3 SEE Data Run Number Index...4 Device Operating Area...5 Conclusions...7 Appendix A - Log Sheets (SEE Run Data)... 9 Appendix B - TAMU Cyclotron Facility Data and Graphs...15 Appendix C - BNL TVDG Accelerator Facility Data...24 Appendix D - I.R. Test Plan and Procedure Appendix E - Test Circuit Schematic Diagram Appendix F - BNL TVDG Ion Species, Surface LET & Range...43 Appendix G - TAMU Cyclotron Ion Species, Surface LET & Range...47 Appendix H - Post-SEE Electrical Measurements i

3 INTRODUCTION International Rectifier Corp. On September 22 nd 2003, April 7 th 2004 and April 27 th 2004 International Rectifier Corp. (IR) tested several product types for Single Event Effects (SEE) hardness. The irradiation was performed at Texas A & M University (TAMU) using the K500 Superconducting Cyclotron and at Brookhaven National Lab (BNL) using Tandem Van De Graaff (TVDG) Accelerator. The Xenon (Xe), Bromine (Br), Iodine (I) and Gold (Au) ion species with different combinations of Energy, Range and Linear-Energy-Transfer (LET) levels was used to characterize and verify the SEE hardness of each product type. The product types submitted for evaluation and this report are included in Table 1 below: Table 1 Product Types Tested Product Type BVDSS Rating Gen. / Channel / Process Wafer Lot IRH Volts R6 / N / 150 Volts ER40212 IRH Volts R6 / N / 150 Volts ER42476 The wafer lots noted above are the lots from which the test samples originated. For each product type, the results of testing herein are applicable to all other wafer lots having the same design and process. Additionally, Mr. Louis Jaquish of Defense Supply Center Columbus (DSCC-VQE) has performed an audit of IR for the purpose of assigning lab suitability and has granted IR a Letter of Lab Suitability for Test Method 1080 in June 1998 for Brookhaven National Lab. Similarly, Mr. Thomas Hood had grant IR a Letter of Lab Suitability for Test Method 1080 in April 2005 for Texas A&M Cyclotron Facility. TEST METHOD The test method used as a guide in developing the test plan is MIL-STD-750, Test Method The test method establishes the basic requirements for the performance of the test. Additionally, DSCC has established a minimum acceptance level of three (3) devices for each insitu bias condition. Test method 1080, in conjunction with DSCC requirements, was utilized to write the test plan. TEST PLAN and PROCEDURE The test plan is included in Appendix C. In summary, the testing occurred in the following manner: All devices / test samples were built and electrically tested in TO-3 packages. The lid was removed from each test sample at the test site or the samples were produced without the lid. Up to 18 test samples were loaded onto the test board and placed into the beam line, under high vacuum conditions. The desired test sample was positioned into the beam line, and when ready the beam shutter was removed beginning the irradiation of the test sample. Once the desired fluence was achieved the beam was automatically shuttered and the bias removed. The biasing equipment then subjected the test samples to gate stresses up to 20V. The Ion with its LET and Energy must be selected for a Range of at least twice the depletion depth of the die under test. 1

4 TEST FACILITY International Rectifier Corp. The K500 Superconducting Cyclotron as well as the TDVG Accelerator are equipped with the necessary dosimetry to ensure the ion beam is meeting the customer expectation. A printout of the runs, included in Appendix B & C, also includes the beam parameters, i.e., LET, energy, Range, etc., for each run. Table 2 summarizes the beam criteria for the ion species properly selected and utilized. Table 2. Ion Beam Criteria Facility Ion LET MeV/(mg/cm 2 ) Energy MeV Range µm TAMU Xe K500 Xe Cyclotron Au BNL Br TDVG I Accelerator Au The fluence and flux specified for this test was 3E5 ions/cm 2 and 1E4 ions/cm 2 /sec, respectively. The beam diameter was set to cover the whole die-attachment area. The angle of incidence was set to zero (normal to the die surface). RESULTS The insitu bias conditions, where 0 failures occurred for each product type, are shown in Table 3. These results are shown graphically in Figure 1 through Figure 7 as plots of the Single-Event- Effects Safe Operation Area (SEE SOA). Each point on the graph, or insitu bias condition, has been verified by irradiating and subsequent electrical testing of a minimum of 3 devices, with no valid failures allowed. The devices were returned to IR and tested using production ATE. The results of the test were inspected and matched to the notes taken during the test, see Appendix H. The post-irradiation data correlates with the expected test results. It should be noted that acceptance is assumed for product types operating at conditions below those tested herein. For example the IRH67134 (all wafer lots) was not tested under the VGS bias conditions of 0V through -15V with the Br ion of LET=37 MeV/(mg/cm 2 ) or Xe ion of LET=59 MeV/(mg/cm 2 ). The test engineer made a calculated risk assessment based on SEE Process History, SEE results at lower LET or SEE results of lower rated voltage parts and chose to begin characterization and verification at VGS = -20V. The insitu acceptance at the -20V was then extended to the lower VGS bias voltages. Furthermore the extension of more stressful conditions to less stressful conditions shall also apply to the LET conditions of the various ion species. For example successful operation using the Au ion (LET of 90 MeV/(mg/cm 2 )) shall also imply that any other ion with a LET < 90, shall also be acceptable and not require verification. 2

5 The different runs and respective test conditions are all tabulated in Appendices A, B and C. Table 4 may be used as an index to identify which runs apply to a specific product type with a specific ion. RESULTS (Continued) With focus on RH R6 150V N-channel (IRHC671x4), the SEE results are shown for three (3) different wafer lots tested at BNL as well as SEE results at TAMU for comparison purpose. Unlisted Runs are not related to this report. Table 3 Device Insitu Bias Conditions (VDS vs. VGS) with Ion Species IRHC67134 Wafer Lot ER40212 Ion (LET) VGS=0V VGS=-5V VGS=-10V VGS=-15V VGS=-20V Br (37) Qualified Qualified Qualified Qualified 150 V I (60) Qualified Qualified Qualified 150 V 100 V Au (82) Qualified Qualified Qualified 150 V Br (37) Qualified Qualified Qualified Qualified 150 V ER42476A I (60) Qualified Qualified 150 V 120 V Au (82) Qualified 150 V 100 V Br (37) Qualified Qualified Qualified Qualified 150 V ER42476C I (60) Qualified Qualified 150 V 130 V Au (82) Qualified 150 V 100 V IRHC67134 Wafer Lot ER42476A Ion (LET) VGS=0V VGS=-5V VGS=-9V VGS=-10V VGS=-11V VGS=-15V VGS=-20V Kr (39) Qualified Qualified Qualified Qualified Qualified Qualified 150 V Xe (59) Qualified Qualified Qualified 150 V 50 V 40 V 30 V Au (90) Qualified 60 V Qualified 30 V Kr (39) Qualified Qualified Qualified Qualified Qualified Qualified 150 V ER42476C Xe (59) Qualified Qualified 150 V 140 V 50 V 40 V 30 V Au (90) Qualified 50 V 30 V Note: Qualified indicates part is qualified by extension of insitu bias testing at higher VGS level. See Concluding Tutorial for more details. 3

6 Table 4 Run Number Index Device Type / Part Number Wafer Lot Number SEE Facility Ion (LET) Run Date Run Number Br (37) to 041 ER40212 BNL I (60) to 289 Au (82) to 855 Kr (39) to 006 ER42476A TAMU Xe (59) to 039 Au (90) to 098 IRH671x4 (R6, 150Volts, N-ch, MR) ER42476C TAMU Kr (39) to 138 Xe (59) to 058 Au (90) to 112 Br (37) to 191 ER42476A BNL I (60) to 445 Au (82) to 529 Br (37) to 195 ER42476C BNL I (60) to 454 Au (82) to 535 ER42476B BNL Br (37) to 200 4

7 Figure 1 Device Safe Operating Area IRH67134 VGS Bias VDS Bias (Volts) Br I Au (Volts) 9/22/2003 STANDARD ER40212 Bias VDS (Volts) IRH67134 (R6,150V,N,MR) SEE-SOA Bias VGS (Volts) -25 Br I Au IRH67134 VGS Bias VDS Bias (Volts) TAMU Kr LET=39; 39um; 312MeV TAMU Xe LET=59; 66um; 825MeV ER42476, wafer# 1-5 (Group A) 4/7/ AMeV 15AMeV TAMU Au LET=90; 80um; 1480MeV 15AMeV Bias VDS (Volts) IRH671x4(R6,150V,N,MR) SEE-SOA Bias VGS (Volts) TAMU Kr LET=39; 39um; 312MeV TAMU Xe LET=59; 66um; 825MeV TAMU Au LET=90; 80um; 1480MeV IRH67134 VGS Bias VDS Bias (Volts) TAMU Kr LET=39; 39um; 312MeV TAMU Xe LET=59; 66um; 825MeV ER42476, wafer# (Group C) 4/7/ AMeV 15AMeV TAMU Au LET=90; 80um; 1480MeV 15AMeV Bias VDS (Volts) IRH671x4(R6,150V,N,MR) SEE-SOA Bias VGS (Volts) TAMU Kr LET=39; 39um; 312MeV TAMU Xe LET=59; 66um; 825MeV TAMU Au LET=90; 80um; 1480MeV 5

8 Figure 1 Device Safe Operating Area IRH67134 VGS Bias VDS Bias (Volts) Br I Au (Volts) 4/27/2004 ER42476A Wafers# 1-5 Bias VDS (Volts) IRH67134 (R6,150V,N,MR) SEE-SOA Bias VGS (Volts) -25 Br I Au IRH67134 VGS Bias VDS Bias (Volts) Br I Au (Volts) 4/27/2004 ER42476C Wafers# Bias VDS (Volts) IRH67134 (R6,150V,N,MR) SEE-SOA Bias VGS (Volts) -25 Br I Au 6

9 CONCLUSION For a final SEE Specification, the SEE Results from all four wafer lots are compared and the worstcase result is listed below in both tabular and graphic SEE Safe-Operating-Area. The 150-Volt N- Channel R6 (IRHC671x4) is well SEE-hard against the charged Krypton (Kr) at 100% rated VDS and -10V VGS applied, against Xenon (Xe) ion at 100% rated VDS and -10V VGS applied and against Gold heavy-ion at 85% rated VDS and -5V VGS applied. The Final SEE Specification for RH R6 150V N-channel (IRHC671x4), selected as worst-case, would be SEE Results of wafer lot ER42476C tested at TAMU, as shown in Figure 8 herein. IRH671x4 (RAD-Hard R6, 150Volts, N-Channel) FINAL Single-Event-Effect Safe Operating Area (Tabular) Ion (LET) Kr (37) Xe (59) Au (90) VGS=0V VGS=-5V VGS=-9V VGS=-10V VGS=-11V VGS=-15V VGS=-20V Qualified Qualified Qualified Qualified Qualified Qualified 150 V Qualified Qualified 150 V 140 V 50 V Qualified 30 V Qualified 60 V Qualified 30 V IRH671x4 (RAD-Hard R6, 150Volts, N-Channel) FINAL Single-Event-Effect Safe Operating Area (Graph) IRH671x4 VGS Bias VDS Bias (Volts) TAMU Kr LET=39; 39µm; 312MeV TAMU Xe LET=59; 66µm; 825MeV AMeV 15AMeV TAMU Au LET=90; 80µm; 1480MeV 15AMeV Bias VDS (Volts) IRH671x4(R6,150V,N,MR) SEE-SOA TAMU Kr LET=39; 39µm; 312MeV TAMU Xe LET=59; 66µm; 825MeV TAMU Au LET=90; 80µm; 1480MeV Bias VGS (Volts)

10 CONCLUDING TUTORIAL The following is presented to help the reader understand the basis on which SEE Testing is extended to the other part numbers. Extending Single Event Effects Testing International Rectifier has designed Single Event Effects (SEE) experiments to maximize facility usage using four, industry accepted, assumptions as follows: I. Test results for one die size are representative of other die sizes, if the process and design rules are not changed. In other words the scaling of die size has no affect if all other variables are held constant. Please note that for a given voltage and technology, there are no differences in design and process for the various sizes of IR s radiation hardened MOSFET die, thus the assumption is valid. In reality, IR will always test the largest available die size. We consider this a worst-case scenario. The industry standard for acceptance of a given in-situ bias condition, is the acceptable performance of three or more devices at the specified conditions. Presently a supplier could achieve this standard with size 1 die thru size 6 die. We believe that use of the smaller die reduces the probability of failure, and thus reduces the chance of a SEE problem being discovered. The size 1 die are about one-twelfth the size of the size 6 die. Thus successfully testing three size 6 die is roughly equivalent to testing 36 size 1 die. This results in a savings of valuable test time at the SEE test facility, without degrading the final test result. II. Acceptable test results taken at given VGS and VDS conditions are applicable to lower VGS and VDS conditions. In other words an acceptable test result (>= 3 devices passing) at VGS = -15V and VDS = 200V, would also apply to VGS = -10, -5 or 0V at the same or lower VDS condition. In several cases parts have been tested at the worst-case in-situ bias condition of VGS = -20V and VDS = max rated BVDSS. With acceptable test results, the safe operation area, has been extended from VGS = 0 to 20V and VDS from 0 to the max rating. It is not necessary to verify every point below the accepted in-situ bias conditions. Again this saves valuable experiment time. III. Acceptable test results taken with a given LET, would also apply at other lower LETs. It is generally accepted that successful test results with Iodine, for example, implies the device would be hard against Bromine, Krypton, Nickel, etc., ion species with a lower LET. It is not necessary to test at each lower LET, again saving valuable test time. IV. The package used has no effect on the SEE hardness of a die. The die are characterized fully exposed to the ion beam. In other words the lid of the package is removed making the die visible. This removes the package as a variable when comparing test results. As a rule IR uses the common TO3 package for mounting die for SEE tests. Each of the assumptions above is generally accepted within the industry. IR has verified their validity over the last several years and makes appropriate use of them to maximize the benefit for our customers. 8

11 Appendix A Log Sheets (SEE Run Data) 9

12 Test SEE Run Ion LET Energy Range Flux Fluence Angle BeamDia. Device S/N Socket VGS VDS Date Facility # MeV.cm 2 /mg MeV µm #/cm 2 /sec #/cm 2 deg cm. Type # Volts Volts Pass/Fail Blank=Pass 150V, N, MR, R6 (Standard) to Bromine 9/22/2003 BNL 7 Br E E IRH67134 B /22/2003 BNL 8 Br E E IRH67134 B /22/2003 BNL 9 Br E E IRH67134 B /22/2003 BNL 10 Br E E IRH67134 B /22/2003 BNL 11 Br E E IRH67134 B /22/2003 BNL 12 Br E E IRH67134 B /22/2003 BNL 13 Br E E IRH67134 B /22/2003 BNL 14 Br E E IRH67134 B /22/2003 BNL 15 Br E E IRH67134 B /22/2003 BNL 16 Br E E IRH67134 B /22/2003 BNL 17 Br E E IRH67134 B /22/2003 BNL 18 Br E E IRH67134 B /22/2003 BNL 19 Br E E IRH67134 B /22/2003 BNL 20 Br E E IRH67134 B /22/2003 BNL 21 Br E E IRH67134 B /22/2003 BNL 22 Br E E IRH67134 B /22/2003 BNL 23 Br E E IRH67134 B /22/2003 BNL 24 Br E E IRH67134 B /22/2003 BNL 25 Br E E IRH67134 B /22/2003 BNL 26 Br E E IRH67134 B /22/2003 BNL 27 Br E E IRH67134 B /22/2003 BNL 28 Br E E IRH67134 B /22/2003 BNL 29 Br E E IRH67134 B /22/2003 BNL 30 Br E E IRH67134 B /22/2003 BNL 31 Br E E IRH67134 B /22/2003 BNL 32 Br E E IRH67134 B /22/2003 BNL 33 Br E E IRH67134 B /22/2003 BNL 34 Br E E IRH67134 B /22/2003 BNL 35 Br E E IRH67134 B /22/2003 BNL 36 Br E E IRH67134 B /22/2003 BNL 37 Br E E IRH67134 B /22/2003 BNL 38 Br E E IRH67134 B /22/2003 BNL 39 Br E E IRH67134 B /22/2003 BNL 40 Br E E IRH67134 B /22/2003 BNL 41 Br E E IRH67134 B Curve-Point 10

