Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Size: px
Start display at page:

Download "Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots"

Transcription

1 Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures 2011 Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 1 / 10

2 Introduction Outline Outline Introduction Quantum dot spectrum and spin structure (surface) Dirac Fermion theory on the surface Tight binding approach Summary A. Kundu, A. Zazunov, A. Levy Yeyati, T. Martin & R. Egger, Phys Rev B 83, (2011) Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 2 / 10

3 Introduction Motivation Introduction Strong spin-orbit coupling and band inversion conspire to produce a time-reversal invariant topological insulator phase in meterials like Bi 2 Se 3 which has a bulk gap b 0.3 ev. Xia et all, Nature Physics (2009) 1 The measured spin texture of the surface is consistent with predictions obtained from 2D massless Dirac fermions. 2 The surface state is stable under weak TR invariant disorders. 3 The spin-momentum is locked on the surface. D. Hsieh et al, Nature 2009 Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 3 / 10

4 Introduction Motivation Introduction Strong spin-orbit coupling and band inversion conspire to produce a time-reversal invariant topological insulator phase in meterials like Bi 2 Se 3 which has a bulk gap b 0.3 ev. Xia et all, Nature Physics (2009) 1 The measured spin texture of the surface is consistent with predictions obtained from 2D massless Dirac fermions. 2 The surface state is stable under weak TR invariant disorders. 3 The spin-momentum is locked on the surface. D. Hsieh et al, Nature 2009 Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 3 / 10

5 Zhang et al, Nature Phys 5, 438 (2009) and Liu et al, PRB 82, (2010) H b = ɛ 0 σ 0 τ 0 + M k σ 0 τ z + [A 0 (k x σ x + k y σ y ) + B 0 kσ z ]τ x (1) This also defines the fermi velocities v 1 = B 0 and v 2 = A 0 in x y plane and along z axis. σ and τ acts on spin and orbital space to give rise spin-parity structure for the eigen state of the Hamiltonin. For cylindrically symmetric geometry: we have the conserved angular momenta: J = i φ + σ z /2 (2) Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 4 / 10

6 Zhang et al, Nature Phys 5, 438 (2009) and Liu et al, PRB 82, (2010) H b = ɛ 0 σ 0 τ 0 + M k σ 0 τ z + [A 0 (k x σ x + k y σ y ) + B 0 kσ z ]τ x (1) This also defines the fermi velocities v 1 = B 0 and v 2 = A 0 in x y plane and along z axis. σ and τ acts on spin and orbital space to give rise spin-parity structure for the eigen state of the Hamiltonin. For cylindrically symmetric geometry: we have the conserved angular momenta: J = i φ + σ z /2 (2) σ r,φ,z = ê r,φ,z. σ Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 4 / 10

7 Dispersion relation of surface states: E j,± (k) = ± (v 1 k) 2 + (jv 2 /R) 2 And a gap in the spectrum which is 1/R Spin is locked with the surface σ r = 0 Egger et al, PRL (2010) Finite semiconductor nanowire/ carbon nanotube experiments are successfull Nygard et all, Nature (2000), Postma et all, Science (2001) Nontrivial spin connection in spherical TI Parente et all, arxiv: New feature may arise due to sharp (non-differential) egdes, for eg. in cylindrical geometry Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 5 / 10

8 Dispersion relation of surface states: E j,± (k) = ± (v 1 k) 2 + (jv 2 /R) 2 And a gap in the spectrum which is 1/R Spin is locked with the surface σ r = 0 Egger et al, PRL (2010) Finite semiconductor nanowire/ carbon nanotube experiments are successfull Nygard et all, Nature (2000), Postma et all, Science (2001) Nontrivial spin connection in spherical TI Parente et all, arxiv: New feature may arise due to sharp (non-differential) egdes, for eg. in cylindrical geometry Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 5 / 10

9 For finite length cylinder : m = j σ/2 ψ j,ν,n,σ,τ = 2/V sin[nπ(z/l 1/2)]e imφ J m(γ m/r ) J m+1 (γ mν ) η τ χ σ (3) Kramers degeneracy j j k n nπ/l additional n = 0 states emerges one for valence band and one for conduction band for j > 1/2, a pair of subgap states inside the gap s. σ φ = 0 and σ r 0 Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 6 / 10

