Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Size: px
Start display at page:

Download "Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany"

Transcription

1 Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany

2 Outline Insulators and Topological Insulators HgTe quantum well structures Two-Dimensional TI Quantum Spin Hall Effect experimental observations: quantized conductivity non-locality spin polarization Three-Dimensional TI Quantum Hall Effect

3 The Insulating States Topologically Generalized C.L.Kane and E.J.Mele, PRL 95, (25) C.L.Kane and E.J.Mele, PRL 95, (25) A.Bernevig and S.-C. Zhang, PRL 96, 1682 (26) C.L.Kane and E.J. Mele, Science 314, 1692 (26)

4 The Usual Boring Insulating State Characterized by energy gap: absence of low energy electronic excitations Covalent Insulator e.g. intrinsic semiconductor Atomic Insulator e.g. solid Ar The vacuum electron E gap ~ 1 ev 4s E gap ~ 1 ev 3p Dirac Vacuum E gap = 2 m e c 2 ~ 1 6 ev Silicon positron ~ hole

5 The Insulating State Topologically Generalized C.L.Kane and E.J.Mele, PRL 95, (25) C.L.Kane and E.J.Mele, PRL 95, (25) A.Bernevig and S.-C. Zhang, PRL 96, 1682 (26) C.L.Kane and E.J. Mele, Science 314, 1692 (26)

6 The Integer Quantum Hall State 2D Cyclotron Motion, Landau Levels E E gap c Energy gap, but NOT an insulator

7 Edge States Quantized Hall conductivity : bulk insulating J E y xy x 2 xy n e h Integer accurate to 1-9

8 Perfect Conductor magnetic field 1d dispersion E k F k F k The QHE state spatially separates the right and left moving states (spinless 1D liquid) suppressed backscattering first example of a new Topological Insulator

9 Topological Insulator

10 Topological Band Theory The distinction between a conventional insulator and the quantum Hall state is a topological property of the manifold of occupied states H( k) : Brillouin zone (torus) Bloch Hamiltonians with energy gap Classified by Chern (or TKNN) integer topological invariant (Thouless et al, 1982) 1 2 n d u u 2i BZ k k k ( k) ( k) u(k) = Bloch wavefunction Insulator : n = IQHE state : xy = n e 2 /h

11 Geometry and Topology Gauss and Bonnet topological 1 2 S KdA 2(1 g) geometric Example: Mug to Torus S: surface K -1 : product of the two radii of curvatures da: area element g: number of handles

12 Edge States The TKNN invariant can only change at a phase transition where the energy gap goes to zero Vacuum Vacuum n = n = 3 n = Dn = # Chiral Edge Modes This approach can actually be generalized to a spinfull QHE at zero magnetic field: the Quantum Spin Hall Effect

13 The Insulating State Topologically Generalized C.L.Kane and E.J.Mele, PRL 95, (25) C.L.Kane and E.J.Mele, PRL 95, (25) A.Bernevig and S.-C. Zhang, PRL 96, 1682 (26) C.L.Kane and E.J. Mele, Science 314, 1692 (26)

14 A two-dimensional topological insulator B quantum Hall effect topological invariant broken time reversal symmetry (TRS)

15 A two-dimensional topological insulator B

16 A two-dimensional topological insulator B helical edge states invariant under time reversal

17 Protected Edge States suppressed backscattering:

18 Protected Edge States suppressed backscattering: spin rotation: Dj = 2 Interference is destructive

19 Quantum Spin Hall Effect Stability of Helical Edge States: x 2e h G QSHE 2 x backscattering is only possible by time reversal symmetry breaking processes (for example external magnetic fields) or if more states are present k s k, s, 2 1, x x x x

20 Topological Insulator : A New B= Phase

21 Topological Insulator : A New B= Phase There are 2 classes of 2D time reversal invariant band structures Z 2 topological invariant: n =,1 Edge States for <k</a n= : Conventional Insulator n=1 : Topological Insulator Kramers degenerate at time reversal invariant momenta k* = k* + G k*= k*=/a k*= k*=/a even number of bands crossing Fermi energy odd number of bands crossing Fermi energy

22 QSHE in Graphene Graphene edge states gap C.L.Kane and E.J.Mele, PRL 95, (25) Graphene spin-orbit coupling strength is too weak gap only about 3 mev. not accessible in experiments

23 QSHE in HgTe Helical edge states for inverted HgTe QW E H1 E1 k B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (26)