13 Test SEE Run Ion LET Energy Range Flux Fluence Angle BeamDia. Device S/N Socket VGS VDS Date Facility # MeV.cm 2 /mg MeV µm #/cm 2 /sec #/cm 2 deg cm. Type # Volts Volts Pass/Fail Blank=Pass 150V, N, MR, R6 (Standard) to Iodine 9/22/2003 BNL 276 I E E IRH67134 B /22/2003 BNL 277 I E E IRH67134 B /22/2003 BNL 278 I E E IRH67134 B /22/2003 BNL 279 I E E IRH67134 B /22/2003 BNL 280 I E E IRH67134 B /22/2003 BNL 281 I E E IRH67134 B F 9/22/2003 BNL 282 I E E IRH67134 B /22/2003 BNL 283 I E E IRH67134 B /22/2003 BNL 284 I E E IRH67134 B Curve Point 9/22/2003 BNL 285 I E E IRH67134 B /22/2003 BNL 286 I E E IRH67134 B /22/2003 BNL 287 I E E IRH67134 B Curve Point 9/22/2003 BNL 288 I E E IRH67134 B Curve Point + 9/22/2003 BNL 289 I E E IRH67134 B V, N, MR, R6 (Standard) to Gold 9/22/2003 BNL 835 Au E E IRH67134 B /22/2003 BNL 836 Au E E IRH67134 B /22/2003 BNL 837 Au E E IRH67134 B /22/2003 BNL 838 Au E E IRH67134 B /22/2003 BNL 839 Au E E IRH67134 B /22/2003 BNL 840 Au E E IRH67134 B /22/2003 BNL 841 Au E E IRH67134 B Curve-Point 9/22/2003 BNL 842 Au E E IRH67134 B /22/2003 BNL 843 Au E E IRH67134 B /22/2003 BNL 844 Au E E IRH67134 B /22/2003 BNL 845 Au E E IRH67134 B Curve-Point 9/22/2003 BNL 846 Au E E IRH67134 B /22/2003 BNL 847 Au E E IRH67134 B /22/2003 BNL 848 Au E E IRH67134 B /22/2003 BNL 849 Au E E IRH67134 B F 9/22/2003 BNL 850 Au E E IRH67134 B /22/2003 BNL 851 Au E E IRH67134 B /22/2003 BNL 852 Au E E IRH67134 B /22/2003 BNL 853 Au E E IRH67134 B /22/2003 BNL 854 Au E E IRH67134 B F 9/22/2003 BNL 855 Au E E IRH67134 B Curve-Point 11

14 Test SEE Run Ion LET Energy Range Flux Fluence Angle BeamDia. Device S/N Socket VGS VDS Date Facility # MeV.cm 2 /mg MeV µm #/cm 2 /sec #/cm 2 deg cm. Type # Volts Volts Pass/Fail Blank=Pass 150V, N, MR, R6 to Krypton (with LET=39) 4/7/2004 TAMU 1 Kr E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 2 Kr E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 3 Kr E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 4 Kr E E+05 0 Vacuum IRH67134 A Curve-Point 4/7/2004 TAMU 5 Kr E E+05 0 Vacuum IRH67134 A Curve-Point 4/7/2004 TAMU 6 Kr E E+05 0 Vacuum IRH67134 A Curve-Point 150V, N, MR, R6 to Xeon (with LET=59) 4/7/2004 TAMU 7 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 8 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 9 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 10 Xe E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 2.00E+04 4/7/2004 TAMU 11 Xe E E+05 0 Vacuum IRH67134 A Invalid 4/7/2004 TAMU 12 Xe E E+05 0 Vacuum IRH67134 A Invalid 4/7/2004 TAMU 13 Xe E E+05 0 Vacuum IRH67134 A Invalid 4/7/2004 TAMU 14 Xe E E+05 0 Vacuum IRH67134 A Invalid 4/7/2004 TAMU 15 Xe E E+05 0 Vacuum IRH67134 A Invalid 4/7/2004 TAMU 16 Xe E E+05 0 Vacuum IRH67134 A Invalid 4/7/2004 TAMU 17 Xe E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 5.20E+04 4/7/2004 TAMU 18 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 19 Xe E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 5.60E+04 4/7/2004 TAMU 20 Xe E E+05 0 Vacuum IRH67134 A Curve-Point 4/7/2004 TAMU 21 Xe E E+05 0 Vacuum IRH67134 A Curve-Point 4/7/2004 TAMU 22 Xe E E+05 0 Vacuum IRH67134 A Curve-Point 4/7/2004 TAMU 23 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 24 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 25 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 26 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 27 Xe E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 5.90E+04 4/7/2004 TAMU 28 Xe E E+05 0 Vacuum IRH67134 A Curve-Point 4/7/2004 TAMU 29 Xe E E+05 0 Vacuum IRH67134 A Curve-Point 4/7/2004 TAMU 30 Xe E E+05 0 Vacuum IRH67134 A Curve-Point 4/7/2004 TAMU 31 Xe E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 1.00E+05 4/7/2004 TAMU 32 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 33 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 34 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 35 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 36 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 37 Xe E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 9.00E+04 4/7/2004 TAMU 38 Xe E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 39 Xe E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 9.00E+04 12

15 Test SEE Run Ion LET Energy Range Flux Fluence Angle BeamDia. Device S/N Socket VGS VDS Date Facility # MeV.cm 2 /mg MeV µm #/cm 2 /sec #/cm 2 deg cm. Type # Volts Volts Pass/Fail Blank=Pass 150V, N, MR, R6 to Gold (with LET=90) 4/7/2004 TAMU 85 Au E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 6.45E+04 4/7/2004 TAMU 86 Au E E+05 0 Vacuum IRH67134 A Failed at Gate Stress GateStress 4/7/2004 TAMU 87 Au E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 88 Au E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 89 Au E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 90 Au E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 9.97E+04 4/7/2004 TAMU 91 Au E E+05 0 Vacuum IRH67134 A Failed at Gate Stress GateStress 4/7/2004 TAMU 92 Au E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 93 Au E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 94 Au E E+05 0 Vacuum IRH67134 A Curve-Point 4/7/2004 TAMU 95 Au E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 96 Au E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 2.00E+05 4/7/2004 TAMU 97 Au E E+05 0 Vacuum IRH67134 A /7/2004 TAMU 98 Au E E+05 0 Vacuum IRH67134 A Failed at Fluence equal 7.15E V, N, MR, R6 to Krypton (with LET=39) 4/7/2004 TAMU 133 Kr E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 134 Kr E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 135 Kr E E+05 0 Vacuum IRH67134 C Curve-Point 4/7/2004 TAMU 136 Kr E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 137 Kr E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 138 Kr E E+05 0 Vacuum IRH67134 C Curve-Point 150V, N, MR, R6 to Xeon (with LET=59) 4/7/2004 TAMU 40 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 41 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 42 Xe E E+05 0 Vacuum IRH67134 C Failed at Gate Stress GateStress 4/7/2004 TAMU 43 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 44 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 45 Xe E E+05 0 Vacuum IRH67134 C Failed at Gate Stress GateStress 4/7/2004 TAMU 46 Xe E E+05 0 Vacuum IRH67134 C Run stopped - No Beam 4/7/2004 TAMU 47 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 48 Xe E E+05 0 Vacuum IRH67134 C PC Crashed /stopped run 4/7/2004 TAMU 49 Xe E E+05 0 Vacuum IRH67134 C Failed at Fluence equals 4/7/2004 TAMU 50 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 51 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 52 Xe E E+05 0 Vacuum IRH67134 C Curve-Point 4/7/2004 TAMU 53 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 54 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 55 Xe E E+05 0 Vacuum IRH67134 C Failed at Fluence equal 1.58E+05 4/7/2004 TAMU 56 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 57 Xe E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 58 Xe E E+05 0 Vacuum IRH67134 C Failed at Fluence equal 1.30E V, N, MR, R6 to Gold (with LET=90) 4/7/2004 TAMU 99 Au E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 100 Au E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 101 Au E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 102 Au E E+05 0 Vacuum IRH67134 C Failed at Gate Stress GateStress 4/7/2004 TAMU 103 Au E E+05 0 Vacuum IRH67134 C Failed at Gate Stress GateStress 4/7/2004 TAMU 104 Au E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 105 Au E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 106 Au E E+05 0 Vacuum IRH67134 C Curve-Point 4/7/2004 TAMU 107 Au E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 108 Au E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 109 Au E E+05 0 Vacuum IRH67134 C Failed at Fluence equal 1.73E+05 4/7/2004 TAMU 110 Au E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 111 Au E E+05 0 Vacuum IRH67134 C /7/2004 TAMU 112 Au E E+05 0 Vacuum IRH67134 C Curve-Point 13

16 Test SEE Run Ion LET Energy Range Flux Fluence Angle BeamDia. Device Wafer Lot S/N Socket VGS VDS Date Facility # MeV.cm 2 /mg MeV µm #/cm 2 /sec #/cm 2 deg cm. Type No. # Volts Volts 150V, Size-3, N, MR, R6 to Bromine 4/27/2004 BNL 186 Br E E IRH67134 ER42476A F /27/2004 BNL 187 Br E E IRH67134 ER42476A F /27/2004 BNL 188 Br E E IRH67134 ER42476A F /27/2004 BNL 189 Br E E IRH67134 ER42476A F /27/2004 BNL 190 Br E E IRH67134 ER42476A F /27/2004 BNL 191 Br E E IRH67134 ER42476A F Curve-Point 150V, Size-3, N, MR, R6 to Bromine 4/27/2004 BNL 192 Br E E IRH67134 ER42476C G /27/2004 BNL 193 Br E E IRH67134 ER42476C G /27/2004 BNL 194 Br E E IRH67134 ER42476C G /27/2004 BNL 195 Br E E IRH67134 ER42476C G Curve-Point 150V, Size-3, N, MR, R6 to Bromine 4/27/2004 BNL 196 Br E E IRH67134 ER42476B H /27/2004 BNL 197 Br E E IRH67134 ER42476B H /27/2004 BNL 198 Br E E IRH67134 ER42476B H /27/2004 BNL 199 Br E E IRH67134 ER42476B H /27/2004 BNL 200 Br E E IRH67134 ER42476B H Curve-Point 150V, Size-3, N, MR, R6 to Iodine 4/27/2004 BNL 433 I E E IRH67134 ER42476A F Failed at Fluence = 8.39E-06 SEGR 4/27/2004 BNL 434 I E E IRH67134 ER42476A F /27/2004 BNL 435 I E E IRH67134 ER42476A F /27/2004 BNL 436 I E E IRH67134 ER42476A F Curve-Point 4/27/2004 BNL 437 I E E IRH67134 ER42476A F /27/2004 BNL 438 I E E IRH67134 ER42476A F /27/2004 BNL 439 I E E IRH67134 ER42476A F /27/2004 BNL 440 I E E IRH67134 ER42476A F /27/2004 BNL 441 I E E IRH67134 ER42476A F /27/2004 BNL 442 I E E IRH67134 ER42476A F /27/2004 BNL 443 I E E IRH67134 ER42476A F /27/2004 BNL 444 I E E IRH67134 ER42476A F Failed at Fluence = 4.64E-06 4/27/2004 BNL 445 I E E IRH67134 ER42476A F Curve-Point 150V, Size-3, N, MR, R6 to Iodine 4/27/2004 BNL 446 I E E IRH67134 ER42476C G /27/2004 BNL 447 I E E IRH67134 ER42476C G /27/2004 BNL 448 I E E IRH67134 ER42476C G /27/2004 BNL 449 I E E IRH67134 ER42476C G Failed at Fluence = 3.29E-06-20V GS-Blown 4/27/2004 BNL 450 I E E IRH67134 ER42476C G /27/2004 BNL 451 I E E IRH67134 ER42476C G /27/2004 BNL 452 I E E IRH67134 ER42476C G Curve-Point 4/27/2004 BNL 453 I E E IRH67134 ER42476C G /27/2004 BNL 454 I E E IRH67134 ER42476C G /27/2004 BNL 455 I E E IRH67134 ER42476C G Failed at Fluence = 1.20E-05 4/27/2004 BNL 456 I E E IRH67134 ER42476C G Failed at Fluence = 3.30E V, Size-3, N, MR, R6 to Gold 4/27/2004 BNL 522 Au E E IRH67134 ER42476A F /27/2004 BNL 523 Au E E IRH67134 ER42476A F Failed at Fluence = 1.23E-05 4/27/2004 BNL 524 Au E E IRH67134 ER42476A F /27/2004 BNL 525 Au E E IRH67134 ER42476A F /27/2004 BNL 526 Au E E IRH67134 ER42476A F Curve-Point 4/27/2004 BNL 527 Au E E IRH67134 ER42476A F /27/2004 BNL 528 Au E E IRH67134 ER42476A F /27/2004 BNL 529 Au E E IRH67134 ER42476A F Curve-Point 150V, Size-3, N, MR, R6 to Gold 4/27/2004 BNL 530 Au E E IRH67134 ER42476C G /27/2004 BNL 531 Au E E IRH67134 ER42476C G /27/2004 BNL 532 Au E E IRH67134 ER42476C G Curve-Point 4/27/2004 BNL 533 Au E E IRH67134 ER42476C G /27/2004 BNL 534 Au E E IRH67134 ER42476C G /27/2004 BNL 535 Au E E IRH67134 ER42476C G Curve-Point 14 Pass/Fail Blank=Pass

17 Appendix B TAMU Cyclotron Institute Facility Beam Data & Graphs 15

18 Cyclotron Institute Texas A&M University - Radiation Testing Report (V. Horvat 00/06/13) File: IR0404 Compiled on 04/04/08 at 15:57:43 International Rectifier Corp. Run Ext Date Time Beam MeV/u Energy LET Range <Flux> Fluence Dose E-fluen %err Al(um) USD Live Dead BID Gain Unif Shft E-LET E-range Board DUT X(in) Y(in) Z(in) T(deg) U(in) V(in) R(deg) S V1 V2 V3 V4 V5 V6 Layers-file Comments # MeV MeV.cm2/mg µm #/cm2/sec #/cm2 RAD(Si) RAD(Si) 1 t00 4/4/ :04 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 2 t01 4/4/ :06 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 3 t02 4/4/ :09 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 4 t03 4/4/ :10 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 5 t04 4/4/ :17 Kr E E E E E E+02 OUT Current SOCKET Nolayers.lay None. 6 t05 4/4/ :22 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 7 t06 4/4/ :06 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 8 t07 4/4/ :07 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 9 t08 4/4/ :10 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 10 t09 4/4/ :11 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 11 t0a 4/4/ :14 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 12 t0b 4/4/ :14 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 13 t0c 4/4/ :15 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 14 t0d 4/4/ :16 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 15 t0e 4/4/ :16 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 16 t0f 4/4/ :17 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 17 t0g 4/4/ :25 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 18 t0h 4/4/ :28 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 19 t0i 4/4/ :28 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 20 t0j 4/4/ :31 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 21 t0k 4/4/ :32 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 22 t0l 4/4/ :34 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 23 t0m 4/4/ :36 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 24 t0n 4/4/ :36 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 25 t0o 4/4/ :37 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 26 t0p 4/4/ :37 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 27 t0q 4/4/ :38 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 28 t0r 4/4/ :40 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 29 t0s 4/4/ :42 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 30 t0t 4/4/ :43 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 31 t0u 4/4/ :45 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 32 t0v 4/4/ :47 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 33 t0w 4/4/ :47 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 34 t0x 4/4/ :48 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 35 t0y 4/4/ :49 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 36 t0z 4/4/ :50 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 37 t10 4/4/ :50 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 38 t11 4/4/ :51 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 39 t12 4/4/ :52 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 40 t13 4/4/ :18 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 41 t14 4/4/ :20 Xe E E E E E E+01 OUT Current SOCKET Nolayers.lay None. 42 t15 4/4/ :21 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 43 t16 4/4/ :26 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 44 t17 4/4/ :27 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 45 t18 4/4/ :28 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 46 t19 4/4/ :38 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 47 t1a 4/4/2008 2:04 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 48 t1b 4/4/2008 2:08 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 49 t1c 4/4/2008 2:19 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 50 t1d 4/4/2008 2:21 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 51 t1e 4/4/2008 2:23 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 52 t1f 4/4/2008 2:24 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 53 t1g 4/4/2008 2:26 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 54 t1h 4/4/2008 2:28 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 55 t1i 4/4/2008 2:29 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 56 t1j 4/4/2008 2:31 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 57 t1k 4/4/2008 2:32 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 58 t1l 4/4/2008 2:33 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 59 t1m 4/4/2008 2:41 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 60 t1n 4/4/2008 2:42 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 61 t1o 4/4/2008 2:43 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 62 t1p 4/4/2008 2:45 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 63 t1q 4/4/2008 2:48 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 64 t1r 4/4/2008 2:48 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 65 t1s 4/4/2008 2:50 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 66 t1t 4/4/2008 2:50 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 67 t1u 4/4/2008 2:51 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 68 t1v 4/4/2008 2:52 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 69 t1w 4/4/2008 2:53 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 70 t1x 4/4/2008 2:54 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 71 t1y 4/4/2008 2:55 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 72 t1z 4/4/2008 2:55 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 73 t20 4/4/2008 2:56 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 74 t21 4/4/2008 2:56 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 75 t22 4/4/2008 2:57 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 16

