Current flow paths in deformed graphene and carbon nanotubes

Size: px
Start display at page:

Download "Current flow paths in deformed graphene and carbon nanotubes"

Transcription

1 Current flow paths in deformed graphene and carbon nanotubes DPG Tagung 2017, Dresden Nikodem Szpak Erik Kleinherbers Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen Thomas Stegmann Instituto de Ciencias Físicas Universidad Nacional Autónoma de México PROJECT (DFG): Curvature, Defects, Geometry in Graphene and Optical Lattices

2 Efficient model of transport in deformed graphen in 1μm2: over 107 atoms! regular graphene OK, but irregular? Quantum currents in elastically deformed graphene Waves in curved continuous space continuous limit Source: NASA Applications: tailor-made mesoscopic structures special properties better understanding of structural perturbations

3 Graphene Tight-binding Hamiltonian: Linear dispersion arround K points:

4 Graphene at low energies Tight-binding Hamiltonian: Linear dispersion arround K points: long wave regime (low energy excitations) Dirac Hamiltonian:

5 Graphene deformation Tight-binding Hamiltonian: Surface deformation h(x,y) e.g. height function: Position-dependent hopping:

6 Graphene deformation Tight-binding Hamiltonian: Surface deformation h(x,y) e.g. height function: Position-dependent hopping: Cones (locally) shifted and deformed! shift pseudo-magnetic potential deformation metric and spin connection

7 Dirac equation in curved space Dirac Hamiltonian: Local frame vectors: ij ij ij g ( x ) 2 (x) Effective metric: Effective magnetic potential: s K ( x ) ( 1) s xx ( x ) yy ( x ), 2 xy ( x ) Effective magnetic field: B( x ) 2 x xy ( x ) y xx ( x ) y yy ( x )

8 Geometrical optics: waves trajectories Dirac Hamiltonian: Eikonal approximation geodesics:

9 Current flow vs geodesics Effect of both, curvature and pseudo-magnetic field: Continuous space approximation Lattice simulation (NEGF)

10 Current flow vs geodesics Waves propagate along classical trajectories for the curved space! Varying bump height: r0 = 150 d0, h0 = 0.50 r0 E = 0.2 t0 r0 = 150 d0, h0 = 0.75 r0 r0 = 150 d0, h0 = 1.00 r0 Crossing of trajectories focusing of waves: E = 0.2 t0, r0 = 200 d0, h0 = 1.00 r0 E = 0.3 t0, r0 = 200 d0, h0 = 1.25 r0

11 Geometrical lensing of the current flow Maxwell lense: effectively position dependent refraction index n(x,y) Continuous model prediction

12 Geometrical lensing of the current flow Lattice simulations (NEGF)

13 Geometrical valley separation K left & right Valley separation: K left & right, K center K center Injection at K Injection at K+K Injection at K Lattice simulations (NEGF)

14 Geometrical lensing pressure nanosensor Bump height

15 Bent nanotubes Strain induced metric and pseudo-magnetic field: Surface parameterization by pair of angles (θ,φ) 2 Effective metric: g g ij 0 0 ( R cos ) g Pseudo-magnetic vector potential: 2 0 cos Ai R 0 Pseudo-magnetic field: B B0 sin

16 Bent nanotubes: Dirac equation on torus Dirac Mathieu equation Mathieu f s: Analytical current: (m=0 mode) Numerical current (NEGF):

17 Conclusions Hopping in perturbed lattice Dirac + pseudomagnetic in continuous curved space Hˆ = <n, m> Tn,m aˆ n+ aˆ m + Vn aˆ n+ aˆ n n T. Stegmann and N.S., Current flow paths in deformed graphene, New J. Phys. 18 (2016) PROJECT: Curvature, Defects, Geometry in Graphene and Optical Lattices

18 Conclusions: deformation curvature, pseudo-b Perturbed lattice QFT in curved space Hˆ = <n, m> Tn,m aˆ n+ aˆ m + Vn aˆ n+ aˆ n n T. Stegmann and N.S., Current flow paths in deformed graphene, New J. Phys. 18 (2016) PROJECT: Curvature, Defects, Geometry in Graphene and Optical Lattices

19 Particles (E>0) and antiparticles (E<0) K vs K valleys Two types of valleys: K K K K Magnetic K field B at different valleys! K

20 Stationary current NEGF method Tight-binding Hamiltonian: Green's function: Self energy: Local current: Correlation function: Inscattering function: at boundary to emulate infinite surface discretization of Dirac current and Green s funct. representati (x ) of solutions with source