24

25 HgTe band structure semi-metal 1 5 E (mev) -5 D 8 6 E g k (.1 ) 7 semiconductor D.J. Chadi et al. PRB, 358 (1972) fundamental energy gap 6 8 E E 3 mev

26 CdTe and HgTe CdTe HgTe H = H 1 + H D + H mv + H so

27 E (mev) E (mev) HgTe-Quantum Wells QW Barrier 1 HgTe Hg.32 Cd.68 Te VBO k (.1 ) 7 7 k (.1 ) VBO = 57 mev

28 HgTe-Quantum Wells Typ-III QW d 6 HgCdTe HH1 E1 HgTe HgCdTe 8 inverted normal band structure

29 Bandstructure 6 HgTe HgCdTe 6 Zero Gap for 6.3 nm QW structures HgTe HgCdTe 8 8

30 E [mev] E [mev] Dirac Band Structure 8 E2 d c 4 E1 H1-4 H2 H3-8 H d [nm] E1 H1 in-plane direction (k x,k y )=(1,) (k x,k y )=(1,1) -1 H k [nm -1 ]

31 xx [ xx [ Zero Gap B = 1 T 8k 7k 7 6 B = 5 T 3k xy [e²/h] k 5k 4k 3k 2k xy [e²/h] k 1k 1k -1 -,5,,5 1, V G - V Dirac [V] V G - V Dirac [V] B. Büttner et al., Nature Physics 7, 418 (211)

32 LL-Dispersion Kane model effective model LLchart Parameters: M ~ (-.35 mev) D = mev nm² G = mev nm² A = mev nm E(VG) conversion taken from appropriate Kane model B. Büttner et al., Nature Physics 7, 418 (211)

33 Finite Mobility 1.4 xx 8k 6k xx,min =.36 e²/h 1.2 measurement theory 1. 4k 2k DV G xx in e 2 /h V G -V Dirac [V] T [K] B. Büttner et al., Nature Physics 7, 418 (211)

34 Bandstructure 6 HgTe HgCdTe 6 HgTe HgCdTe 8 8 B.A Bernevig et al., Science 314, 1757 (26)

35 Effective Tight Binding Model square lattice with 4 orbitals per site s,, s,, ( p ip ),, ( p ip ), x y x y nearest neighbor hopping integral basis: E1, H1, E1, H1 hk ( ) Heff ( kx, ky) * h ( k)

36 Effective Tight Binding Model square lattice with 4 orbitals per site s,, s,, ( p ip ),, ( p ip ), x y x y nearest neighbor hopping integral basis: E1, H1, E1, H1 hk ( ) Heff ( kx, ky) * h ( k) at the -point k A k h( k) A relativistic Dirac equation 2 M ( k) k Asin k sin x i kx sin kx isin kx M ( k) k 2 M ( k) Ak x ikx x ikx M ( k) HgTe M normalqw for M inverted QW with tunable parameter M (band-gap)

37 Mass domain wall inverted band structure E H1 E1 k states localized on the domain wall which disperse along the x-direction y M> M< y M> x M< M x M> helical edge states

38 Quantum Spin Hall Effect M > M < normal insulator QSHE bulk entire sample insulating bulk insulating

39

40 x G 2e h 2 x

41 Experiment e e k k

42 Small Samples L W (L x W) mm 2. x 1. mm 1. x 1. mm 1. x.5 mm

43 QSHE Size Dependence 1 6 (1 x 1) mm 2 non-inverted R xx / (2 x 1) mm 2 (1 x 1) mm 2 G = 2 e 2 /h 1 3 (1 x.5) mm (V Gate - V thr ) / V König et al., Science 318, 766 (27)

44 R 2-8, 9-11 (k) QSHE Temperature Dependence Q2367 Microhallbar 1 x 1 mm 2 I(2-8), U(9-11); B= T; T= variabel; T = 1.8 K T = 2.5 K T = 4.2 K T = 6.4 K T = 9.8 K T = 19 K T = 28 K T = 48 K U G (V)