19 Run Ext Date Time Beam MeV/u Energy LET Range <Flux> Fluence Dose E-fluen %err Al(um) USD Live Dead BID Gain Unif Shft E-LET E-range Board DUT X(in) Y(in) Z(in) T(deg) U(in) V(in) R(deg) S V1 V2 V3 V4 V5 V6 Layers-file Comments # MeV MeV.cm2/mg µm #/cm2/sec #/cm2 RAD(Si) RAD(Si) 76 t23 4/4/2008 2:59 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 77 t24 4/4/2008 2:59 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 78 t25 4/4/2008 3:00 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 79 t26 4/4/2008 3:00 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 80 t27 4/4/2008 3:01 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 81 t28 4/4/2008 3:02 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 82 t29 4/4/2008 3:03 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 83 t2a 4/4/2008 3:04 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 84 t2b 4/4/2008 3:04 Xe E E E E E E+01 OUT Current Current Nolayers.lay None. 85 t2c 4/4/2008 4:44 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 86 t2d 4/4/2008 4:45 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 87 t2e 4/4/2008 4:47 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 88 t2f 4/4/2008 4:48 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 89 t2g 4/4/2008 4:48 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 90 t2h 4/4/2008 4:49 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 91 t2i 4/4/2008 4:51 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 92 t2j 4/4/2008 4:54 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 93 t2k 4/4/2008 4:58 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 94 t2l 4/4/2008 4:59 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 95 t2m 4/4/2008 5:01 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 96 t2n 4/4/2008 5:02 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 97 t2o 4/4/2008 5:03 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 98 t2p 4/4/2008 5:04 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 99 t2q 4/4/2008 5:05 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 100 t2r 4/4/2008 5:06 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 101 t2s 4/4/2008 5:07 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 102 t2t 4/4/2008 5:07 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 103 t2u 4/4/2008 5:09 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 104 t2v 4/4/2008 5:10 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 105 t2w 4/4/2008 5:11 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 106 t2x 4/4/2008 5:13 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 107 t2y 4/4/2008 5:14 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 108 t2z 4/4/2008 5:14 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 109 t30 4/4/2008 5:15 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 110 t31 4/4/2008 5:17 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 111 t32 4/4/2008 5:18 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 112 t33 4/4/2008 5:19 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 113 t34 4/4/2008 5:52 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 114 t35 4/4/2008 5:53 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 115 t36 4/4/2008 5:54 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 116 t37 4/4/2008 5:55 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 117 t38 4/4/2008 5:55 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 118 t39 4/4/2008 5:56 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 119 t3a 4/4/2008 5:57 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 120 t3b 4/4/2008 5:58 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 121 t3c 4/4/2008 5:58 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 122 t3d 4/4/2008 5:59 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 123 t3e 4/4/2008 6:00 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 124 t3f 4/4/2008 6:00 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 125 t3g 4/4/2008 6:02 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 126 t3h 4/4/2008 6:02 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 127 t3i 4/4/2008 6:03 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 128 t3j 4/4/2008 6:04 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 129 t3k 4/4/2008 6:05 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 130 t3l 4/4/2008 6:06 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 131 t3m 4/4/2008 6:06 Au E E E E E E+01 OUT Current Current Nolayers.lay None. 132 t3n 4/4/2008 6:59 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 133 t3o 4/4/2008 9:49 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 134 t3p 4/4/2008 9:50 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 135 t3q 4/4/2008 9:51 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 136 t3r 4/4/2008 9:54 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 137 t3s 4/4/2008 9:55 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 138 t3t 4/4/2008 9:56 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 139 t3u 4/4/ :02 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 140 t3v 4/4/ :03 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 141 t3w 4/4/ :03 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 142 t3x 4/4/ :06 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 143 t3y 4/4/ :08 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 144 t3z 4/4/ :08 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 145 t40 4/4/ :09 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 146 t41 4/4/ :10 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 147 t42 4/4/ :12 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 148 t43 4/4/ :14 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 149 t44 4/4/ :15 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 150 t45 4/4/ :15 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 151 t46 4/4/ :17 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 152 t47 4/4/ :18 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 153 t48 4/4/ :18 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 154 t49 4/4/ :19 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 155 t4a 4/4/ :20 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 17

20 Run Ext Date Time Beam MeV/u Energy LET Range <Flux> Fluence Dose E-fluen %err Al(um) USD Live Dead BID Gain Unif Shft E-LET E-range Board DUT X(in) Y(in) Z(in) T(deg) U(in) V(in) R(deg) S V1 V2 V3 V4 V5 V6 Layers-file Comments # MeV MeV.cm2/mg µm #/cm2/sec #/cm2 RAD(Si) RAD(Si) 156 t4b 4/4/ :23 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 157 t4c 4/4/ :24 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 158 t4d 4/4/ :27 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 159 t4e 4/4/ :27 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 160 t4f 4/4/ :29 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 161 t4g 4/4/ :30 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 162 t4h 4/4/ :30 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 163 t4i 4/4/ :30 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 164 t4j 4/4/ :31 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 165 t4k 4/4/ :31 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 165 t4l 4/4/ :32 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 166 t4m 4/4/ :34 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 167 t4n 4/4/ :38 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 168 t4o 4/4/ :40 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 169 t4p 4/4/ :40 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 170 t4q 4/4/ :41 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 171 t4r 4/4/ :42 Kr E E E E E E+02 OUT Current Current Nolayers.lay None. 172 t4s 4/4/ :15 Kr E E E E E E+00 OUT Current Current Nolayers.lay None. 173 t4t 4/4/ :16 Kr E E E E E E+00 OUT Current Current Nolayers.lay None.. 18

21 Log file IR /04/06 16:30:51 Open : IR /04/07 11:42:09 AX : in 04/04/07 11:42:09 AY : in 04/04/07 11:42:09 AZ :.000 in 04/04/07 11:42:09 AT : deg 04/04/07 11:42:09 AU : in 04/04/07 11:42:09 AV : in 04/04/07 11:42:17 Beam : 15.0 MeV/u Kr 04/04/07 11:53:57 AU :.660 in 04/04/07 11:53:57 AV :.560 in 04/04/07 11:53:57 AR : deg 04/04/07 11:53:57 AS : stp 04/04/07 12:22:01 AS :.000 stp 04/04/07 12:54:35 V1 = 391 V 04/04/07 12:54:35 V2 = 372 V 04/04/07 12:54:35 V4 = 394 V 04/04/07 12:54:35 V5 = 439 V 04/04/07 13:19:14 V5 = 249 V 04/04/07 13:21:26 AS : stp 04/04/07 13:24:40 V1 = 620 V 04/04/07 13:24:40 V3 = 642 V 04/04/07 13:24:40 V5 = 360 V 04/04/07 13:27:02 V4 = 545 V 04/04/07 13:56:05 V1 = 380 V 04/04/07 13:56:05 V2 = 360 V 04/04/07 13:56:05 V3 = 362 V 04/04/07 13:56:05 V4 = 525 V 3.00E+05 = Exposure preset 04/04/07 14:04:21 W-axg0 : disregarded by user 04/04/07 14:04:25 4-count : IR0404.t E+01 = Calibration factor 04/04/07 14:06:17 4-count : IR0404.t E+01 = Calibration factor 04/04/07 14:09:12 4-count : IR0404.t E+01 = Calibration factor 04/04/07 14:10:01 4-count : IR0404.t E+01 = Calibration factor 04/04/07 14:17:22 AA : SOCKET 2 04/04/07 14:17:22 AX : in 04/04/07 14:17:49 4-count : IR0404.t E+01 = Calibration factor 04/04/07 14:22:02 AX : in 04/04/07 14:22:09 4-count : IR0404.t E+01 = Calibration factor 04/04/07 14:24:08 AX :.828 in 04/04/07 14:42:09 Beam : 15.0 MeV/u Xe 04/04/07 14:43:44 AR :.000 deg 04/04/07 14:43:44 AS :.000 stp 04/04/07 14:58:46 V1 = 232 V 04/04/07 14:58:46 V2 = 236 V 04/04/07 14:58:46 V3 = 236 V 04/04/07 14:58:46 V4 = 306 V 04/04/07 14:58:46 V5 = 241 V 04/04/07 15:03:48 AR : deg International Rectifier Corp. 04/04/07 15:03:48 AS : stp 04/04/07 15:06:08 V1 = 291 V 04/04/07 15:06:08 V2 = 287 V 04/04/07 15:06:08 V3 = 286 V 04/04/07 15:06:08 V4 = 414 V 04/04/07 15:06:08 V5 = 300 V 04/04/07 15:06:27 4-count : IR0404.t E+01 = Calibration factor 04/04/07 15:07:12 4-count : IR0404.t07 04/04/07 15:07:21 W-pau1 : pause-continued 04/04/07 15:08:08 W-pau2 : aborted by user E+01 = Calibration factor Comment: run #7 abort prematurely 04/04/07 15:09:51 AX : in 04/04/07 15:10:44 4-count : IR0404.t E+01 = Calibration factor 04/04/07 15:11:24 4-count : IR0404.t09 04/04/07 15:11:38 W-pau2 : aborted by user E+01 = Calibration factor 04/04/07 15:14:00 4-count : IR0404.t0A E+01 = Calibration factor 04/04/07 15:14:39 4-count : IR0404.t0B E+01 = Calibration factor 04/04/07 15:15:15 4-count : IR0404.t0C E+01 = Calibration factor 04/04/07 15:16:04 4-count : IR0404.t0D E+01 = Calibration factor 04/04/07 15:16:39 4-count : IR0404.t0E E+01 = Calibration factor 04/04/07 15:17:14 4-count : IR0404.t0F E+01 = Calibration factor 04/04/07 15:22:57 AX : in 2.00E+05 = Exposure preset 04/04/07 15:25:07 4-count : IR0404.t0G 04/04/07 15:25:15 W-pau2 : aborted by user E+01 = Calibration factor 04/04/07 15:28:01 AX : in 04/04/07 15:28:01 AY : in 04/04/07 15:28:09 4-count : IR0404.t0H E+01 = Calibration factor 04/04/07 15:28:59 4-count : IR0404.t0I 04/04/07 15:29:06 W-pau2 : aborted by user E+01 = Calibration factor 04/04/07 15:31:38 AX : in 04/04/07 15:31:56 4-count : IR0404.t0J E+01 = Calibration factor 04/04/07 15:32:38 AX : in 04/04/07 15:32:53 4-count : IR0404.t0K E+01 = Calibration factor 04/04/07 15:34:15 AX :.857 in 04/04/07 15:34:21 4-count : IR0404.t0L E+01 = Calibration factor 04/04/07 15:35:01 AX : in 04/04/07 15:36:23 4-count : IR0404.t0M E+01 = Calibration factor

22 04/04/07 15:36:44 4-count : IR0404.t0N E+01 = Calibration factor 04/04/07 15:37:13 4-count : IR0404.t0O E+01 = Calibration factor 04/04/07 15:37:41 4-count : IR0404.t0P 04/04/07 15:37:51 W-pau1 : pause-continued E+01 = Calibration factor 04/04/07 15:38:19 4-count : IR0404.t0Q 04/04/07 15:38:30 W-pau2 : aborted by user E+01 = Calibration factor 04/04/07 15:40:23 AX : in 04/04/07 15:40:46 4-count : IR0404.t0R E+01 = Calibration factor 04/04/07 15:41:54 AX : in 04/04/07 15:41:54 AY : in 04/04/07 15:42:02 4-count : IR0404.t0S E+01 = Calibration factor 04/04/07 15:42:58 AX : in 04/04/07 15:43:01 4-count : IR0404.t0T E+01 = Calibration factor 04/04/07 15:43:44 AX : in 04/04/07 15:45:49 4-count : IR0404.t0U 04/04/07 15:45:57 W-pau2 : aborted by user E+01 = Calibration factor 04/04/07 15:46:39 AX :.845 in 04/04/07 15:47:09 4-count : IR0404.t0V E+01 = Calibration factor 04/04/07 15:47:35 4-count : IR0404.t0W E+01 = Calibration factor 04/04/07 15:48:41 AX : in 04/04/07 15:48:54 4-count : IR0404.t0X E+01 = Calibration factor 04/04/07 15:49:16 4-count : IR0404.t0Y E+01 = Calibration factor 04/04/07 15:50:19 4-count : IR0404.t0Z E+01 = Calibration factor 04/04/07 15:50:53 4-count : IR0404.t10 04/04/07 15:51:04 W-pau2 : aborted by user E+01 = Calibration factor 04/04/07 15:51:37 AX : in 04/04/07 15:51:43 4-count : IR0404.t E+01 = Calibration factor 04/04/07 15:52:03 4-count : IR0404.t12 04/04/07 15:52:10 W-pau2 : aborted by user E+01 = Calibration factor 04/04/07 17:17:59 AX : in 04/04/07 17:17:59 AY : in 04/04/07 17:18:37 W-axg0 : disregarded by user 04/04/07 17:18:39 4-count : IR0404.t E+01 = Calibration factor 04/04/07 17:20:28 AA : SOCKET 2 04/04/07 17:20:28 AX : in 04/04/07 17:20:40 4-count : IR0404.t E+01 = Calibration factor 04/04/07 17:21:34 AX : in 04/04/07 17:21:52 4-count : IR0404.t15 International Rectifier Corp E+01 = Calibration factor 04/04/07 17:22:47 AX :.828 in 04/04/07 17:26:01 4-count : IR0404.t E+01 = Calibration factor 04/04/07 17:27:11 AX : in 04/04/07 17:27:22 4-count : IR0404.t E+01 = Calibration factor 04/04/07 17:28:29 AX : in 04/04/07 17:28:46 4-count : IR0404.t E+01 = Calibration factor 04/04/07 17:31:19 AX : in 04/04/07 17:31:19 AY : in 04/04/07 17:35:55 W-axg1 : disregarded by user 04/04/07 17:36:12 W-axg1 : ignored by user 04/04/07 17:38:16 4-count : IR0404.t19 04/04/07 17:42:08 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 01:43:31 V5 = 290 V 04/04/08 02:04:31 4-count : IR0404.t1A E+01 = Calibration factor 04/04/08 02:08:19 4-count : IR0404.t1B E+01 = Calibration factor 04/04/08 02:19:46 4-count : IR0404.t1C E+01 = Calibration factor 04/04/08 02:20:52 AX : in 04/04/08 02:21:59 4-count : IR0404.t1D E+01 = Calibration factor 04/04/08 02:23:06 AX : in 04/04/08 02:23:12 4-count : IR0404.t1E E+01 = Calibration factor 04/04/08 02:24:45 AX :.857 in 04/04/08 02:24:50 4-count : IR0404.t1F E+01 = Calibration factor 04/04/08 02:25:51 AX : in 04/04/08 02:26:57 4-count : IR0404.t1G E+01 = Calibration factor 04/04/08 02:28:14 4-count : IR0404.t1H E+01 = Calibration factor 04/04/08 02:29:10 4-count : IR0404.t1I 04/04/08 02:29:39 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 02:30:55 AX : in 04/04/08 02:31:36 4-count : IR0404.t1J E+01 = Calibration factor 04/04/08 02:32:32 4-count : IR0404.t1K E+01 = Calibration factor 04/04/08 02:33:25 4-count : IR0404.t1L 04/04/08 02:33:38 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 02:36:35 AX : in 04/04/08 02:36:35 AY : in 04/04/08 02:41:50 4-count : IR0404.t1M E+01 = Calibration factor 04/04/08 02:42:30 4-count : IR0404.t1N E+01 = Calibration factor 04/04/08 02:43:09 4-count : IR0404.t1O 20