21 Current flow vs geodesics Waves propagate along classical trajectories for the curved space! Varying bump height: r0 = 150 d0, h0 = 0.50 r0 E = 0.2 t0 r0 = 150 d0, h0 = 0.75 r0 r0 = 150 d0, h0 = 1.00 r0

22 Geometrical valley separation Two (or more) bumps even stronger K / K separation...

Current flow paths in deformed graphene and carbon nanotubes

Current flow paths in deformed graphene and carbon nanotubes Current flow paths in deformed graphene and carbon nanotubes Cuernavaca, September 2017 Nikodem Szpak Erik Kleinherbers Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen Thomas Stegmann Instituto

More information

Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes

Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes European Graphene Forum 2017, Paris Nikodem Szpak Fakultät für Physik Universität Duisburg-Essen

More information

KAVLI v F. Curved graphene revisited. María A. H. Vozmediano. Instituto de Ciencia de Materiales de Madrid CSIC

KAVLI v F. Curved graphene revisited. María A. H. Vozmediano. Instituto de Ciencia de Materiales de Madrid CSIC KAVLI 2012 v F Curved graphene revisited María A. H. Vozmediano Instituto de Ciencia de Materiales de Madrid CSIC Collaborators ICMM(Graphene group) http://www.icmm.csic.es/gtg/ A. Cano E. V. Castro J.

More information

Pulse shape dependence in the dynamically assisted Sauter-Schwinger effect

Pulse shape dependence in the dynamically assisted Sauter-Schwinger effect Pulse shape dependence in the dynamically assisted Sauter-Schwinger effect Joachim Sicking, Nikodem Szpak, Ralf Schützhold Fakultät für Physik, Universität Duisburg-Essen 20 March 2014, DPG Tagung Berlin

More information

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS J. A. Galvis, L. C., I. Guillamon, S. Vieira, E. Navarro-Moratalla, E. Coronado, H. Suderow, F. Guinea Laboratorio

More information

Carbon nanotubes: Models, correlations and the local density of states

Carbon nanotubes: Models, correlations and the local density of states Carbon nanotubes: Models, correlations and the local density of states Alexander Struck in collaboration with Sebastián A. Reyes Sebastian Eggert 15. 03. 2010 Outline Carbon structures Modelling of a carbon

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Carbon nanotubes and Graphene

Carbon nanotubes and Graphene 16 October, 2008 Solid State Physics Seminar Main points 1 History and discovery of Graphene and Carbon nanotubes 2 Tight-binding approximation Dynamics of electrons near the Dirac-points 3 Properties

More information

Supplementary Figure S1. STM image of monolayer graphene grown on Rh (111). The lattice

Supplementary Figure S1. STM image of monolayer graphene grown on Rh (111). The lattice Supplementary Figure S1. STM image of monolayer graphene grown on Rh (111). The lattice mismatch between graphene (0.246 nm) and Rh (111) (0.269 nm) leads to hexagonal moiré superstructures with the expected

More information

Unruh effect & Schwinger mechanism in strong lasers?

Unruh effect & Schwinger mechanism in strong lasers? Unruh effect & Schwinger mechanism in strong lasers? Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Unruh effect & Schwinger mechanism in strong lasers? p.1/14 Unruh Effect Uniformly accelerated

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 3: (Crash course in) Theory of optical activity Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45

More information

Nanoscience quantum transport

Nanoscience quantum transport Nanoscience quantum transport Janine Splettstößer Applied Quantum Physics, MC2, Chalmers University of Technology Chalmers, November 2 10 Plan/Outline 4 Lectures (1) Introduction to quantum transport (2)

More information

Graphene and Planar Dirac Equation

Graphene and Planar Dirac Equation Graphene and Planar Dirac Equation Marina de la Torre Mayado 2016 Marina de la Torre Mayado Graphene and Planar Dirac Equation June 2016 1 / 48 Outline 1 Introduction 2 The Dirac Model Tight-binding model

More information

& Dirac Fermion confinement Zahra Khatibi

& Dirac Fermion confinement Zahra Khatibi Graphene & Dirac Fermion confinement Zahra Khatibi 1 Outline: What is so special about Graphene? applications What is Graphene? Structure Transport properties Dirac fermions confinement Necessity External

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Electronic structure and properties of a few-layer black phosphorus Mikhail Katsnelson