45 R (kohm) QSHE Excitation Voltage Dependence mV 14mV 12mV 1mV 8mV 6mV 4mV 2mV U g (V)

46 Conductance Quantization in 4-terminal geometry!? 2 18 V 16 R xx / k G = 2 e 2 /h I (V Gate - V thr ) / V

47 Small Samples

48 Role of Ohmic Contacts n-type metallic contact areas and leads areas where scattering takes place spin relaxation

49 Multi-Terminal Probe T t t I e G h I e G h m m m m generally ) ( e h n R t 3 exp 4 2 t t R R h e G t 2,exp 4 2 Landauer-Büttiker Formalism normal conducting contacts no QSHE ji j ij i ii i i T R M h e I m m 2

50 QSHE in inverted HgTe-QWs 4 35 G = 2/3 e 2 /h V I 4 R xx (k V 3 I G = 2 e 2 /h (2 x 1) mm 2 (1 x.5) mm (V Gate - V thr ) (V) R R 2t 4t 3

51 Non-locality mm 2 mm 6 5 4

52 I (na) Rnl (k) Non-locality I: 1-4 V nl :2-3 V V 3 I mk U Gate [ V ] A. Roth, HB et al., Science 325,295 (29)

53 R (k) Non-locality I: 1-3 V nl : LB: 8.6 k 12 V 1 8 G=3 e 2 /h 4-terminal V* (V) A. Roth, HB et al., Science 325,295 (29)

54 Non-locality 1 2 I: 1-4 V nl :2-3 V LB: 6.4 k 5 G=4 e 2 /h R 14,23 / k V gate / V A. Roth, HB et al., Science 325,295 (29)

55 R nl (k) Non-locality V LB: 4.3 k , -5,5-5, -4,5-4, -3,5-3, V (V) A. Roth, HB et al., Science 325,295 (29)

56 Back Scattering potential fluctuations introduce areas of normal metallic (n- or p-) conductance in which back scattering becomes possible QSHE The potential landscape is modified by gate (density) sweeps!

57 Back Scattering area of raised or lowered chem. Pot. the probalility for back scatterring increases strength length additional ohmic contact transition from a two to a three terminal device

58 Additional Scattering Potential Transition from scattering strength 2 e 2 /h 3/2 e 2 /h A. Roth, HB et al., Science 325,295 (29)

59 Additional Scattering Potential R 14,23 / k V gate / V A. Roth, HB et al., Science 325,295 (29)

60 Rnl (kw) Potential Fluctuations V LB: 4.3 k one additional contact: between 2 and k 4 3 V x A. Roth, HB et al., Science 325,295 (29)

61 V Potential Fluctuations different gate sweep direction V x LB: 22.1 k R nl / k 15 1 LB: 12.9 k V g / V Hysteresis effects due to charging of trap states at the SC-insulator interface J. Hinz, HB et al., Semicond. Sci. Technol. 21 (26) 51 56

62 metal insulator QW HgTe Quantum Well Structures layer structure impurity states discharging charging gate insulator Au 1 nm Si N /SiO cap layer doping layer barrier quantum well barrier doping layer buffer substrate 25 nm HgCdTe x =.7 1 nm HgCdTe x =.7 9 nm HgCdTe with I 1 nm HgCdTe x = nm HgTe 1 nm HgCdTe x =.7 9 nm HgCdTe with I 1 nm HgCdTe x =.7 25 nm CdTe CdZnTe(1) hysteresis effects: J. Hinz et al., Semicond. Sci. Technol. 21 (26) 51 56

63

64 Spin Polarizer

65 Spin Polarizer 5% 1 : 4 5%

66 Spin Polarizer 1% 1 % 5% 1%

67 Spin Injector 1% spin injection 1 % even with backscattering!

68 Spin Detection 1% Dm spin detector 1 %

69 QSHE SHE QSHE Spin Hall Effect as creator and analyzer of spin polarized electrons SHE -1

70 Split Gate H-Bar

71 QSHE Spin-Detector x n-type injector.8.6 5x QSHI-type detector detector sweep QSHE.2 p-type injector SHE V detector-gate / V 4 QSHI-type detector R 34,12 / k V injector-gate / V injector sweep

72 n-regime Q2198 p-regime E / mev n = cm -2 n H1 dl = cm -2 E1 H k / nm -1 E F E / mev p = cm -2 n dl = cm -2 H1 Dk E1 H k / nm -1 E F eex j s, y pf pf Dk 16m J.Sinova et al., Phys. Rev. Lett. 92, (24) Intrinsic Spin Hall Effekt Nature Physics 6, 448 (21)

73 QSHE Spin-Injector x n-type detector.8.6 5x QSHI-type detector injector sweep QSHE.2 p-type detector SHE QSHI-type injector R 12,34 / k V detector-gate / V detector sweep