23 E+01 = Calibration factor 04/04/08 02:44:31 AX : in 04/04/08 02:45:43 4-count : IR0404.t1P E+01 = Calibration factor 04/04/08 02:47:43 AX : in 04/04/08 02:48:13 4-count : IR0404.t1Q E+01 = Calibration factor 04/04/08 02:48:59 4-count : IR0404.t1R 04/04/08 02:49:13 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 02:50:11 AX :.845 in 04/04/08 02:50:18 4-count : IR0404.t1S E+01 = Calibration factor 04/04/08 02:50:53 4-count : IR0404.t1T E+01 = Calibration factor 04/04/08 02:51:26 4-count : IR0404.t1U E+01 = Calibration factor 04/04/08 02:52:17 4-count : IR0404.t1V E+01 = Calibration factor 04/04/08 02:53:02 4-count : IR0404.t1W E+01 = Calibration factor 04/04/08 02:54:17 4-count : IR0404.t1X E+01 = Calibration factor 04/04/08 02:55:02 4-count : IR0404.t1Y E+01 = Calibration factor 04/04/08 02:55:40 4-count : IR0404.t1Z E+01 = Calibration factor 04/04/08 02:56:13 4-count : IR0404.t E+01 = Calibration factor 04/04/08 02:56:49 4-count : IR0404.t E+01 = Calibration factor 04/04/08 02:57:28 4-count : IR0404.t22 04/04/08 02:57:42 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 02:58:30 AX : in 04/04/08 02:59:10 4-count : IR0404.t E+01 = Calibration factor 04/04/08 02:59:43 4-count : IR0404.t E+01 = Calibration factor 04/04/08 03:00:21 4-count : IR0404.t E+01 = Calibration factor 04/04/08 03:00:54 4-count : IR0404.t E+01 = Calibration factor 04/04/08 03:01:29 4-count : IR0404.t E+01 = Calibration factor 04/04/08 03:02:02 4-count : IR0404.t28 04/04/08 03:02:12 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 03:03:05 AX : in 04/04/08 03:03:37 4-count : IR0404.t E+01 = Calibration factor 04/04/08 03:04:10 4-count : IR0404.t2A 04/04/08 03:04:17 W-pau1 : pause-continued E+01 = Calibration factor 04/04/08 03:04:49 4-count : IR0404.t2B 04/04/08 03:05:06 W-pau2 : aborted by user International Rectifier Corp E+01 = Calibration factor 04/04/08 04:22:44 Beam : 15.0 MeV/u Au 04/04/08 04:23:26 AS :.000 stp 04/04/08 04:31:46 V1 = 220 V 04/04/08 04:31:46 V2 = 223 V 04/04/08 04:31:46 V3 = 224 V 04/04/08 04:31:46 V4 = 287 V 04/04/08 04:31:46 V5 = 221 V 04/04/08 04:36:36 AR : deg 04/04/08 04:36:36 AS : stp 04/04/08 04:36:45 V5 = 261 V 04/04/08 04:38:37 V1 = 264 V 04/04/08 04:38:37 V2 = 265 V 04/04/08 04:38:37 V3 = 263 V 04/04/08 04:38:37 V4 = 366 V 04/04/08 04:41:32 AX : in 04/04/08 04:41:32 AY : in 04/04/08 04:41:32 AR : deg 04/04/08 04:44:17 AR : deg 04/04/08 04:44:32 4-count : IR0404.t2C 04/04/08 04:44:47 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 04:45:27 AX : in 04/04/08 04:45:31 4-count : IR0404.t2D E+01 = Calibration factor 04/04/08 04:46:52 AX : in 04/04/08 04:47:19 4-count : IR0404.t2E E+01 = Calibration factor 04/04/08 04:48:04 4-count : IR0404.t2F E+01 = Calibration factor 04/04/08 04:48:52 4-count : IR0404.t2G E+01 = Calibration factor 04/04/08 04:49:45 4-count : IR0404.t2H 04/04/08 04:50:19 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 04:51:06 AX :.828 in 04/04/08 04:51:52 4-count : IR0404.t2I E+01 = Calibration factor 04/04/08 04:53:48 AX : in 04/04/08 04:54:38 4-count : IR0404.t2J E+01 = Calibration factor 04/04/08 04:58:10 AX : in 04/04/08 04:58:18 4-count : IR0404.t2K E+01 = Calibration factor 04/04/08 04:59:47 AX : in 04/04/08 04:59:47 AY : in 04/04/08 04:59:51 4-count : IR0404.t2L E+01 = Calibration factor 04/04/08 05:01:20 AX : in 04/04/08 05:01:25 4-count : IR0404.t2M E+01 = Calibration factor 04/04/08 05:02:05 4-count : IR0404.t2N E+01 = Calibration factor 04/04/08 05:03:15 AX : in 04/04/08 05:03:20 4-count : IR0404.t2O E+01 = Calibration factor 21

24 04/04/08 05:04:08 4-count : IR0404.t2P 04/04/08 05:04:26 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 05:05:24 AX :.857 in 04/04/08 05:05:31 4-count : IR0404.t2Q E+01 = Calibration factor 04/04/08 05:06:26 4-count : IR0404.t2R E+01 = Calibration factor 04/04/08 05:07:03 4-count : IR0404.t2S E+01 = Calibration factor 04/04/08 05:07:38 4-count : IR0404.t2T E+01 = Calibration factor 04/04/08 05:09:06 AX : in 04/04/08 05:09:10 4-count : IR0404.t2U E+01 = Calibration factor 04/04/08 05:10:17 AX : in 04/04/08 05:10:20 4-count : IR0404.t2V E+01 = Calibration factor 04/04/08 05:11:43 AX : in 04/04/08 05:11:43 AY : in 04/04/08 05:11:50 4-count : IR0404.t2W E+01 = Calibration factor 04/04/08 05:12:51 AX : in 04/04/08 05:13:09 4-count : IR0404.t2X E+01 = Calibration factor 04/04/08 05:14:12 AX : in 04/04/08 05:14:15 4-count : IR0404.t2Y E+01 = Calibration factor 04/04/08 05:14:56 4-count : IR0404.t2Z 04/04/08 05:15:07 W-pau1 : pause-continued E+01 = Calibration factor 04/04/08 05:15:48 4-count : IR0404.t E+01 = Calibration factor 04/04/08 05:16:58 AX :.845 in 04/04/08 05:17:01 4-count : IR0404.t E+01 = Calibration factor 04/04/08 05:18:15 AX : in 04/04/08 05:18:18 4-count : IR0404.t E+01 = Calibration factor 04/04/08 05:19:20 AX : in 04/04/08 05:19:30 4-count : IR0404.t E+01 = Calibration factor 04/04/08 05:51:52 AX : in 04/04/08 05:51:52 AY : in 04/04/08 05:52:31 4-count : IR0404.t E+01 = Calibration factor 04/04/08 05:53:37 4-count : IR0404.t E+01 = Calibration factor 04/04/08 05:54:15 4-count : IR0404.t E+01 = Calibration factor 04/04/08 05:55:01 4-count : IR0404.t E+01 = Calibration factor 04/04/08 05:55:41 4-count : IR0404.t E+01 = Calibration factor 04/04/08 05:56:18 4-count : IR0404.t39 04/04/08 05:56:34 W-pau2 : aborted by user International Rectifier Corp E+01 = Calibration factor 04/04/08 05:57:30 AX : in 04/04/08 05:57:34 4-count : IR0404.t3A E+01 = Calibration factor 04/04/08 05:58:12 4-count : IR0404.t3B E+01 = Calibration factor 04/04/08 05:58:56 4-count : IR0404.t3C 04/04/08 05:59:16 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 05:59:45 AX : in 04/04/08 05:59:49 4-count : IR0404.t3D E+01 = Calibration factor 04/04/08 06:00:23 4-count : IR0404.t3E E+01 = Calibration factor 04/04/08 06:00:59 4-count : IR0404.t3F 04/04/08 06:01:22 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 06:02:06 AX :.828 in 04/04/08 06:02:13 4-count : IR0404.t3G E+01 = Calibration factor 04/04/08 06:02:52 4-count : IR0404.t3H E+01 = Calibration factor 04/04/08 06:03:36 4-count : IR0404.t3I E+01 = Calibration factor 04/04/08 06:04:27 4-count : IR0404.t3J E+01 = Calibration factor 04/04/08 06:05:08 4-count : IR0404.t3K 04/04/08 06:05:25 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 06:06:07 AX : in 04/04/08 06:06:11 4-count : IR0404.t3L E+01 = Calibration factor 04/04/08 06:06:53 4-count : IR0404.t3M 04/04/08 06:07:11 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 06:08:47 AX : in 04/04/08 06:08:47 AY : in 04/04/08 06:45:41 Beam : 15.0 MeV/u Kr 04/04/08 06:46:35 AS :.000 stp 04/04/08 06:48:55 V1 = 250 V 04/04/08 06:48:55 V2 = 253 V 04/04/08 06:48:55 V3 = 254 V 04/04/08 06:48:55 V4 = 317 V 04/04/08 06:48:55 V5 = 251 V 04/04/08 06:51:42 AR : deg 04/04/08 06:51:42 AS : stp 04/04/08 06:53:14 V1 = 374 V 04/04/08 06:53:14 V2 = 355 V 04/04/08 06:53:14 V3 = 363 V 04/04/08 06:53:14 V4 = 546 V 04/04/08 06:53:14 V5 = 361 V 04/04/08 06:59:54 4-count : IR0404.t3N E+01 = Calibration factor 04/04/08 09:49:15 4-count : IR0404.t3O E+01 = Calibration factor 04/04/08 09:50:23 AX : in 22

25 04/04/08 09:50:45 4-count : IR0404.t3P E+01 = Calibration factor 04/04/08 09:51:47 AX : in 04/04/08 09:51:53 4-count : IR0404.t3Q E+01 = Calibration factor 04/04/08 09:54:18 4-count : IR0404.t3R E+01 = Calibration factor 04/04/08 09:55:21 AX : in 04/04/08 09:55:25 4-count : IR0404.t3S E+01 = Calibration factor 04/04/08 09:56:07 AX : in 04/04/08 09:56:11 4-count : IR0404.t3T E+01 = Calibration factor 04/04/08 10:00:10 AX : in 04/04/08 10:02:43 4-count : IR0404.t3U E+01 = Calibration factor 04/04/08 10:03:25 4-count : IR0404.t3V E+01 = Calibration factor 04/04/08 10:03:57 4-count : IR0404.t3W E+01 = Calibration factor 04/04/08 10:06:00 4-count : IR0404.t3X E+01 = Calibration factor 04/04/08 10:08:04 4-count : IR0404.t3Y E+01 = Calibration factor 04/04/08 10:08:36 4-count : IR0404.t3Z E+01 = Calibration factor 04/04/08 10:09:26 4-count : IR0404.t E+01 = Calibration factor 04/04/08 10:10:01 4-count : IR0404.t41 04/04/08 10:10:13 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 10:12:39 AX : in 04/04/08 10:12:47 4-count : IR0404.t E+01 = Calibration factor 04/04/08 10:14:45 4-count : IR0404.t E+01 = Calibration factor 04/04/08 10:15:14 4-count : IR0404.t E+01 = Calibration factor 04/04/08 10:15:49 4-count : IR0404.t E+01 = Calibration factor 04/04/08 10:17:49 4-count : IR0404.t E+01 = Calibration factor 04/04/08 10:18:24 4-count : IR0404.t E+01 = Calibration factor 04/04/08 10:18:51 4-count : IR0404.t E+01 = Calibration factor 04/04/08 10:19:18 4-count : IR0404.t E+01 = Calibration factor 04/04/08 10:20:15 4-count : IR0404.t4A 04/04/08 10:20:24 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 10:23:11 AX : in 04/04/08 10:23:11 AY : in 04/04/08 10:23:43 W-axg0 : ignored by user 04/04/08 10:23:44 4-count : IR0404.t4B E+01 = Calibration factor International Rectifier Corp. 04/04/08 10:24:34 AX : in 04/04/08 10:24:42 W-axg0 : disregarded by user 04/04/08 10:24:43 4-count : IR0404.t4C E+01 = Calibration factor 04/04/08 10:25:29 AX : in 04/04/08 10:27:21 4-count : IR0404.t4D E+01 = Calibration factor 04/04/08 10:27:49 W-axg0 : disregarded by user 04/04/08 10:27:51 4-count : IR0404.t4E E+01 = Calibration factor 04/04/08 10:29:40 4-count : IR0404.t4F E+01 = Calibration factor 04/04/08 10:30:07 4-count : IR0404.t4G E+01 = Calibration factor 04/04/08 10:30:29 4-count : IR0404.t4H E+01 = Calibration factor 04/04/08 10:30:55 4-count : IR0404.t4I E+01 = Calibration factor 04/04/08 10:31:20 4-count : IR0404.t4J E+01 = Calibration factor 04/04/08 10:31:53 4-count : IR0404.t4K E+01 = Calibration factor 04/04/08 10:32:59 4-count : IR0404.t4L 04/04/08 10:33:43 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 10:34:12 AX :.845 in 04/04/08 10:34:40 4-count : IR0404.t4M 04/04/08 10:34:49 W-pau2 : aborted by user E+01 = Calibration factor 04/04/08 10:37:31 AX : in 04/04/08 10:38:10 4-count : IR0404.t4N E+01 = Calibration factor 04/04/08 10:40:14 AX : in 04/04/08 10:40:30 4-count : IR0404.t4O E+01 = Calibration factor 04/04/08 10:40:57 4-count : IR0404.t4P E+01 = Calibration factor 04/04/08 10:41:20 4-count : IR0404.t4Q E+01 = Calibration factor 04/04/08 10:42:15 4-count : IR0404.t4R E+01 = Calibration factor 04/04/08 13:10:12 AX : in 04/04/08 13:10:12 AY : in 04/04/08 13:10:12 AU : in 04/04/08 13:10:12 AV : in 04/04/08 13:10:12 AR :.000 deg 04/04/08 13:10:12 AS :.000 stp 04/04/08 13:15:03 4-count : ir0404.t4s E+01 = Calibration factor 1.00E+06 = Exposure preset 04/04/08 13:16:21 4-count : ir0404.t4t E+01 = Calibration factor 04/04/08 13:18:31 Close : ir

26 Appendix C BNL TDVG Accelerator Facility Beam Data 24

27 Run Date Time Device Ion Energy Range LET(Si) Tilt Roll Time Flux Fluence Dose TotalDose Upsets CrossSec Left Top Bottom Right Unif Center # ID MeV µm MeV.cm2/mg deg deg sec #/cm2/sec #/cm2 RAD(Si) RAD(Si) cm2 % % % % % % 0 9/22/03 9:47 Flux Br /22/03 9:49 1 Br /22/03 9:50 1 Br /22/03 9:50 1 Br /22/03 9:51 1 Br /22/03 9:52 2 Br /22/03 9:52 3 Br /22/03 9:54 10 Br /22/03 9:55 10 Br /22/03 9:55 10 Br /22/03 9:56 10 Br /22/03 9:57 10 Br /22/03 9:57 10 Br /22/03 9:58 10 Br /22/03 9:58 10 Br /22/03 9:59 10 Br /22/03 10:00 10 Br /22/03 10:00 10 Br /22/03 10:01 10 Br /22/03 10:01 10 Br /22/03 10:02 10 Br /22/03 10:03 10 Br /22/03 10:04 Flux Br /22/03 10:04 10 Br ! lost beam close to the end of the run 0 9/22/03 10:21 Flux Br /22/03 10:21 10 Br /22/03 10:22 10 Br /22/03 10:22 10 Br /22/03 10:23 10 Br /22/03 10:23 10 Br /22/03 10:24 10 Br /22/03 10:24 10 Br /22/03 10:25 10 Br /22/03 10:26 10 Br /22/03 10:26 10 Br /22/03 10:27 10 Br /22/03 10:27 10 Br /22/03 10:28 10 Br /22/03 10:29 12 Br /22/03 10:30 12 Br /22/03 10:30 12 Br /22/03 10:31 12 Br /22/03 10:32 13 Br /22/03 10:33 13 Br /22/03 11:08 Flux Br /22/03 11:08 1 Br /22/03 11:09 1 Br /22/03 11:09 1 Br /22/03 11:10 1 Br /22/03 11:11 1 Br