Electronic structure and properties of a few-layer black phosphorus Mikhail Katsnelson Electronic structure and properties of a few-layer black phosphorus Mikhail Katsnelson Main collaborators: Sasha Rudenko Shengjun Yuan Rafa Roldan Milton Pereira Sergey Brener Motivation Plenty of 2D materials

More information

Graphene-like microwave billiards: Van-Hove singularities and Excited-State Quantum Phase Transitions

Graphene-like microwave billiards: Van-Hove singularities and Excited-State Quantum Phase Transitions Graphene-like microwave billiards: Van-Hove singularities and Excited-State Quantum Phase Transitions Michal Macek Sloane Physics Laboratory, Yale University in collaboration with: Francesco Iachello (Yale)

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Exploring topological states with synthetic matter Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE,

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature12186 S1. WANNIER DIAGRAM B 1 1 a φ/φ O 1/2 1/3 1/4 1/5 1 E φ/φ O n/n O 1 FIG. S1: Left is a cartoon image of an electron subjected to both a magnetic field, and a square periodic lattice.

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

Graphene: Quantum Transport via Evanescent Waves

Graphene: Quantum Transport via Evanescent Waves Graphene: Quantum Transport via Evanescent Waves Milan Holzäpfel 6 May 203 (slides from the talk with additional notes added in some places /7 Overview Quantum Transport: Landauer Formula Graphene: Introduction

More information

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES Jasprit Singh University of Michigan McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene Philip Kim Physics Department, Columbia University Acknowledgment Prof. Cory Dean (now at CUNY) Lei Wang Patrick Maher Fereshte Ghahari Carlos

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

Relativistic Dirac fermions on one-dimensional lattice

Relativistic Dirac fermions on one-dimensional lattice Niodem Szpa DUE, 211-1-2 Relativistic Dirac fermions on one-dimensional lattice Niodem Szpa Universität Duisburg-Essen & Ralf Schützhold Plan: 2 Jan 211 Discretized relativistic Dirac fermions (in an external

More information

Topological defects in graphene nanostructures

Topological defects in graphene nanostructures J. Smotlacha International Conference and Exhibition on Mesoscopic & Condensed Matter Physics June 22-24, 2015, Boston, USA Jan Smotlacha (BLTP JINR, Dubna, Russia) Topological defects in graphene nanostructures

More information

Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance

Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance Mark O. Goerbig J. Sári, C. Tőke (Pécs, Budapest); J.-N. Fuchs, G. Montambaux, F. Piéchon ; S. Tchoumakov,

More information

Emergent Horizons in the Laboratory

Emergent Horizons in the Laboratory Emergent Horizons in the Laboratory Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Emergent Horizons in the Laboratory p.1/26 Event Horizon Collapsing matter Singularity Light cones, light

More information

Microwave transmission spectra in regular and irregular one-dimensional scattering arrangements

Microwave transmission spectra in regular and irregular one-dimensional scattering arrangements Physica E 9 (2001) 384 388 www.elsevier.nl/locate/physe Microwave transmission spectra in regular and irregular one-dimensional scattering arrangements Ulrich Kuhl, Hans-Jurgen Stockmann Fachbereich Physik,

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

arxiv: v1 [quant-ph] 25 Oct 2018

arxiv: v1 [quant-ph] 25 Oct 2018 The measure of PBR s reality Sánchez-Kuntz, Natalia 1 and Nahmad-Achar, Eduardo 1 Institut für Theoretische Physik Universität Heidelberg Philosophenweg 16, D-6910 Heidelberg Instituto de Ciencias Nucleares

More information

On the partner particles for black-hole evaporation

On the partner particles for black-hole evaporation On the partner particles for black-hole evaporation Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen On the partner particles for black-hole evaporation p.1/12 Quantum Radiation Relativistic

More information

Supersymmetry and Quantum Hall effect in graphene

Supersymmetry and Quantum Hall effect in graphene Supersymmetry and Quantum Hall effect in graphene Ervand Kandelaki Lehrstuhl für Theoretische Festköperphysik Institut für Theoretische Physik IV Universität Erlangen-Nürnberg March 14, 007 1 Introduction

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

Carbon Nanotubes (CNTs)

Carbon Nanotubes (CNTs) Carbon Nanotubes (s) Seminar: Quantendynamik in mesoskopischen Systemen Florian Figge Fakultät für Physik Albert-Ludwigs-Universität Freiburg July 7th, 2010 F. Figge (University of Freiburg) Carbon Nanotubes

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

STM spectra of graphene

STM spectra of graphene STM spectra of graphene K. Sengupta Theoretical Physics Division, IACS, Kolkata. Collaborators G. Baskaran, I.M.Sc Chennai, K. Saha, IACS Kolkata I. Paul, Grenoble France H. Manoharan, Stanford USA Refs:

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10941 1. Motivation and summary of results. In this work we combine a central tenet of condensed matter physics how electronic band structure emerges from a periodic potential in a crystal

More information

Basic Semiconductor Physics

Basic Semiconductor Physics Chihiro Hamaguchi Basic Semiconductor Physics With 177 Figures and 25 Tables Springer 1. Energy Band Structures of Semiconductors 1 1.1 Free-Electron Model 1 1.2 Bloch Theorem 3 1.3 Nearly Free Electron

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Nanostructured Carbon Allotropes as Weyl-Like Semimetals Nanostructured Carbon Allotropes as Weyl-Like Semimetals Shengbai Zhang Department of Physics, Applied Physics & Astronomy Rensselaer Polytechnic Institute symmetry In quantum mechanics, symmetry can be

More information

The square lattice Ising model on the rectangle

The square lattice Ising model on the rectangle The square lattice Ising model on the rectangle Fred Hucht, Theoretische Physik, Universität Duisburg-Essen, 47048 Duisburg Introduction Connection to Casimir forces Free energy contributions Analytical

More information

Outline of Talk. Chern Number in a Band Structure. Contents. November 7, Single Dirac Cone 2

Outline of Talk. Chern Number in a Band Structure. Contents. November 7, Single Dirac Cone 2 Chern Number in a Band Structure November 7, 06 Contents Single Dirac Cone QAHE in TI. SS Hamiltonian in thick limit..................................... SS Hamiltonians with coupling...................................

More information

Project Report: Band Structure of GaAs using k.p-theory

Project Report: Band Structure of GaAs using k.p-theory Proect Report: Band Structure of GaAs using k.p-theory Austin Irish Mikael Thorström December 12th 2017 1 Introduction The obective of the proect was to calculate the band structure of both strained and

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Uwe-Jens Wiese Bern University LATTICE08, Williamsburg, July 14, 008 S. Chandrasekharan (Duke University) F.-J. Jiang, F.

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1463 Observation of Van Hove singularities in twisted graphene layers Guohong Li 1, A. Luican 1, J.M. B. Lopes dos Santos 2, A. H. Castro Neto 3, Alfonso Reina

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

TOPMAT CEA & CNRS, Saclay, France June 14, Inti Sodemann MPI - PKS Dresden

TOPMAT CEA & CNRS, Saclay, France June 14, Inti Sodemann MPI - PKS Dresden TOPMAT 2018 CEA & CNRS, Saclay, France June 14, 2018 Inti Sodemann MPI - PKS Dresden Part I New phase transitions of Composite Fermions Part II Bosonization and shear sound in 2D Fermi liquids New phase

More information

Quantum transport through graphene nanostructures

Quantum transport through graphene nanostructures Quantum transport through graphene nanostructures S. Rotter, F. Libisch, L. Wirtz, C. Stampfer, F. Aigner, I. Březinová, and J. Burgdörfer Institute for Theoretical Physics/E136 December 9, 2009 Graphene

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

More on the analogy between disclinations and cosmic strings

More on the analogy between disclinations and cosmic strings More on the analogy between disclinations and cosmic strings Fernando Moraes moraes@fisica.ufpb.br Grupo de Matéria Condensada Mole e Física Biológica Departamento de Física Universidade Federal da Paraíba

More information

Optics and Response Functions

Optics and Response Functions Theory seminar: Electronic and optical properties of graphene Optics and Response Functions Matthias Droth, 04.07.2013 Outline: Light absorption by Dirac fermions Intro: response functions The optics of

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

Quantum Oscillations in Graphene in the Presence of Disorder

Quantum Oscillations in Graphene in the Presence of Disorder WDS'9 Proceedings of Contributed Papers, Part III, 97, 9. ISBN 978-8-778-- MATFYZPRESS Quantum Oscillations in Graphene in the Presence of Disorder D. Iablonskyi Taras Shevchenko National University of

More information

Sine square deformation(ssd)

Sine square deformation(ssd) YITP arxiv:1603.09543 Sine square deformation(ssd) and Mobius quantization of twodimensional conformal field theory Niigata University, Kouichi Okunishi thanks Hosho Katsura(Univ. Tokyo) Tsukasa Tada(RIKEN)