74 n-type 1 detector sweep 1 V 8 8 V R nonloc / 6 4 R nonloc / U gate / V p-type U gate / V R nonloc / 6 4 R nonloc / U gate / V U gate / V

75 Spin-Current Switch I 2 I 1

76 Spin-Current Switch I 2 I 1

77 Spin-Current Switch I 2 I 1 QSHE

78 Spin-Current Switch I 2 I 1 ballistic injection

79 I [na] ballstic 5, 9/1 11/12 1/2 4,5 4, 3,5 B I A C D F I E 3, 8/7 6/5 4/3 2,5 2, 1,5 QSHE 1, -3, -2,5-2, -1,5-1, -,5, U (Gate ACDF) [V]

80 I [na] I [na] /1 11/12 1/ B I A C D F I E 1 5, 9 4,5-3, -2,5-2, -1,5-1, -,5, U (Gate ACDF) [V] 8/7 6/5 4/3 4, 3,5 3, 2,5 2, 1,5 1, -3, -2,5-2, -1,5-1, -,5, U (Gate ACDF) [V]

81

82

83

84 ¼ Graphene

85

86 E, mev Bulk HgTe 2 1 E F fully strained 7 nm HgTe on CdTe substrate ,3 -,2 -,1,,1,2,3 k, nm -1 band structure - gap openning - two Dirac cones on different surfaces Qy*1(rlu) x-ray diffraction (115 reflex) Q2424-map_1.xrdml Qx*1(rlu)

87 R xx in Ohm R xy in Ohm n= n=3 n= R xx (SdH) R xy (Hall) B in Tesla 4 2

88 R xx [k] xy [e 2 /h] B [T] R xy [k] B [T] Brüne et al., Phys. Rev. Lett. 16, (211)

89 R xx in Ohm DOS Density of states for two independent surfaces with slightly different density 1 8 n n cm 11-2 cm B in Tesla

90 Brüne et al., Phys. Rev. Lett. 16, (211)

91 Summary the QSH effect which consists of an insulating bulk and two counter propagating spin polarized edge channels (Kramers doublet) quantized edge channel transport the QSH effect can be used as an effective spin injector and spin detector with 1 % spin polarization properties Strained HgTe bulk exhibits two-dimensional surface states

92 Acknowledgements Quantum Transport Group (Würzburg, ) C. Brüne C. Ames P. Leubner Ex-QT: C.R. Becker T. Beringer M. Lebrecht J. Schneider S. Wiedmann N. Eikenberg R. Rommel F. Gerhard B. Krefft A. Roth B. Büttner R. Pfeuffer L. Maier M. Mühlbauer A. Friedel Stanford University S.-C. Zhang X.L. Qi J. Maciejko T. L. Hughes M. König C. Thienel H. Thierschmann R. Schaller J. Mutterer A. Astakhova CX Liu Lehrstuhl für Experimentelle Physik 3: L.W. Molenkamp Collaborations: Texas A&M University J. Sinova Univ. Würzburg Inst. f. Theoretische Physik E.M. Hankiewicz B. Trautzettel

93 Quantum Spin Hall Effekt Science 318, 766 (27) The Quantum Spin Hall Effect: Theory and Experiment J. Phys. Soc. Jap. Vol. 77, 317 (28) Nonlocal edge state transport in the quantum spin Hall state Science 325, 294 (29) Intrinsic Spin Hall Effekt Nature Physics 6, 448 (21) Quantum Hall Effect from the Topological Surface States of Strained Bulk HgTe Phys. Rev. Lett. 16, (211)

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Overview - HgTe/CdTe bandstructure, quantum spin Hall effect: 2D TI - Dirac surface states of strained bulk HgTe: 3D TI - Topological

More information

InAs/GaSb A New 2D Topological Insulator

InAs/GaSb A New 2D Topological Insulator InAs/GaSb A New 2D Topological Insulator 1. Old Material for New Physics 2. Quantized Edge Modes 3. Adreev Reflection 4. Summary Rui-Rui Du Rice University Superconductor Hybrids Villard de Lans, France

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology. Notes on Topological Insulators and Quantum Spin Hall Effect Jouko Nieminen Tampere University of Technology. Not so much discussed concept in this session: topology. In math, topology discards small details

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Quantum Spin Hall Insulator State in HgTe Quantum Wells