28 Run Date Time Device Ion Energy Range LET(Si) Tilt Roll Time Flux Fluence Dose TotalDose Upsets CrossSec Left Top Bottom Right Unif Center # ID MeV µm MeV.cm2/mg deg deg sec #/cm2/sec #/cm2 RAD(Si) RAD(Si) cm2 % % % % % % 235 9/22/03 15:54 9 Br /22/03 15:54 9 Br /22/03 15:55 9 Br /22/03 15:56 9 Br /22/03 15:57 9 Br /22/03 15:57 9 Br /22/03 15:58 9 Br /22/03 15:59 9 Br /22/03 16:00 9 Br /22/03 16:01 10 Br /22/03 16:02 10 Br /22/03 16:02 10 Br /22/03 16:03 10 Br /22/03 16:04 10 Br /22/03 16:05 10 Br /22/03 16:05 12 Br /22/03 16:06 12 Br /22/03 16:08 12 Br /22/03 16:08 12 Br /22/03 16:09 12 Br /22/03 16:10 12 Br /22/03 16:10 13 Br E /22/03 16:11 15 Br /22/03 16:12 15 Br E /22/03 16:13 16 Br /22/03 16:14 17 Br /22/03 16:15 18 Br /22/03 17:54 Flux I /22/03 17:54 1 I /22/03 17:55 1 I /22/03 17:55 1 I /22/03 17:56 1 I /22/03 17:57 1 I /22/03 17:57 1 I E /22/03 17:58 2 I /22/03 17:58 3 I /22/03 17:59 4 I /22/03 18:00 5 I /22/03 18:00 6 I /22/03 18:01 7 I /22/03 18:01 8 I /22/03 18:02 8 I /22/03 18:03 9 I /22/03 18:04 9 I /22/03 18:05 9 I /22/03 18:05 9 I /22/03 18:11 9 I /22/03 18:12 9 I E /22/03 18:13 10 I /22/03 18:13 12 I /22/03 18:14 13 I

29 Run Date Time Device Ion Energy Range LET(Si) Tilt Roll Time Flux Fluence Dose TotalDose Upsets CrossSec Left Top Bottom Right Unif Center # ID MeV µm MeV.cm2/mg deg deg sec #/cm2/sec #/cm2 RAD(Si) RAD(Si) cm2 % % % % % % 285 9/22/03 18:15 15 I /22/03 18:15 16 I /22/03 18:16 17 I /22/03 18:16 18 I /22/03 18:17 18 I /22/03 18:53 Flux I /22/03 18:53 1 I /22/03 18:54 1 I /22/03 18:54 1 I /22/03 18:55 1 I /22/03 18:57 Flux I /22/03 18:57 1 I E /22/03 18:58 2 I /22/03 18:59 2 I /22/03 18:59 2 I /22/03 18:59 2 I /22/03 19:00 2 I E /22/03 19:01 3 I /22/03 19:01 3 I /22/03 19:01 3 I E /22/03 19:02 4 I /22/03 19:02 4 I /22/03 19:03 4 I /22/03 19:03 4 I /22/03 19:03 4 I E /22/03 19:04 5 I /22/03 19:05 5 I /22/03 19:05 5 I /22/03 19:05 5 I /22/03 19:06 5 I /22/03 19:06 5 I /22/03 19:07 5 I /22/03 19:07 5 I /22/03 19:07 5 I E /22/03 19:08 6 I /22/03 19:08 6 I /22/03 19:09 6 I /22/03 19:09 6 I /22/03 19:09 6 I ! failed at end 322 9/22/03 19:11 7 I /22/03 19:11 7 I /22/03 19:11 7 I /22/03 19:12 7 I /22/03 19:12 7 I /22/03 19:12 7 I E /22/03 19:13 8 I /22/03 19:14 8 I /22/03 19:14 8 I /22/03 19:14 8 I E /22/03 19:16 9 I

30 Run Date Time Device Ion Energy Range LET(Si) Tilt Roll Time Flux Fluence Dose TotalDose Upsets CrossSec Left Top Bottom Right Unif Center # ID MeV µm MeV.cm2/mg deg deg sec #/cm2/sec #/cm2 RAD(Si) RAD(Si) cm2 % % % % % % 798 9/23/03 2:39 15 Br /23/03 2:39 15 Br /23/03 2:40 15 Br /23/03 2:40 15 Br E /23/03 2:41 16 Br /23/03 2:42 16 Br E /23/03 2:42 17 Br /23/03 2:43 17 Br /23/03 2:43 17 Br /23/03 2:43 17 Br /23/03 2:44 17 Br /23/03 2:44 17 Br E /23/03 2:45 18 Br /23/03 2:45 18 Br /23/03 2:45 18 Br E /23/03 4:06 Flux Au /23/03 4:06 1 Au /23/03 4:07 1 Au /23/03 4:07 2 Au /23/03 4:07 2 Au /23/03 4:08 3 Au /23/03 4:08 3 Au /23/03 4:09 4 Au /23/03 4:10 4 Au /23/03 4:10 4 Au /23/03 4:11 4 Au /23/03 4:11 4 Au /23/03 4:11 4 Au /23/03 4:12 4 Au /23/03 4:12 4 Au /23/03 4:12 4 Au /23/03 4:13 4 Au /23/03 4:13 4 Au /23/03 4:14 4 Au /23/03 4:14 4 Au E /23/03 4:15 5 Au /23/03 4:16 6 Au /23/03 4:17 3 Au /23/03 4:19 7 Au /23/03 4:19 7 Au /23/03 4:20 7 Au /23/03 4:20 7 Au /23/03 4:20 7 Au /23/03 4:21 7 Au /23/03 4:21 7 Au /23/03 4:22 8 Au /23/03 4:22 8 Au /23/03 4:22 8 Au /23/03 4:23 8 Au /23/03 4:23 9 Au /23/03 4:24 9 Au

31 Run Date Time Device Ion Energy Range LET(Si) Tilt Roll Time Flux Fluence Dose TotalDose Upsets CrossSec Left Top Bottom Right Unif Center # ID MeV µm MeV.cm2/mg deg deg sec #/cm2/sec #/cm2 RAD(Si) RAD(Si) cm2 % % % % % % 848 9/23/03 4:24 9 Au /23/03 4:25 10 Au E /23/03 4:25 12 Au /23/03 4:26 12 Au /23/03 4:26 12 Au /23/03 4:27 12 Au /23/03 4:28 9 Au E /23/03 4:29 12 Au /23/03 4:30 13 Au /23/03 4:31 13 Au /23/03 4:31 15 Au /23/03 4:32 15 Au E /23/03 4:33 16 Au /23/03 4:35 16 Au /23/03 4:37 Flux Au /23/03 4:37 17 Au /23/03 4:38 17 Au /23/03 4:38 17 Au /23/03 4:39 18 Au /23/03 4:40 18 Au /23/03 4:40 18 Au /23/03 5:03 Flux Au /23/03 5:05 1 Au /23/03 5:06 1 Au /23/03 5:06 1 Au /23/03 5:07 1 Au /23/03 5:08 1 Au /23/03 5:08 1 Au /23/03 5:09 1 Au /23/03 5:10 1 Au /23/03 5:10 1 Au /23/03 5:11 1 Au /23/03 5:16 1 Au /23/03 5:17 Flux Au /23/03 5:17 1 Au /23/03 5:17 1 Au /23/03 5:18 1 Au E /23/03 5:18 2 Au /23/03 5:19 2 Au E /23/03 5:19 3 Au /23/03 5:20 3 Au /23/03 5:20 3 Au /23/03 5:20 3 Au E /23/03 5:21 4 Au /23/03 5:21 4 Au E /23/03 5:22 5 Au /23/03 5:22 5 Au /23/03 5:22 5 Au E /23/03 5:23 6 Au /23/03 5:23 6 Au E /23/03 5:24 7 Au

32 Run Date Time Device Ion Energy Range LET(Si) Tilt Roll Time Flux Fluence Dose TotalDose Upsets CrossSec Left Top Bottom Right Unif Center # ID MeV µm MeV.cm2/mg deg deg sec #/cm2/sec #/cm2 RAD(Si) RAD(Si) cm2 % % % % % % 151 4/27/04 14:59 2 Br S 152 4/27/04 15:00 2 Br E S 153 4/27/04 15:06 3 Br S 154 4/27/04 15:06 4 Br S 155 4/27/04 15:07 5 Br S 156 4/27/04 15:08 6 Br S 157 4/27/04 15:08 6 Br S 158 4/27/04 15:09 6 Br S 159 4/27/04 15:09 7 Br S 160 4/27/04 15:09 7 Br S 161 4/27/04 15:10 8 Br S 162 4/27/04 15:10 8 Br S 163 4/27/04 15:11 10 Br S 164 4/27/04 15:11 10 Br S 165 4/27/04 15:12 10 Br S 166 4/27/04 15:13 10 Br E S 167 4/27/04 15:16 11 Br E S 168 4/27/04 15:16 12 Br S 169 4/27/04 15:17 13 Br S 170 4/27/04 15:19 14 Br S 171 4/27/04 15:24 15 Br S 172 4/27/04 15:24 15 Br E S 0 4/27/04 15:27 Flux Br /27/04 15:27 16 Br S 174 4/27/04 15:28 17 Br S 175 4/27/04 15:28 18 Br S 0 4/27/04 17:36 Flux Br /27/04 17:36 1 Br S 177 4/27/04 17:42 2 Br S 178 4/27/04 17:50 3 Br S 179 4/27/04 17:51 4 Br S 180 4/27/04 17:52 4 Br S 181 4/27/04 17:52 5 Br S 182 4/27/04 17:53 6 Br S 183 4/27/04 17:54 7 Br S 184 4/27/04 17:55 7 Br S 185 4/27/04 17:56 7 Br E S 186 4/27/04 18:00 8 Br S 187 4/27/04 18:01 8 Br S 188 4/27/04 18:02 8 Br S 189 4/27/04 18:02 8 Br S 190 4/27/04 18:03 10 Br S 191 4/27/04 18:04 11 Br S 0 4/27/04 18:44 Flux Br /27/04 18:44 1 Br S 193 4/27/04 18:44 1 Br S 194 4/27/04 18:45 2 Br S 30

33 Run Date Time Device Ion Energy Range LET(Si) Tilt Roll Time Flux Fluence Dose TotalDose Upsets CrossSec Left Top Bottom Right Unif Center # ID MeV µm MeV.cm2/mg deg deg sec #/cm2/sec #/cm2 RAD(Si) RAD(Si) cm2 % % % % % % 195 4/27/04 18:46 3 Br S 196 4/27/04 18:47 5 Br S 197 4/27/04 18:48 5 Br S 198 4/27/04 18:48 5 Br S 199 4/27/04 18:51 6 Br S 200 4/27/04 18:51 7 Br S 201 4/27/04 18:54 10 Br S 202 4/27/04 18:54 10 Br S 203 4/27/04 18:55 10 Br S 204 4/27/04 18:55 11 Br S 205 4/27/04 18:56 12 Br S 206 4/27/04 18:58 14 Br S 207 4/27/04 18:58 15 Br S 208 4/27/04 18:59 16 Br S 0 4/27/04 19:50 Flux Br /27/04 19:50 1 Br S 210 4/27/04 19:52 1 Br S 211 4/27/04 19:53 1 Br S 212 4/27/04 19:54 1 Br S 213 4/27/04 19:56 1 Br E S 214 4/27/04 19:58 2 Br S 215 4/27/04 19:59 2 Br S 216 4/27/04 20:00 2 Br S 217 4/27/04 20:01 2 Br S 218 4/27/04 20:01 2 Br E S 219 4/27/04 20:02 3 Br S 220 4/27/04 20:03 3 Br S 221 4/27/04 20:04 3 Br S 222 4/27/04 20:05 3 Br S 223 4/27/04 20:05 3 Br S 224 4/27/04 20:06 3 Br E S 225 4/27/04 20:07 4 Br S 226 4/27/04 20:08 4 Br S 227 4/27/04 20:08 4 Br S 228 4/27/04 20:09 4 Br E S 229 4/27/04 20:09 5 Br S 230 4/27/04 20:10 5 Br S 231 4/27/04 20:10 5 Br E S 232 4/27/04 20:12 6 Br S 233 4/27/04 20:13 6 Br S 234 4/27/04 20:17 6 Br S 235 4/27/04 20:17 6 Br S 236 4/27/04 20:18 6 Br E S 237 4/27/04 20:19 7 Br S 238 4/27/04 20:20 7 Br S 0 4/27/04 20:20 Flux Br /27/04 20:20 7 Br S 31

34 Run Date Time Device Ion Energy Range LET(Si) Tilt Roll Time Flux Fluence Dose TotalDose Upsets CrossSec Left Top Bottom Right Unif Center # ID MeV µm MeV.cm2/mg deg deg sec #/cm2/sec #/cm2 RAD(Si) RAD(Si) cm2 % % % % % % 415 4/28/04 1:54 8 I E D 416 4/28/04 1:55 10 I D 417 4/28/04 1:56 11 I D 418 4/28/04 1:56 12 I D 419 4/28/04 1:57 12 I D 420 4/28/04 1:58 13 I D 421 4/28/04 1:58 14 I D 422 4/28/04 1:59 15 I D 423 4/28/04 2:00 15 I D 424 4/28/04 2:00 15 I D 425 4/28/04 2:01 16 I D 426 4/28/04 2:01 16 I D 427 4/28/04 2:02 17 I D 428 4/28/04 2:03 17 I D 429 4/28/04 2:03 18 I D 430 4/28/04 2:05 18 I D 431 4/28/04 2:06 18 I D 432 4/28/04 2:06 18 I D 0 4/28/04 2:35 Flux I /28/04 2:35 1 I E D 434 4/28/04 2:36 2 I D 435 4/28/04 2:37 3 I D 436 4/28/04 2:37 4 I D 437 4/28/04 2:38 5 I D 438 4/28/04 2:39 5 I D 439 4/28/04 2:39 5 I D 440 4/28/04 2:40 5 I D 441 4/28/04 2:40 5 I D 442 4/28/04 2:41 6 I D 443 4/28/04 2:41 6 I D 444 4/28/04 2:42 7 I E D 445 4/28/04 2:44 8 I D 446 4/28/04 2:45 10 I D 447 4/28/04 2:46 10 I D 448 4/28/04 2:46 10 I D 449 4/28/04 2:47 10 I E D 450 4/28/04 2:48 11 I D 451 4/28/04 2:49 12 I D 452 4/28/04 2:49 13 I D 453 4/28/04 2:50 14 I D 454 4/28/04 2:51 15 I D 455 4/28/04 2:51 16 I E D 456 4/28/04 2:52 17 I E D 0 4/28/04 3:20 Flux I /28/04 3:20 1 I D 458 4/28/04 3:20 2 I D 459 4/28/04 3:21 3 I D 32

35 Run Date Time Device Ion Energy Range LET(Si) Tilt Roll Time Flux Fluence Dose TotalDose Upsets CrossSec Left Top Bottom Right Unif Center # ID MeV µm MeV.cm2/mg deg deg sec #/cm2/sec #/cm2 RAD(Si) RAD(Si) cm2 % % % % % % 505 4/28/04 4:54 15 Au A 506 4/28/04 4:55 15 Au A 507 4/28/04 4:55 15 Au A 508 4/28/04 4:56 15 Au A 509 4/28/04 4:57 15 Au A 510 4/28/04 4:57 15 Au A 511 4/28/04 4:58 15 Au A 512 4/28/04 4:58 15 Au A 513 4/28/04 4:59 15 Au A 514 4/28/04 5:00 16 Au A 515 4/28/04 5:01 17 Au A 516 4/28/04 5:02 18 Au A 0 4/28/04 5:34 Flux Au /28/04 5:34 1 Au A 518 4/28/04 5:35 2 Au A 519 4/28/04 5:36 3 Au A 520 4/28/04 5:37 4 Au A 521 4/28/04 5:39 5 Au A 522 4/28/04 5:43 6 Au A 523 4/28/04 5:43 6 Au E A 524 4/28/04 5:44 7 Au A 525 4/28/04 5:45 8 Au A 526 4/28/04 5:45 10 Au A 527 4/28/04 5:47 11 Au A 528 4/28/04 5:47 12 Au A 529 4/28/04 5:48 10 Au A 530 4/28/04 5:50 13 Au A 531 4/28/04 5:50 14 Au A 532 4/28/04 5:51 15 Au A 533 4/28/04 5:53 16 Au A 534 4/28/04 5:53 17 Au A 535 4/28/04 5:54 18 Au A 33