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

Theory of Quantum Transport in Graphene and Nanotubes II

Theory of Quantum Transport in Graphene and Nanotubes II CARGESE7B.OHP (August 26, 27) Theory of Quantum Transport in Graphene and Nanotubes II 1. Introduction Weyl s equation for neutrino 2. Berry s phase and topological anomaly Absence of backscattering in

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Semiclassical Electron Transport

Semiclassical Electron Transport Semiclassical Electron Transport Branislav K. Niolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 64: Introduction to Solid State Physics http://www.physics.udel.edu/~bniolic/teaching/phys64/phys64.html

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals Topology of the Fermi surface wavefunctions and magnetic oscillations in metals A. Alexandradinata L.I. Glazman Yale University arxiv:1707.08586, arxiv:1708.09387 + in preparation Physics Next Workshop

More information

Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality

Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality Amitesh Maiti, 1, Alexei Svizhenko, 2, and M. P. Anantram 2 1 Accelrys Inc., 9685 Scranton Road, San

More information

Numerical Methods of Applied Mathematics -- II Spring 2009

Numerical Methods of Applied Mathematics -- II Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.336 Numerical Methods of Applied Mathematics -- II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

GENERALIZED PATH DEPENDENT REPRESENTATIONS FOR GAUGE THEORIES. Marat Reyes. Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México

GENERALIZED PATH DEPENDENT REPRESENTATIONS FOR GAUGE THEORIES. Marat Reyes. Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México GENERALIZED PATH DEPENDENT REPRESENTATIONS FOR GAUGE THEORIES Marat Reyes Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México LOOPS 07 MORELIA, MEXICO PLAN OF THE TALK INTRODUCTION:

More information

3.14. The model of Haldane on a honeycomb lattice

3.14. The model of Haldane on a honeycomb lattice 4 Phys60.n..7. Marginal case: 4 t Dirac points at k=(,). Not an insulator. No topological index...8. case IV: 4 t All the four special points has z 0. We just use u I for the whole BZ. No singularity.

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Two-dimensional Phosphorus Carbide as Promising Anode Materials for Lithium-ion Batteries

Two-dimensional Phosphorus Carbide as Promising Anode Materials for Lithium-ion Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supplementary Material for Two-dimensional Phosphorus Carbide as Promising

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Observation of unconventional edge states in photonic graphene Yonatan Plotnik 1 *, Mikael C. Rechtsman 1 *, Daohong Song 2 *, Matthias Heinrich 3, Julia M. Zeuner 3, Stefan Nolte 3, Yaakov Lumer 1, Natalia

More information

ĝ r = {R v} r = R r + v.

ĝ r = {R v} r = R r + v. SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS134 Topological semimetal in a fermionic optical lattice Kai Sun, 1 W. Vincent Liu,, 3, 4 Andreas Hemmerich, 5 and S. Das Sarma 1 1 Condensed Matter Theory Center

More information

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 10 CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 6.1 PREAMBLE Lot of research work is in progress to investigate the properties of CNTs for possible technological applications.

More information

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Sashi Satpathy Department of Physics University of Missouri, Columbia, USA E Ref: K. V. Shanavas and S. Satpathy, Phys. Rev.

More information

Coupling of spin and orbital motion of electrons in carbon nanotubes

Coupling of spin and orbital motion of electrons in carbon nanotubes Coupling of spin and orbital motion of electrons in carbon nanotubes Kuemmeth, Ferdinand, et al. "Coupling of spin and orbital motion of electrons in carbon nanotubes." Nature 452.7186 (2008): 448. Ivan

More information

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION Wolfgang Rindler Professor of Physics The University of Texas at Dallas OXPORD UNIVERSITY PRESS Contents Introduction l 1 From absolute space

More information

Quantum transport of 2D Dirac fermions: the case for a topological metal

Quantum transport of 2D Dirac fermions: the case for a topological metal Quantum transport of 2D Dirac fermions: the case for a topological metal Christopher Mudry 1 Shinsei Ryu 2 Akira Furusaki 3 Hideaki Obuse 3,4 1 Paul Scherrer Institut, Switzerland 2 University of California

More information

Quantum algebraic structures compatible with the harmonic oscillator Newton equation

Quantum algebraic structures compatible with the harmonic oscillator Newton equation J. Phys. A: Math. Gen. 32 (1999) L371 L376. Printed in the UK PII: S0305-4470(99)04123-2 LETTER TO THE EDITOR Quantum algebraic structures compatible with the harmonic oscillator Newton equation Metin

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Outline Insulators and Topological Insulators HgTe quantum well structures Two-Dimensional TI Quantum Spin Hall Effect experimental

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information