Quantum Spin Hall Insulator State in HgTe Quantum Wells SLAC-PUB-15949 Quantum Spin Hall Insulator State in HgTe Quantum Wells Markus König 1, Steffen Wiedmann 1, Christoph Brüne 1, Andreas Roth 1, Hartmut Buhmann 1, Laurens W. Molenkamp 1,, Xiao-Liang Qi 2

More information

InAs/GaSb A New Quantum Spin Hall Insulator

InAs/GaSb A New Quantum Spin Hall Insulator InAs/GaSb A New Quantum Spin Hall Insulator Rui-Rui Du Rice University 1. Old Material for New Physics 2. Quantized Edge Modes 3. Andreev Reflection 4. Summary KITP Workshop on Topological Insulator/Superconductor

More information

Quantum Spin Hall Effect: a theoretical and experimental introduction at kindergarten level, non-shown version

Quantum Spin Hall Effect: a theoretical and experimental introduction at kindergarten level, non-shown version Quantum Spin Hall Effect: a theoretical and experimental introduction at kindergarten level, non-shown version Ze-Yang Li 1, Jia-Chen Yu 2 and Shang-Jie Xue 3 December 21, 2015 1 光学所 2 凝聚态所 3 量 材料中 Historical

More information

Topological insulators

Topological insulators Oddelek za fiziko Seminar 1 b 1. letnik, II. stopnja Topological insulators Author: Žiga Kos Supervisor: prof. dr. Dragan Mihailović Ljubljana, June 24, 2013 Abstract In the seminar, the basic ideas behind

More information

Topological Insulators and Superconductors

Topological Insulators and Superconductors Topological Insulators and Superconductors Lecture #1: Topology and Band Theory Lecture #: Topological Insulators in and 3 dimensions Lecture #3: Topological Superconductors, Majorana Fermions an Topological

More information

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University Topological Insulators and Superconductors Tokyo 2010 Shoucheng Zhang, Stanford University Colloborators Stanford group: Xiaoliang Qi, Andrei Bernevig, Congjun Wu, Chaoxing Liu, Taylor Hughes, Sri Raghu,

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Spatially resolved study of backscattering in the quantum spin Hall state SUPPLEMENTAL MATERIAL

Spatially resolved study of backscattering in the quantum spin Hall state SUPPLEMENTAL MATERIAL Spatially resolved study of backscattering in the quantum spin Hall state SUPPLEMENTAL MATERIAL Markus König 1,2, Matthias Baenninger 1,2, Andrei G. F. Garcia 1, Nahid Harjee 3, Beth L. Pruitt 4, C. Ames

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21 Topological Insulator Surface States and Electrical Transport Alexander Pearce Intro to Topological Insulators: Week 11 February 2, 2017 1 / 21 This notes are predominately based on: J.K. Asbóth, L. Oroszlány

More information

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University Topological insulators and the quantum anomalous Hall state David Vanderbilt Rutgers University Outline Berry curvature and topology 2D quantum anomalous Hall (QAH) insulator TR-invariant insulators (Z

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan (Dated: November 1, 18) Contents I. D Topological insulator 1 A. General

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

arxiv: v1 [cond-mat.mes-hall] 19 Dec 2008

arxiv: v1 [cond-mat.mes-hall] 19 Dec 2008 Ballistic Intrinsic Spin-Hall Effect in HgTe Nanostructures C. Brüne 1, A. Roth 1, E.G. Novik 1, M. König 1, H. Buhmann 1, E.M. Hankiewicz, W. Hanke, J. Sinova 3, and L. W. Molenkamp 1 1 Physikalisches

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h. Quantum Hall effect V1 V2 R L I I x = N e2 h V y V x =0 G xy = N e2 h n.b. h/e 2 = 25 kohms Quantization of Hall resistance is incredibly precise: good to 1 part in 10 10 I believe. WHY?? Robustness Why

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

Organizing Principles for Understanding Matter

Organizing Principles for Understanding Matter Organizing Principles for Understanding Matter Symmetry Conceptual simplification Conservation laws Distinguish phases of matter by pattern of broken symmetries Topology Properties insensitive to smooth

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Quantum anomalous Hall states on decorated magnetic surfaces

Quantum anomalous Hall states on decorated magnetic surfaces Quantum anomalous Hall states on decorated magnetic surfaces David Vanderbilt Rutgers University Kevin Garrity & D.V. Phys. Rev. Lett.110, 116802 (2013) Recently: Topological insulators (TR-invariant)

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov ES'12, WFU, June 8, 212 The present work was done in collaboration with David Vanderbilt Outline:

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

Zürich. Transport in InAs-GaSb quantum wells. Klaus Ensslin

Zürich. Transport in InAs-GaSb quantum wells. Klaus Ensslin Transport in InAs-GaSb quantum wells Klaus Ensslin Solid State Physics the material system ambipolar behavior non-local transport inverted bandstructure Zürich Collaborators: S. Müller, M. Karalic, C.