36 Appendix D International Rectifier Test Plans and Procedures 34

37 September 2003 Test Plan, Single Event Effects (BNL, TDVG Accelerator) 1.0 Purpose The purpose of this test is to characterize and establish Single Event Effects (SEE) Safe-Operating-Area (SOA) curves for several International Rectifier Corp. (IR) Power MOSFET devices. The data resulting from the tests shall be used for qualification to several US Government military slash sheets and shall be incorporated in the IR data sheets. 2.0 Test Responsibility IR shall be responsible for conducting the tests, which shall be performed at the Brookhaven National Laboratory (BNL), Tandem Van De Graaff (TDVG) Accelerator. IR shall be responsible for the SEE testing of devices-under-test (DUT) and final Test Report. 3.0 Test Facility 3.1 Accelerator The Brookhaven National Laboratory, Tandem Van De Graaff Accelerator (TDVG) shall be used to provide the necessary ion species and energy. Brookhaven National Laboratory (BNL) shall provide adequate dosimeter for verification of the ion beam parameters. 3.2 Test Equipment The necessary test equipment including the test interface board, cables, power supplies, etc. shall be provided by IR. IR shall provide the equipment needed to de-lid and handle the individual test devices. 4.0 Test Devices 4.1 The following device types are planned for characterization for new production introductions: IRH67134 (Hex-3, 150V, N-channel, R6, MR Standard Process) IRHD67134 (Hex-3, 150V, N-channel, R6, MR Depletion Process) IRH597Z30 (Hex-3, 30V, P-channel, R5, MR Process) The following device types are planned for DOE Evaluation for Gate Oxide Thickness Effects: IRH (Hex-3, 100V, P-channel, R5, MR Process) IRH57130 (Hex-3, 100V, N-channel, R5, MR Process) 4.2 All devices shall be built in TO-3 packages. The devices shall be properly sealed and packed for transportation to BNL. 4.3 All devices shall be verified for correct electrical performance prior to arrival at BNL. 5.0 Test Method The MIL-STD-750, Method 1080 shall be used to set procedure for all testing described herein. 6.0 Ion Specie and Energy There are three (3) available ion specie, each with different energy level, at BNL. All parts will be first tested with one specie of lowest energy (LET) level before the TDVG is switched to the next ion specie with higher energy level. a. Bromine 35Br 79 Energy = 309 MeV LET = 36.7 MeV/(mg/cm 2 ) Range = 39.5 µm b. Iodine 63I 127 Energy = 341 MeV LET = 59.8 MeV/(mg/cm 2 ) Range = 32.5 µm c. Gold 79Au 197 Energy = 350 MeV LET = 82.3 MeV/(mg/cm 2 ) Range = 28.4 µm 35

38 7.0 Record Keeping Each irradiation shall be assigned a run number. This number will be used to correlate data from different sources. 7.1 TDVG Output The TDVG shall provide a hardcopy summary of all test runs showing key parameters such as run, date, time, flux, fluence, ion, energy, LET, and range. A separate output of beam diagnostics shall also be provided. 7.2 IR Output IR shall also keep a written log of each run including run, ion, device tested, VDS and VGS biases. IR shall also record comments regarding the test including observations or deviations from test plan. 8.0 Characterizations and Verification Characterization and Verification may be accomplished simultaneously. Characterization implies that the SOA curve is set using at least one (1) device at each insitu bias. Verification is simply an extension of the characterization, demonstrating two (2) additional devices passing at each insitu bias, for a total of three (3) devices per insitu bias condition. 9.0 Test Procedure The IR Product Engineer assigned to this test shall control the following test procedure based on Test Method IR shall be responsible to direct the ion specie, beam characteristics, insitu bias conditions and device selection. 9.1 Nominal Beam Characteristics are : Flux = 1x10 4 (1E4) ions/cm 2 /sec. Fluence = 3x10 5 (3E5) ions/cm 2. Beam Diameter = 1.5 cm. 9.2 Initial Starting Point : typically at VDS =Rated VDS and VGS = Irradiate the device at the selected flux and fluence. 9.4 Post irradiation, test IGSS at VGS = 20 V. 9.5 Based on apparent pass or fail, select next operating conditions. 9.6 Repeat with new device. 10. Test Report The Test Report shall include the following information : a. Device Type(s), serial numbers, wafer lot identification, date code (if applicable). b. Test dates and personnel names. c. Facility, accelerator type. d. Ion specie, energy, LET, range, flux and fluence. e. Schematic of test circuit used. f. Dosimeter for each ion beam used. g. Insitu bias conditions. h. Comments and observations. i. Pre and post electrical test results. j. Summary description including curves. 36

39 April 2004 Test Plan, Single Event Effects (TAMU, K500 Superconducting Cyclotron) 1.0 Purpose The purpose of this test is to characterize and establish Single Event Effects (SEE) Safe-Operating-Area (SOA) curves for several International Rectifier Corp. (IR) Power MOSFET devices. The data resulting from the tests shall be used for qualification to several US Government military slash sheets and shall be incorporated in the IR data sheets. 2.0 Test Responsibility IR shall be responsible for conducting the tests, which shall be performed at the Texas A & M University (TAMU), Cyclotron Institute. IR shall be responsible for the SEE testing of devices-under-test (DUT) and final Test Report. 3.0 Test Facility 3.1 K500 Superconducting Cyclotron The Texas A&M University, Tandem K500 Superconducting Cyclotron shall be used to provide the necessary ion species and energy. TAMU Cyclotron Institute shall provide adequate dosimeter for verification of the ion beam parameters. 3.2 Test Equipment The necessary test equipment including the test interface board, cables, power supplies, etc. shall be provided by IR. IR shall provide the equipment needed to de-lid and handle the individual test devices. 4.0 Test Devices 4.1 The following device types are planned for characterization and qualification: IRH67134 (Size-3, 150V, N-channel, R6, MR Process) Depletion Depth=28µm typical FSS434R4 (Size-3, 550V, N-channel, R6, Star-Power Process) Depletion Depth=unknown 4.2 All devices shall be built in TO-3 packages. The devices shall be properly sealed and packed for transportation to TAMU Cyclotron Institute. 4.3 All devices shall be verified for correct electrical performance prior to arrival at TAMU Cyclotron. 5.0 Test Method The MIL-STD-750, Method 1080 shall be used to set procedure for all testing described herein. 6.0 Ion Specie and Energy There are three (3) available ion specie with different energy level, at TAMU. All parts will be first tested with one specie of lowest energy (LET) level before the Accelerator is switched to the next ion specie with higher energy level. a. Krypton 36Kr 84 Energy = 312 MeV LET = 39 MeV/(mg/cm 2 ) Range = 39 µm b. Xeon 54Xe 129 Energy = 825 MeV LET = 59 MeV/(mg/cm 2 ) Range = 66 µm c. Gold 79Au 197 Energy = 1480 MeV LET = 90 MeV/(mg/cm 2 ) Range = 80 µm 37

40 7.0 Record Keeping Each irradiation shall be assigned a run number. This number will be used to correlate data from different sources. 7.1 Cyclotron Accelerator Output The K500 Cyclotron Institute shall provide a hardcopy summary of all test runs showing key parameters such as run, date, time, flux, fluence, ion, energy, LET, and range. An output of beam diagnostics shall also be provided. 7.2 IR Output IR shall also keep a written log of each run including run, ion, device tested, VDS and VGS biases. IR shall also record comments regarding the test including observations or deviations from test plan. 8.0 Characterizations and Verification Characterization and Verification may be accomplished simultaneously. Characterization implies that the SOA curve is set using at least one (1) device at each insitu bias. Verification is simply an extension of the characterization, demonstrating total three (3) non-destructive devices passing at each insitu bias condition. 9.0 Test Procedure The IR Product Engineer assigned to this test shall control the following test procedure based on Test Method IR shall be responsible to direct the ion specie, beam characteristics, insitu bias conditions and device selection. 9.1 Nominal Beam Characteristics are : Flux = 1x10 4 (1E4) ions/cm 2 /sec. Fluence = 3x10 5 (3E5) ions/cm 2. Beam Diameter = 1.5 cm. (or large enough to cover the whole die-attachment area) 9.2 Initial Starting Point : typically at VDS =Rated VDS and VGS = Irradiate the device at the selected flux and fluence. 9.4 Post irradiation, test IDSS & IGSS at VDS=80% Rated VDS and VGS up to 20 V (5 V increment). 9.5 Based on apparent pass or fail, select next operating conditions. 9.6 Repeat with new device. 10. Test Report The Test Report shall include the following information : a. Device Type(s), serial numbers, wafer lot identification, date code (if applicable). b. Test dates and personnel names. c. Facility, accelerator type. d. Ion specie, energy, LET, range, flux and fluence. e. Schematic of test circuit used. f. Dosimeter for each ion beam used. g. Insitu bias conditions. h. Comments and observations. i. Pre and post electrical test results. j. Summary description including curves. 38

41 April 2004 Test Plan, Single Event Effects (BNL, TDVG Accelerator) 1.0 Purpose The purpose of this test is to characterize and establish Single Event Effects (SEE) Safe-Operating-Area (SOA) curves for several International Rectifier Corp. (IR) Power MOSFET devices. The data resulting from the tests shall be used for qualification to several US Government military slash sheets and shall be incorporated in the IR data sheets. 2.0 Test Responsibility IR shall be responsible for conducting the tests, which shall be performed at the Brookhaven National Laboratory (BNL), Tandem Van De Graaff (TDVG) Accelerator. IR shall be responsible for the SEE testing of devices-under-test (DUT) and final Test Report. 3.0 Test Facility 3.1 Accelerator The Brookhaven National Laboratory, Tandem Van De Graaff Accelerator (TDVG) shall be used to provide the necessary ion species and energy. Brookhaven National Laboratory (BNL)shall provide adequate dosimeter for verification of the ion beam parameters. 3.2 Test Equipment The necessary test equipment including the test interface board, cables, power supplies, etc. shall be provided by IR. IR shall provide the equipment needed to de-lid and handle the individual test devices. 4.0 Test Devices 4.1 The following device types are planned for characterization for new product introductions: IRH770Z4 (Hex-Z, 60V, N-channel, R7, LOGIC Process) IRH77064 (Hex-6, 60V, N-channel, R7, MR Process) IRH (Hex-6, 60V, P-channel, R7, LOGIC Process) IRH67134 (Hex-3, 150V, N-channel, R6, MR Process) The following device types are planned for technology capability study: IRF10055 (55V, N-channel, Gen 10.7, Trench Process) IRF10100 (100V, N-channel, Gen 10.7, Trench Process) IRF10200 (200V, N-channel, Gen 10.7, Trench Process) 4.2 All devices shall be built in TO-3 packages. The devices shall be properly sealed and packed for transportation to BNL. 4.3 All devices shall be verified for correct electrical performance prior to arrival at BNL. 5.0 Test Method The MIL-STD-750, Method 1080 shall be used to set procedure for all testing described herein. 6.0 Ion Specie and Energy There are three (3) available ion specie, each with different energy level, at BNL. All parts will be first tested with one specie of lowest energy (LET) level before the TDVG is switched to the next ion specie with higher energy level. a. Bromine 35Br 79 Energy = 309 MeV LET = 36.7 MeV/(mg/cm 2 ) Range = 39.5 µm b. Iodine 63I 127 Energy = 341 MeV LET = 59.8 MeV/(mg/cm 2 ) Range = 32.5 µm c. Gold 79Au 197 Energy = 350 MeV LET = 82.3 MeV/(mg/cm 2 ) Range = 28.4 µm 39

42 7.0 Record Keeping Each irradiation shall be assigned a run number. This number will be used to correlate data from different sources. 7.1 TDVG Output The TDVG shall provide a hardcopy summary of all test runs showing key parameters such as run, date, time, flux, fluence, ion, energy, LET, and range. A separate output of beam diagnostics shall also be provided. 7.2 IR Output IR shall also keep a written log of each run including run, ion, device tested, VDS and VGS biases. IR shall also record comments regarding the test including observations or deviations from test plan. 8.0 Characterizations and Verification Characterization and Verification may be accomplished simultaneously. Characterization implies that the SOA curve is set using at least one (1) device at each insitu bias. Verification is simply an extension of the characterization, demonstrating two (2) additional devices passing at each insitu bias, for a total of three (3) devices per insitu bias condition. 9.0 Test Procedure The IR Product Engineer assigned to this test shall control the following test procedure based on Test Method IR shall be responsible to direct the ion specie, beam characteristics, insitu bias conditions and device selection. 9.1 Nominal Beam Characteristics are : Flux = 1x10 4 (1E4) ions/cm 2 /sec. Fluence = 3x10 5 (3E5) ions/cm 2. Beam Diameter = 1.5 cm. 9.2 Initial Starting Point : typically at VDS =Rated VDS and VGS = Irradiate the device at the selected flux and fluence. 9.4 Post irradiation, test IGSS at VGS = 20 V. 9.5 Based on apparent pass or fail, select next operating conditions. 9.6 Repeat with new device. 10. Test Report The Test Report shall include the following information : a. Device Type(s), serial numbers, wafer lot identification, date code (if applicable). b. Test dates and personnel names. c. Facility, accelerator type. d. Ion specie, energy, LET, range, flux and fluence. e. Schematic of test circuit used. f. Dosimeter for each ion beam used. g. Insitu bias conditions. h. Comments and observations. i. Pre and post electrical test results. j. Summary description including curves. 40

43 Appendix E Test Circuit Schematic Diagram 41

44 Reference: MIL-STD-750, Method 1080 Details of Test Method can be reviewed from DSCC Website: Test Circuit Schematic Diagram 42

45 Appendix F BNL TVDG Ion Species, Surface LET and Range 43

46 Available Ion Species In Silicon In GaAs Mass Max Energy Surface LET Range Surface LET Range Z Symbol AMU MeV MeV MeV Microns AMU mg/cm 2 mg/cm 2 1 1H D Li B C N O F Na Mg Al Si P S Cl K Ca Sc Ti V Cr Mn

47 Available Ion Species In Silicon In GaAs Mass Max Energy Surface LET Range Surface LET Range Z Symbol AMU MeV MeV MeV Microns AMU mg/cm 2 mg/cm Fe Co Ni Cu Zn Ga Ge As Se Br Sr Zr Nb Ru Rh Ag Sn Sb Te I Tb Ho Ta W Re Os Ir Pt Au U

48 Range vs Surface LET For typical TVDG ions. 46

49 Appendix G TAMU K500 Cyclotron Ion Species, Surface LET and Range 47

50 Particle A MeV LET init (MeV/mg/cm 2 ) LET Bragg (MeV/mg/cm 2 ) Range Bragg (microns) 20 Ne Ar " Cu " Kr " Ag " Xe " Pr " Ho " Ta " Au " Ne Ar " Kr " Xe " proton Ne " Ar " Kr " O Ar "

51 49

52 50

Single Event Effects Test Report

Single Event Effects Test Report Single Event Effects Test Report Logic-Gate R7, 60V, P R5, 60V, P Table of Contents Introduction... 1 Test Method... 1 Test Plan... 1 Test Facility... 2 Results... 2 SEE Data Run Number Index....3 Device

More information

Single Event Effect Test on Infineon Rad-Hard MOSFETs Types BUY25CS12J and BUY25CS54A Single Event Effect Test on Infineon Rad-Hard-MOSFETs

Single Event Effect Test on Infineon Rad-Hard MOSFETs Types BUY25CS12J and BUY25CS54A Single Event Effect Test on Infineon Rad-Hard-MOSFETs Irradiation Test Report Single Event Effect Test on Infineon Rad-Hard-MOSFETs Dr Gerald Soelkner Dr. Stefan Gamerith Dr. Bernd Eisener IMM INP DC T PM IMM PSD D HVM TD PMM RPD D HIR Table of Contents 1

More information

RT54SX72SU Heavy Ion Beam Test Report. August 6, 2004 J.J. Wang (650)

RT54SX72SU Heavy Ion Beam Test Report. August 6, 2004 J.J. Wang (650) RT54SX72SU Heavy Ion Beam Test Report August 6, 2004 J.J. Wang (650) 318-4576 jih-jong.wang@actel.com 1 SUMMARY RT54SX72SU from UMC foundry is heavy-ion-beam tested for single event effects (SEE) at Brookhaven

More information

RADIATION HARDENED N-CHANNEL MOSFET Reference MIL-PRF-19500/603. Parameters / Test Conditions Symbol Value Unit. I D Adc

RADIATION HARDENED N-CHANNEL MOSFET Reference MIL-PRF-19500/603. Parameters / Test Conditions Symbol Value Unit. I D Adc DEVICES LEVELS 2N7269 2N7269U JANSR (100K RAD(Si)) JANSF (300K RAD(Si)) ABSOLUTE MAXIMUM RATINGS (T C = +25 C unless otherwise noted) Parameters / Test Conditions Symbol Value Unit Drain Source Voltage

More information

Microsemi Power Modules. Reliability tests for Automotive application

Microsemi Power Modules. Reliability tests for Automotive application Microsemi Power Modules Reliability tests for Automotive application on basis of AEC-Q101 SP module line 1/ 10 Introduction With reference to standard AEC-Q101, designed by Automotive Electronics Council

More information

RADIATION HARDENED N-CHANNEL MOSFET Reference MIL-PRF-19500/601. Parameters / Test Conditions Symbol Value Unit. I D2 5.0 Adc

RADIATION HARDENED N-CHANNEL MOSFET Reference MIL-PRF-19500/601. Parameters / Test Conditions Symbol Value Unit. I D2 5.0 Adc DEVICES LEVELS 2N7261 2N7261U JANSR (100K RAD(Si)) JANSF (300K RAD(Si)) ABSOLUTE MAXIMUM RATINGS (T C = + C unless otherwise noted) Parameters / Test Conditions Symbol Value Unit Drain Source Voltage V

More information

Neutron Irradiation Test Results of the RH1021CMW-5 Precision 5V Reference

Neutron Irradiation Test Results of the RH1021CMW-5 Precision 5V Reference Neutron Irradiation Test Results of the RH1021CMW-5 Precision 5V Reference 16 March 2015 Duc Nguyen, Sana Rezgui Acknowledgements The authors would like to thank the Product and Test Engineering Signal

More information

The Radiation Assurance Test Facility at LNS-INFN in Catania. Behcet ALPAT INFN Sezione di Perugia

The Radiation Assurance Test Facility at LNS-INFN in Catania. Behcet ALPAT INFN Sezione di Perugia The Radiation Assurance Test Facility at LNS-INFN in Catania Behcet ALPAT INFN Sezione di Perugia Radiation & Effects Total Ionising Dose Cumulative long term ionising damage due to protons & electrons

More information

Neutron testing of the IS1009RH voltage reference

Neutron testing of the IS1009RH voltage reference Neutron testing of the IS1009RH voltage reference Nick van Vonno Intersil Corporation 13 June 2013 Revision 0 Table of Contents 1. Introduction 2. Part Description 3. Test Description 3.1 Irradiation facility

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K17FU

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K17FU SSMK7FU TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSMK7FU High Speed Switching Applications Analog Switch Applications Unit: mm Suitable for high-density mounting due to compact package

More information

Single Event Radiation Test Report. Microsemi LX Analog Input RAD Tolerant Telemetry Controller

Single Event Radiation Test Report. Microsemi LX Analog Input RAD Tolerant Telemetry Controller Single Event Radiation Test Report Microsemi LX7730 64 Analog Input RAD Tolerant Telemetry Controller Doc. N :TDRS-0020-4 Page 1/33 TABLE OF CONTENT 1. PURPOSE AND SCOPE... 3 2. APPLICABLE DOCUMENT...