More information

Supplementary Online Information : Images of edge current in InAs/GaSb quantum wells

Supplementary Online Information : Images of edge current in InAs/GaSb quantum wells Supplementary Online Information : Images of edge current in InAs/GaSb quantum wells Eric M. Spanton, 1, 2 Katja C. Nowack, 1, 3 Lingjie Du, 4 Gerard Sullivan, 5 Rui-Rui Du, 4 1, 2, 3 and Kathryn A. Moler

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene Philip Kim Physics Department, Columbia University Acknowledgment Prof. Cory Dean (now at CUNY) Lei Wang Patrick Maher Fereshte Ghahari Carlos

More information

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells Wei Pan Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

More information

Room temperature topological insulators

Room temperature topological insulators Room temperature topological insulators Ronny Thomale Julius-Maximilians Universität Würzburg ERC Topolectrics SFB Tocotronics Synquant Workshop, KITP, UC Santa Barbara, Nov. 22 2016 Correlated electron

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Department of Physics, Indian Institute of Science, Bangalore Nature 585 466 (2010) Quantum Hall Effect Magnetic field

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

Topological thermoelectrics

Topological thermoelectrics Topological thermoelectrics JAIRO SINOVA Texas A&M University Institute of Physics ASCR Oleg Tretiakov, Artem Abanov, Suichi Murakami Great job candidate MRS Spring Meeting San Francisco April 28th 2011

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Quantum Spin Hall Effect in Inverted Type II Semiconductors

Quantum Spin Hall Effect in Inverted Type II Semiconductors Quantum Spin Hall Effect in Inverted Type II Semiconductors Chaoxing Liu 1,2, Taylor L. Hughes 2, Xiao-Liang Qi 2, Kang Wang 3 and Shou-Cheng Zhang 2 1 Center for Advanced Study, Tsinghua University,Beijing,

More information

arxiv: v1 [cond-mat.other] 20 Apr 2010

arxiv: v1 [cond-mat.other] 20 Apr 2010 Characterization of 3d topological insulators by 2d invariants Rahul Roy Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK arxiv:1004.3507v1 [cond-mat.other] 20 Apr 2010

More information

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells arxiv:cond-mat/0611399v1 [cond-mat.mes-hall] 15 Nov 006 Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells B. Andrei Bernevig, 1, Taylor L. Hughes, 1 and Shou-Cheng Zhang 1

More information

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Chiral Majorana fermion from quantum anomalous Hall plateau transition

Chiral Majorana fermion from quantum anomalous Hall plateau transition Chiral Majorana fermion from quantum anomalous Hall plateau transition Phys. Rev. B, 2015 王靖复旦大学物理系 wjingphys@fudan.edu.cn Science, 2017 1 Acknowledgements Stanford Biao Lian Quan Zhou Xiao-Liang Qi Shou-Cheng

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Andreev transport in 2D topological insulators

Andreev transport in 2D topological insulators Andreev transport in 2D topological insulators Jérôme Cayssol Bordeaux University Visiting researcher UC Berkeley (2010-2012) Villard de Lans Workshop 09/07/2011 1 General idea - Topological insulators

More information

Topological Physics in Band Insulators. Gene Mele DRL 2N17a

Topological Physics in Band Insulators. Gene Mele DRL 2N17a Topological Physics in Band Insulators Gene Mele DRL 2N17a Electronic States of Matter Benjamin Franklin (University of Pennsylvania) That the Electrical Fire freely removes from Place to Place in and

More information

Topological states of matter in correlated electron systems

Topological states of matter in correlated electron systems Seminar @ Tsinghua, Dec.5/2012 Topological states of matter in correlated electron systems Qiang-Hua Wang National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China Collaborators:Dunghai

More information

Recent developments in topological materials

Recent developments in topological materials Recent developments in topological materials NHMFL Winter School January 6, 2014 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Berkeley students: Andrew Essin,