More information

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type SSM3J16TE. DC I D 100 ma Pulse I DP 200

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type SSM3J16TE. DC I D 100 ma Pulse I DP 200 High Speed Switching Applications Analog Switch Applications TOSHIBA Field Effect Transistor Silicon P Channel MOS Type SSMJ6TE Small package Low on-resistance : R on = 8 Ω (max) (@V GS = 4 V) : R on =

More information

Neutron Irradiation Test Results of the RH1009MW 2.5V Reference

Neutron Irradiation Test Results of the RH1009MW 2.5V Reference Neutron Irradiation Test Results of the RH1009MW 2.5V Reference 19 March 2015 Duc Nguyen, Sana Rezgui Acknowledgements The authors would like to thank the Signal Conditioning Product and Test Engineering

More information

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPCA8103

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPCA8103 TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPCA83 TPCA83 Lithium Ion Battery Applications Notebook PC Applications Portable Equipment Applications.±..27 8.4±. Unit: mm. M A Small

More information

Introduction to Radiation Testing Radiation Environments

Introduction to Radiation Testing Radiation Environments http://www.maxwell.com/microelectronics/products/radtest/intro.html Introduction to Radiation Testing Quick links: Radiation Environments Total Dose Testing Single Event Effects Testing Neutron Testing

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3767

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3767 SK77 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) SK77 Switching Regulator Applications Unit: mm Low drain-source ON resistance: RDS (ON) =.Ω (typ.) High forward transfer admittance:

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅣ) 2SK4013

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅣ) 2SK4013 SK TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅣ) SK Switching Regulator Applications Unit: mm Low drain-source ON resistance: RDS (ON) =. Ω (typ.) High forward transfer admittance:

More information

PERFORMANCE SPECIFICATION SHEET

PERFORMANCE SPECIFICATION SHEET The documentation and process conversion measures necessary to comply with this revision shall be completed by 21 August 2010. INCH-POUND MIL-PRF-19500/749B 21 May 2010 SUPERSEDING MIL-PRF-19500/749A 16

More information

Neutron Irradiation Test Results of the RH3080MK Adjustable 0.9A Single Resistor Low Dropout Regulator

Neutron Irradiation Test Results of the RH3080MK Adjustable 0.9A Single Resistor Low Dropout Regulator Neutron Irradiation Test Results of the RH3080MK Adjustable 0.9A Single Resistor Low Dropout Regulator 09 October 2014 Duc Nguyen, Sana Rezgui Acknowledgements The authors would like to thank the S-Power

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3667

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3667 SK7 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) SK7 Switching Regulator Applications Unit: mm Low drain-source ON resistance: R DS (ON) =.7Ω (typ.) High forward transfer admittance:

More information

K.I. Tapero RISI,

K.I. Tapero RISI, K.I. Tapero RISI, tapero@bk.ru K.I. Tapero, SERESSA 2015 1 Introduction Basic requirements for SEE testing Specifics of the testing for different SEE types Choosing the SEE test flow K.I. Tapero, SERESSA

More information

PERFORMANCE SPECIFICATION SHEET

PERFORMANCE SPECIFICATION SHEET The documentation and process conversion measures necessary to comply with this revision shall be completed by 24 September 2011. PERFORMANCE SPECIFICATION SHEET INCH-POUND MIL-PRF-19500/746B 24 June 2011

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosv) 2SK3538

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosv) 2SK3538 SK TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosv) SK Switching Regulator, DC-DC Converter Applications Unit: mm Low drain-source ON resistance: RDS (ON) = 7 mω (typ.) High forward

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (Ultra-High-Speed U-MOSIII) TPC8017-H

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (Ultra-High-Speed U-MOSIII) TPC8017-H TPC7-H TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (Ultra-High-Speed U-MOSIII) TPC7-H High-Efficiency DC/DC Converter Applications Notebook PC Applications Portable-Equipment Applications

More information

TN1005 Technical note

TN1005 Technical note TN005 Technical note 54ACT45 radiation report Introduction This technical note provides details of the total ionizing dose (TID) and the single event effects (SEE) that cover the QML-V qualification of

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSIII) TPC6004

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSIII) TPC6004 TPC TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSIII) TPC Notebook PC Applications Portable Equipment Applications Unit: mm Low drain-source ON resistance: R DS (ON) = 9 mω (typ.) High

More information

Quality and Reliability Report

Quality and Reliability Report Quality and Reliability Report GaAs Schottky Diode Products 051-06444 rev C Marki Microwave Inc. 215 Vineyard Court, Morgan Hill, CA 95037 Phone: (408) 778-4200 / FAX: (408) 778-4300 Email: info@markimicrowave.com

More information

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPCF8102

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPCF8102 TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPCF82 TPCF82 Notebook PC Applications Portable Equipment Applications Unit: mm Low drain-source ON resistance: RDS (ON) = 24 mω (typ.)

More information

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOSⅤ-H) TPC8037-H

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOSⅤ-H) TPC8037-H TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOSⅤ-H) TPC7-H TPC7-H High-Efficiency DC-DC Converter Applications Notebook PC Applications Portable Equipment Applications Unit: mm Small

More information

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (π-mos VI) 2SK4108. JEDEC Repetitive avalanche energy (Note 3) E AR 15 mj

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (π-mos VI) 2SK4108. JEDEC Repetitive avalanche energy (Note 3) E AR 15 mj SK TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (π-mos VI) SK Switching Regulator Applications Unit: mm Low drain source ON resistance : R DS (ON) =. Ω (typ.) High forward transfer admittance

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSII) 2SK3236

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSII) 2SK3236 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSII) 2SK3236 Switching Regulator Applications, DC-DC Converter and Motor Drive Applications Unit: mm V gate drive Low drain-source ON resistance:

More information

RussianSEE test approach: available standards, test variables, difficulties and future trends

RussianSEE test approach: available standards, test variables, difficulties and future trends RussianSEE test approach: available standards, test variables, difficulties and future trends 2 Outline The Branch of URSC ISDE Roscosmos testing aids Test facility Heavy ions Protons Laser Standards and

More information

AOS Semiconductor Product Reliability Report

AOS Semiconductor Product Reliability Report AOS Semiconductor Product Reliability Report AO64/AO64L, rev C Plastic Encapsulated Device ALPHA & OMEGA Semiconductor, Inc 49 Mercury Drive Sunnyvale, CA 948 U.S. Tel: (48) 83-9742 www.aosmd.com Mar 8,

More information

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (Ultra-High-speed U-MOSIII) TPCA8011-H

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (Ultra-High-speed U-MOSIII) TPCA8011-H TPCA-H TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (Ultra-High-speed U-MOSIII) TPCA-H High Efficiency DC/DC Converter Applications Notebook PC Applications Portable-Equipment Applications.±..7.±..

More information

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPC8114. DC (Note 1) I D 18 A Pulse (Note 1) I DP 72

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPC8114. DC (Note 1) I D 18 A Pulse (Note 1) I DP 72 TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPC84 Lithium Ion Battery Applications Notebook PC Applications Portable Equipment Applications Unit: mm Small footprint due to small

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK12A50D

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK12A50D TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TKAD TKAD Switching Regulator Applications Unit: mm Low drain-source ON-resistance: R DS (ON) =. Ω (typ.) High forward transfer admittance:

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3567

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3567 SK7 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) SK7 Switching Regulator Applications Unit: mm Low drain-source ON resistance: RDS (ON) =.7Ω (typ.) High forward transfer admittance:

More information

TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (U MOSIII) 2SJ668

TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (U MOSIII) 2SJ668 TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (U MOSIII) 2SJ668 Relay Drive, DC/DC Converter and Motor Drive Applications Unit: mm 4 V gate drive Low drain source ON-resistance: R DS (ON)

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS ) TK15J60U

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS ) TK15J60U TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS ) Switching Regulator Applications Unit: mm Low drain-source ON-resistance: R DS (ON) =. (typ.) High forward transfer admittance: Y fs

More information

POWER MOSFET, N-CHANNEL, RADIATION HARDENED, HIGH RELIABILITY, SPACE USE, DETAIL SPECIFICATION FOR

POWER MOSFET, N-CHANNEL, RADIATION HARDENED, HIGH RELIABILITY, SPACE USE, DETAIL SPECIFICATION FOR Registration No.98 JAXA-QTS-23/A Superseding JAXA-QTS-23/ Cancelled POWER MOSFET, N-CHANNEL, RADIATION HARDENED, HIGH RELIABILITY, SPACE USE, DETAIL SPECIFICATION FOR 448, 449, 45 45, 452, 453 454, 455,

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U MOSⅢ) TK30A06J3

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U MOSⅢ) TK30A06J3 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U MOSⅢ) Motor Drive Application Load Swithch Application Chopper Regulator and DC DC Converter Application Unit: mm Low drain-source ON resistance:

More information

The heavy ion irradiation facility at KVI-CART

The heavy ion irradiation facility at KVI-CART The heavy ion irradiation facility at KVI-CART Brian N. Jones 1, Marc-Jan van Goethem 1,2, Rob Kremers 1, Harry Kiewiet 1, Emiel van der Graaf 1, Sytze Brandenburg 1 1 University of Groningen, KVI-Center

More information

TPC8203 TPC8203. Lithium Ion Battery Applications Portable Equipment Applications Notebook PCs. Maximum Ratings (Ta = 25 C) Circuit Configuration

TPC8203 TPC8203. Lithium Ion Battery Applications Portable Equipment Applications Notebook PCs. Maximum Ratings (Ta = 25 C) Circuit Configuration TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U MOSII) TPC8203 Lithium Ion Battery Applications Portable Equipment Applications Notebook PCs Unit: mm Small footprint due to small and thin

More information

AOS Semiconductor Product Reliability Report

AOS Semiconductor Product Reliability Report AOS Semiconductor Product Reliability Report AO4466/AO4466L, rev B Plastic Encapsulated Device ALPHA & OMEGA Semiconductor, Inc 49 Mercury Drive Sunnyvale, CA 948 U.S. Tel: (48) 83-9742 www.aosmd.com Jun

More information

TOSHIBA Field-Effect Transistor Silicon P-Channel MOS Type SSM3J117TU. Characteristic Symbol Test Condition Min Typ. Max Unit

TOSHIBA Field-Effect Transistor Silicon P-Channel MOS Type SSM3J117TU. Characteristic Symbol Test Condition Min Typ. Max Unit TOSHIBA Field-Effect Transistor Silicon P-Channel MOS Type SSMJ7TU High-Speed Switching Applications 4 V drive Low ON-resistance: R on = 225 mω (max) (@V GS = ) R on = 7 mω (max) (@V GS = V) Absolute Maximum

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC8028

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC8028 TPC TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC Lithium Ion Battery Applications Portable Equipment Applications Notebook PC Applications Unit: mm Small footprint due to small

More information

TPCS8209 查询 TPCS8209 供应商 TPCS8209. Lithium Ion Battery Applications Notebook PC Applications Portable Machines and Tools. Maximum Ratings (Ta = 25 C)

TPCS8209 查询 TPCS8209 供应商 TPCS8209. Lithium Ion Battery Applications Notebook PC Applications Portable Machines and Tools. Maximum Ratings (Ta = 25 C) 查询 TPCS89 供应商 TPCS89 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSIII) TPCS89 Lithium Ion Battery Applications Notebook PC Applications Portable Machines and Tools Unit: mm Small footprint

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosiv) 2SK3565

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosiv) 2SK3565 SK TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosiv) SK Switching Regulator Applications Unit: mm Low drain-source ON resistance: RDS (ON) =.Ω (typ.) High forward transfer admittance:

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) 2SK3497

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) 2SK3497 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) High Power Amplifier Application Unit: mm High breakdown voltage: V DSS = 8 V Complementary to SJ68.. MAX. 5.9 MAX. Ф. ±... 9..5. ±..

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC8026

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC8026 TPC26 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC26 Lithium Ion Battery Applications Portable Equipment Applications Notebook PC Applications Unit: mm Small footprint due

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K02F

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K02F TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K02F High Speed Switching Applications Unit: mm Small package Low on resistance : R on = 200 mω (max) (V GS = 4 V) : R on = 250 mω (max) (V

More information

TPCA8107-H 4± ± M A .0±.0± 0.15± ± ± ± ± ± 4.25±0.2 5±0. 3. Maximum Ratings (Ta 25 C)

TPCA8107-H 4± ± M A .0±.0± 0.15± ± ± ± ± ± 4.25±0.2 5±0. 3. Maximum Ratings (Ta 25 C) TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (Ultra-High-speed U-MOSIII) High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter

More information

Lunar Reconnaissance Orbiter Project. Radiation Requirements. September 14, 2006

Lunar Reconnaissance Orbiter Project. Radiation Requirements. September 14, 2006 Effective Date: 10/04/2006 Expiration Date: 10/04/2011 Lunar Reconnaissance Orbiter Project Radiation Requirements September 14, 2006 LRO GSFC CMO October 4, 2006 RELEASED Goddard Space Flight Center Greenbelt,

More information

GT10Q301 GT10Q301. High Power Switching Applications Motor Control Applications. Maximum Ratings (Ta = 25 C) Equivalent Circuit. Marking

GT10Q301 GT10Q301. High Power Switching Applications Motor Control Applications. Maximum Ratings (Ta = 25 C) Equivalent Circuit. Marking GTQ TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GTQ High Power Switching Applications Motor Control Applications Unit: mm Third-generation IGBT Enhancement mode type High speed: tf

More information

Product Data Sheet PD-0053-A

Product Data Sheet PD-0053-A Product Data Sheet PD-0053-A 3M Mini D Ribbon (MDR) Connector MDR Surface Mount 102XX-1210 XE 102XX-1S10 XE Page: 1 of 11 Table of Contents 1.0 SCOPE...2 2.0 PRODUCT TESTED...2 3.0 GENERAL CONDITIONS...2

More information

TOSHIBA Field Effect Transistor Silicon N, P Channel MOS Type. (P Channel U MOS IV/N Channel U-MOS III) TPC8405. Rating P Channel N Channel

TOSHIBA Field Effect Transistor Silicon N, P Channel MOS Type. (P Channel U MOS IV/N Channel U-MOS III) TPC8405. Rating P Channel N Channel TPC85 TOSHIBA Field Effect Transistor Silicon N, P Channel MOS Type Lithium Ion Secondary Battery Applications Portable Equipment Applications Notebook PC Applications (P Channel U MOS IV/N Channel U-MOS

More information

R&T PROTON DIRECT IONIZATION

R&T PROTON DIRECT IONIZATION R&T PROTON DIRECT IONIZATION Assessment of the Direct Ionization Contribution to the Proton SEU Rate N. Sukhaseum,, J. Guillermin,, N. Chatry, F. Bezerra and R. Ecoffet TRAD, Tests & Radiations Introduction

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS) TK40J60T

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS) TK40J60T TKJT TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS) TKJT Switching Regulator Applications Unit: mm Low drain-source ON resistance: R DS (ON) =.Ω (typ.) High forward transfer admittance:

More information

DATASHEET ISL70024SEH, ISL73024SEH. Features. Applications. Related Literature. 200V, 7.5A Enhancement Mode GaN Power Transistor

DATASHEET ISL70024SEH, ISL73024SEH. Features. Applications. Related Literature. 200V, 7.5A Enhancement Mode GaN Power Transistor DATASHEET 2V, 7.5A Enhancement Mode GaN Power Transistor FN8976 Rev.4. The ISL724SEH and ISL7324SEH are 2V N-channel enhancement mode GaN power transistors. These GaN FETs have been characterized for destructive

More information

Attivita di Qualificazione dei Componenti Elettronici in Italia: L Esperienza MAPRAD. Behcet ALPAT INFN Sezione di Perugia

Attivita di Qualificazione dei Componenti Elettronici in Italia: L Esperienza MAPRAD. Behcet ALPAT INFN Sezione di Perugia Attivita di Qualificazione dei Componenti Elettronici in Italia: L Esperienza MAPRAD Behcet ALPAT INFN Sezione di Perugia 2 MAPRad srl MAPRad s.r.l. is a recently founded company working on the field of

More information

Practical Aspects of MIL-DTL Appendix A Initiator Testing. Barry Neyer NDIA Fuze Conference May 14 th 2008

Practical Aspects of MIL-DTL Appendix A Initiator Testing. Barry Neyer NDIA Fuze Conference May 14 th 2008 Practical Aspects of MIL-DTL-23659 Appendix A Initiator Testing Barry Neyer NDIA Fuze Conference May 14 th 2008 The following discussion is the opinion of the author. It does not necessarily represent

More information

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, DECODERS MONOLITHIC SILICON. Inactive for new design after 7 September 1995.

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, DECODERS MONOLITHIC SILICON. Inactive for new design after 7 September 1995. INCH-POUND 16 February 2005 SUPERSEDING MIL-M-38510/10C 3 March 1986 MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, DECODERS MONOLITHIC SILICON This specification is approved for use by all

More information

3mm Advanced Super Flux LEDs B84-YSC-A1T1U1DH-AM

3mm Advanced Super Flux LEDs B84-YSC-A1T1U1DH-AM 3mm Advanced Super Flux LEDs Feature RoHS compliant. Piranha package. Colorless clear resin. Low thermal resistance Packaged in tubes for automatic insertion equipment. Total flux: 7150 to 14250 mlm at

More information

IRLML2030TRPbF HEXFET Power MOSFET

IRLML2030TRPbF HEXFET Power MOSFET V DS 30 V V GS Max ± 20 V R DS(on) max (@V GS = V) R DS(on) max (@V GS = 4.5V) m: 54 m: G S PD - 97432 HEXFET Power MOSFET 2 3 D Micro3 TM (SOT-23) Application(s) Load/ System Switch Features and Benefits

More information

Features OUT A NC 27 NC IN 8A IN 16 IN 7A IN 15 IN 6A IN 14 IN 5A IN 13 IN 4A IN 12 IN 3A IN 11 IN 2A IN 10 IN 1A IN 9 ENABLE GND ADDRESS A0 V REF

Features OUT A NC 27 NC IN 8A IN 16 IN 7A IN 15 IN 6A IN 14 IN 5A IN 13 IN 4A IN 12 IN 3A IN 11 IN 2A IN 10 IN 1A IN 9 ENABLE GND ADDRESS A0 V REF DATASHEET HS-0RH, HS-0RH Radiation Hardened Single /Differential Channel CMOS Analog Multiplexers with Active Overvoltage rotection F Rev..00 The HS-0RH and HS-0RH are radiation hardened analog multiplexers

More information

This is the summary of changes to MIL-STD-883 for Revision H February 28, 2010

This is the summary of changes to MIL-STD-883 for Revision H February 28, 2010 Item No. Section of Change Paragraph to be Changed Description of Change Justification for Change Page(s) Changed Forward Comment Change the ASSIST web address From: http://assist.daps.dla.mil To: https://assist.daps.dla.mil

More information

A I DM W/ C V GS. Thermal Resistance Symbol Parameter Typ. Max. Units

A I DM W/ C V GS. Thermal Resistance Symbol Parameter Typ. Max. Units PD - 9757 IRLML000TRPbF HEXFET Power MOSFET V DS 00 V V GS Max ± 6 V G R DS(on) max (@V GS = 0V) 220 m: 3 D R DS(on) max (@V GS = 4.5V) 235 m: S 2 Micro3 TM (SOT-23) IRLML000TRPbF Application(s) Load/

More information

Memory Thermal Management 101

Memory Thermal Management 101 Memory Thermal Management 101 Overview With the continuing industry trends towards smaller, faster, and higher power memories, thermal management is becoming increasingly important. Not only are device

More information

PRELIMINARY SPECIFICATION

PRELIMINARY SPECIFICATION Positive Adjustable V tor AVAILABLE AS MILITARY / SPACE SPECIFICATIONS SMD 5962-99517 pending Radiation Tolerant MIL-STD-88, 1.2.1 QML pending FEATURES Guaranteed 0.5A Output Current Radiation Guaranteed

More information

xr SiC Series 1200 V Schottky Diode Platform 15A, 10A, 5A / 30A, 20A

xr SiC Series 1200 V Schottky Diode Platform 15A, 10A, 5A / 30A, 20A 12 V Schottky Diode Platform 15A, 1A, 5A / 3A, 2A 12 V xr SiC Series 12 V-15A, 1A, 5A / 3A, 2A Schottky Diodes Product Qualification Report Summary This report delineates the reliability and qualification

More information

Boron-based semiconductor solids as thermal neutron detectors

Boron-based semiconductor solids as thermal neutron detectors Boron-based semiconductor solids as thermal neutron detectors Douglas S. McGregor 1 and Stan M. Vernon 2 1 S.M.A.R.T. Laboratory, Department of Nuclear Engineering and Radiological Sciences, University

More information

Irradiation characterization of EEE components for space application

Irradiation characterization of EEE components for space application THE EUROPEAN SPACE AGENCY Irradiation characterization of EEE components for space application Michele Muschitiello, Ali Zadeh, Alessandra Costantino, Radiation Hardness Assurance and Components Analysis

More information

DATASHEET HS-0548RH, HS-0549RH. Features. Applications. Pinouts. Ordering Information

DATASHEET HS-0548RH, HS-0549RH. Features. Applications. Pinouts. Ordering Information DATASHEET HS-0RH, HS-0RH Radiation Hardened Single /Differential Channel CMOS Analog Multiplexers with Active Overvoltage rotection F Rev.00 August 00 The HS-0RH and HS-0RH are radiation hardened analog

More information

ISSP User Guide CY3207ISSP. Revision C

ISSP User Guide CY3207ISSP. Revision C CY3207ISSP ISSP User Guide Revision C Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com Copyrights Copyrights

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM6N15FE

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM6N15FE SSMNFE TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSMNFE High Speed Switching Applications Analog Switching Applications Unit: mm Small package Low ON resistance : R on =. Ω (max) (@V GS

More information

Direct-Current Accelerator

Direct-Current Accelerator Nuclear Science A Teacher s Guide to the Nuclear Science Wall Chart 1998 Contemporary Physics Education Project (CPEP) Chapter 11 Accelerators One of the most important tools of nuclear science is the

More information

EVERLIGHT ELECTRONICS CO., LTD.

EVERLIGHT ELECTRONICS CO., LTD. Lead (Pb) Free Product - RoHS Compliant Feature Piranha package. Colorless clear resin. Low thermal resistance Packaged in tubes for automatic insertion equipment. Total flux: 7150 to 14250 mlm at 70mA.

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM6N44FE. DC I D 100 ma Pulse I DP 200

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM6N44FE. DC I D 100 ma Pulse I DP 200 SSMNFE TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSMNFE High Speed Switching Applications Analog Switching Applications.±. Unit: mm Compact package suitable for high-density mounting Low

More information

TPCF8402 F6B TPCF8402. Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications. Maximum Ratings (Ta = 25 C)

TPCF8402 F6B TPCF8402. Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications. Maximum Ratings (Ta = 25 C) TPCF84 TOSHIBA Field Effect Transistor Silicon P, N Channel MOS Type (U-MOS IV / U-MOS III) TPCF84 Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications Unit: mm Low drain-source

More information

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED REV SHEET REV SHEET 15 REV STATUS OF SHEETS SHEET

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED REV SHEET REV SHEET 15 REV STATUS OF SHEETS SHEET REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED REV REV 15 REV STATUS REV OF S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PMIC N/A MICROCIRCUIT DRAWING PREPARED BY Greg Cecil CHECKED BY Greg Cecil http://www.landandmaritime.dla.mil/

More information

Super High AUTO (SHA) Series

Super High AUTO (SHA) Series PART NO. SFI1206SA240-1R5J 1.1 Technology Data Symbol Value Unit Maximum allowable continuous DC voltage V DC 12 V Breakdown voltage measured Vv 24(±10%) V Maximum clamping voltage V CLAMP < 40 V Maximum

More information

Neutron testing of the ISL70001SRH POL converter. Nick van Vonno Intersil Corporation. 25 June Table of Contents

Neutron testing of the ISL70001SRH POL converter. Nick van Vonno Intersil Corporation. 25 June Table of Contents Neutron testing of the ISL71SRH POL converter Nick van Vonno Intersil Corporation 5 June 1 Table of Contents 1. Introduction. Part Description 3. Test Description 3.1 Irradiation facility 3. Characterization

More information

Understanding Integrated Circuit Package Power Capabilities

Understanding Integrated Circuit Package Power Capabilities Understanding Integrated Circuit Package Power Capabilities INTRODUCTION The short and long term reliability of National Semiconductor s interface circuits like any integrated circuit is very dependent

More information

TPCP8402 TPCP8402. Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications. Maximum Ratings (Ta = 25 C)

TPCP8402 TPCP8402. Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications. Maximum Ratings (Ta = 25 C) TOSHIBA Field Effect Transistor Silicon P, N Channel MOS Type (U-MOS IV / U-MOS III) TPCP8402 Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications Unit: mm Low drain-source

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (L 2 π MOSV) 2SK2385

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (L 2 π MOSV) 2SK2385 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (L 2 π MOSV) 2SK2385 2SK2385 Chopper Regulator, DC DC Converter and Motor Drive Applications Unit: mm 4 V gate drive Low drain source ON resistance

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) 2SK2996

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) 2SK2996 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) 2SK2996 DC DC Converter, Relay Drive and Motor Drive Applications Unit: mm Low drain source ON resistance : RDS (ON) = 0.74 Ω (typ.)

More information

TOSHIBA Field-Effect Transistor Silicon N / P Channel MOS Type SSM6L35FE

TOSHIBA Field-Effect Transistor Silicon N / P Channel MOS Type SSM6L35FE SSM6L3FE TOSHIBA Field-Effect Transistor Silicon N / P Channel MOS Type SSM6L3FE High-Speed Switching Applications Analog Switch Applications.6±. Unit: mm N-ch:.2-V drive.2±. P-ch:.2-V drive N-ch, P-ch,

More information

5484BN/R7DC-AHJB/XR/MS(ELA)

5484BN/R7DC-AHJB/XR/MS(ELA) Features High luminous intensity output Oval Shape Well defined spatial radiation Wide viewing angle (2θ 1/2 ) : 110 / 40 UV resistant epoxy The product itself will remain within RoHS compliant version

More information

A I DM. W/ C V GS Gate-to-Source Voltage ± 16. Thermal Resistance Symbol Parameter Typ. Max. Units

A I DM. W/ C V GS Gate-to-Source Voltage ± 16. Thermal Resistance Symbol Parameter Typ. Max. Units V DSS 40 V V GS Max ± 6 V R DS(on) max (@V GS = V) 56 mω G 3 D PD - 96309A HEXFET Power MOSFET R DS(on) max (@V GS = 4.5V) Application(s) Load/ System Switch DC Motor Drive 78 mω S 2 Micro3 TM (SOT-23)

More information

South West Test Workshop Advancements In Performance Buckling Beam Probes

South West Test Workshop Advancements In Performance Buckling Beam Probes Advancements In Performance Buckling Beam Probes Introduction: The following presentation is a collaborative effort between Probe Technology Corporation and Intel Corporation to investigate the enhancement

More information

Thermal Calculation for Linear Regulator

Thermal Calculation for Linear Regulator Linear Regulator Series Thermal Calculation for Linear Regulator The loss in linear regulators increases as the difference between the input and output voltages increases. Since most of the loss is converted

More information

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function.

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function. using structure function. (1) Page 1/5 Test mode and failure There are two modes in a power cycle test: Tj Power cycle that changes the junction temperature (Tj Temperature) inside of the power semiconductor

More information

Product Change Notices. Subject: Apply Cu bonding wire on and AME5269 SOP-8 package

Product Change Notices. Subject: Apply Cu bonding wire on and AME5269 SOP-8 package Product Change Notices PCN No.: 20110809 Date: September 1, 2011 Subject: Apply Cu bonding wire on and AME5269 SOP-8 package This is to inform you that Cu bonding wire will be applied on the AME5269 SOP-8

More information

P-LED EALP03SXARA0-AM. Lead (Pb) Free Product - RoHS Compliant

P-LED EALP03SXARA0-AM. Lead (Pb) Free Product - RoHS Compliant Lead (Pb) Free Product - RoHS Compliant Feature Piranha package. Colorless clear resin. Low thermal resistance Packaged in tubes for automatic insertion equipment. Total flux: 7150 to 14250 mlm at 70mA.

More information

5mm Silicon PIN Photodiode, T-1 3/4 PD333-3B/H0/L2

5mm Silicon PIN Photodiode, T-1 3/4 PD333-3B/H0/L2 Features Fast response time High photo sensitivity Small junction capacitance Pb free This product itself will remain within RoHS compliant version. Description is a high speed and high sensitive PIN photodiode

More information

IRF5851. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge.

IRF5851. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge. PD-93998B HEXFET Power MOSFET l l l l l Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge G S2 G2 2 3 6 5 4 D S D2 N-Ch P-Ch DSS 20-20 R DS(on)

More information

Automotive N- and P-Channel 100 V (D-S) 175 C MOSFET

Automotive N- and P-Channel 100 V (D-S) 175 C MOSFET SQJ57EP Automotive N- and P-Channel V (D-S) 75 C MOSFET PRODUCT SUMMARY N-CHANNEL P-CHANNEL V DS (V) - R DS(on) ( ) at V GS = ± V.45 46 R DS(on) ( ) at V GS = ± 4.5 V.58.265 I D (A) 5-9.5 Configuration

More information

Aerospace Performances of IPDiA -250 C up to 250 C Grade Silicon Capacitors

Aerospace Performances of IPDiA -250 C up to 250 C Grade Silicon Capacitors Aerospace Performances of IPDiA -250 C up to 250 C Grade Silicon Capacitors Laurent Lengignon, IPDiA, 2 rue de la Girafe, 14000 Caen, France Alter Technology, Madrid, Spain, Demetrio Lopez ESA/ESTEC, Noordwijk,

More information

THERMAL IMPEDANCE (RESPONSE) TESTING OF DIODES

THERMAL IMPEDANCE (RESPONSE) TESTING OF DIODES METHOD 3101.3 THERMAL IMPEDANCE (RESPONSE) TESTING OF DIODES 1. Purpose. The purpose of this test is to determine the thermal performance of diode devices. This can be done in two ways, steady-state thermal

More information

430mA -304mA -263mA D 1 G 2 S 1 G 1. Bottom View

430mA -304mA -263mA D 1 G 2 S 1 G 1. Bottom View DMCDSVQ COMPLEMENTARY PAIR ENHANCEMENT MODE MOSFET Product Summary Device BV DSS R DS(ON) Max Q V Q -5V I D Max T A = +5 C.7Ω @ V GS = V 57mA Ω @ V GS =.5V Ω @ V GS = -V Ω @ V GS = -5V Description and

More information