More information

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS HIGHER INVARIANTS: TOPOLOGICAL INSULATORS Sponsoring This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962 Jean BELLISSARD Georgia Institute of Technology,

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern Building Frac-onal Topological Insulators Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern The program Background: Topological insulators Frac-onaliza-on Exactly solvable Hamiltonians for frac-onal

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Topological Physics in Band Insulators IV

Topological Physics in Band Insulators IV Topological Physics in Band Insulators IV Gene Mele University of Pennsylvania Wannier representation and band projectors Modern view: Gapped electronic states are equivalent Kohn (1964): insulator is

More information

v. Tε n k =ε n k T r T = r, T v T = r, I v I = I r I = v. Iε n k =ε n k Berry curvature: Symmetry Consideration n k = n k

v. Tε n k =ε n k T r T = r, T v T = r, I v I = I r I = v. Iε n k =ε n k Berry curvature: Symmetry Consideration n k = n k Berry curvature: Symmetry Consideration Time reversal (i.e. motion reversal) 1 1 T r T = r, T v T = v. Tε n k =ε n k n k = n k Inversion Symmetry: 1 1 I r I = r, I v I = v. Iε n k =ε n k n k = n k θ

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

arxiv: v1 [cond-mat.mes-hall] 20 Aug 2013

arxiv: v1 [cond-mat.mes-hall] 20 Aug 2013 The resistance of D Topological insulator in the absence of the quantized transport arxiv:8.56v [cond-mat.mes-hall] Aug G.M.Gusev, Z.D.Kvon,, E.B Olshanetsky, A.D.Levin, Y. Krupko, J.C. Portal,,5 N.N.Mikhailov,

More information

Exploring topological states with cold atoms and photons

Exploring topological states with cold atoms and photons Exploring topological states with cold atoms and photons Theory: Takuya Kitagawa, Dima Abanin, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Immanuel Bloch, Eugene Demler Experiments: I. Bloch s group

More information

arxiv: v1 [cond-mat.mes-hall] 17 Jan 2013

arxiv: v1 [cond-mat.mes-hall] 17 Jan 2013 Electrically Tunable Topological State in [111] Perovskite Materials with Antiferromagnetic Exchange Field Qi-Feng Liang, 1,2 Long-Hua Wu, 1 and Xiao Hu 1 1 International Center for Materials Nanoarchitectornics

More information

Abelian and non-abelian gauge fields in the Brillouin zone for insulators and metals

Abelian and non-abelian gauge fields in the Brillouin zone for insulators and metals Abelian and non-abelian gauge fields in the Brillouin zone for insulators and metals Vienna, August 19, 2014 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Outline

More information

Tutorial: Berry phase and Berry curvature in solids

Tutorial: Berry phase and Berry curvature in solids Tutorial: Berry phase and Berry curvature in solids Justin Song Division of Physics, Nanyang Technological University (Singapore) & Institute of High Performance Computing (Singapore) Funding: (Singapore)

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Floquet Topological Insulators and Majorana Modes

Floquet Topological Insulators and Majorana Modes Floquet Topological Insulators and Majorana Modes Manisha Thakurathi Journal Club Centre for High Energy Physics IISc Bangalore January 17, 2013 References Floquet Topological Insulators by J. Cayssol

More information

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś Spin-orbit effects in graphene and graphene-like materials Józef Barnaś Faculty of Physics, Adam Mickiewicz University, Poznań & Institute of Molecular Physics PAN, Poznań In collaboration with: A. Dyrdał,

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

STM spectra of graphene

STM spectra of graphene STM spectra of graphene K. Sengupta Theoretical Physics Division, IACS, Kolkata. Collaborators G. Baskaran, I.M.Sc Chennai, K. Saha, IACS Kolkata I. Paul, Grenoble France H. Manoharan, Stanford USA Refs:

More information

Weyl semi-metal: a New Topological State in Condensed Matter

Weyl semi-metal: a New Topological State in Condensed Matter Weyl semi-metal: a New Topological State in Condensed Matter Sergey Savrasov Department of Physics, University of California, Davis Xiangang Wan Nanjing University Ari Turner and Ashvin Vishwanath UC Berkeley

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System

Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System Correlations and coherence in quantum systems Évora, Portugal, October 11 2012 Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System Erik Eriksson (University of Gothenburg)

More information