10 For finite length cylinder : m = j σ/2 ψ j,ν,n,σ,τ = 2/V sin[nπ(z/l 1/2)]e imφ J m(γ m/r ) J m+1 (γ mν ) η τ χ σ (3) Kramers degeneracy j j k n nπ/l additional n = 0 states emerges one for valence band and one for conduction band for j > 1/2, a pair of subgap states inside the gap s. σ φ = 0 and σ r 0 Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 6 / 10

11 For finite length cylinder : m = j σ/2 ψ j,ν,n,σ,τ = 2/V sin[nπ(z/l 1/2)]e imφ J m(γ m/r ) J m+1 (γ mν ) η τ χ σ (3) Kramers degeneracy j j k n nπ/l additional n = 0 states emerges one for valence band and one for conduction band for j > 1/2, a pair of subgap states inside the gap s. σ φ = 0 and σ r 0 Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 6 / 10

12 For finite length cylinder : m = j σ/2 ψ j,ν,n,σ,τ = 2/V sin[nπ(z/l 1/2)]e imφ J m(γ m/r ) J m+1 (γ mν ) η τ χ σ (3) Kramers degeneracy j j k n nπ/l additional n = 0 states emerges one for valence band and one for conduction band for j > 1/2, a pair of subgap states inside the gap s. σ φ = 0 and σ r 0 Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 6 / 10

13 For finite length cylinder : m = j σ/2 ψ j,ν,n,σ,τ = 2/V sin[nπ(z/l 1/2)]e imφ J m(γ m/r ) J m+1 (γ mν ) η τ χ σ (3) Kramers degeneracy j j k n nπ/l additional n = 0 states emerges one for valence band and one for conduction band for j > 1/2, a pair of subgap states inside the gap s. σ φ = 0 and σ r 0 Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 6 / 10

14 For finite length cylinder : m = j σ/2 ψ j,ν,n,σ,τ = 2/V sin[nπ(z/l 1/2)]e imφ J m(γ m/r ) J m+1 (γ mν ) η τ χ σ (3) Kramers degeneracy j j k n nπ/l additional n = 0 states emerges one for valence band and one for conduction band for j > 1/2, a pair of subgap states inside the gap s. σ φ = 0 and σ r 0 Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 6 / 10

15 For finite length cylinder : m = j σ/2 ψ j,ν,n,σ,τ = 2/V sin[nπ(z/l 1/2)]e imφ J m(γ m/r ) J m+1 (γ mν ) η τ χ σ (3) Kramers degeneracy j j k n nπ/l additional n = 0 states emerges one for valence band and one for conduction band for j > 1/2, a pair of subgap states inside the gap s. σ φ = 0 and σ r 0 Spin surface locking breaking reported previously Fu, PRL (2009) & Yazyev, Moore, Louie, PRL (2010) Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 6 / 10

16 For finite length cylinder : m = j σ/2 ψ j,ν,n,σ,τ = 2/V sin[nπ(z/l 1/2)]e imφ J m(γ m/r ) J m+1 (γ mν ) η τ χ σ (3) Kramers degeneracy j j k n nπ/l additional n = 0 states emerges one for valence band and one for conduction band for j > 1/2, a pair of subgap states inside the gap s. σ φ = 0 and σ r 0 Spin surface locking breaking reported previously Fu, PRL (2009) & Yazyev, Moore, Louie, PRL (2010) Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 6 / 10

17 Surface Dirac fermion Theory Surface Dirac fermion Theory [ v 1 σ φ ( i z ) v 2 ] τ z H D = R σ zj ( H c = v 2 [ i r + 1 ) σ r + J ] 2r R σ φ τ x H D = [ v 1 σ φ ( i z ) v2 R σ zj ] ˆτ the operator ˆτ can be determined from symmetries of the Hamiltonian, namely azimuthal symmetry, time reversal symmetry & inversion symmetry. H = H D (φ, z)δ(r R) + H cap (r, φ) s=± δ(z sl/2) (4) Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 7 / 10

18 Surface Dirac fermion Theory Surface Dirac fermion Theory [ v 1 σ φ ( i z ) v 2 ] τ z H D = R σ zj ( H c = v 2 [ i r + 1 ) σ r + J ] 2r R σ φ τ x H D = [ v 1 σ φ ( i z ) v2 R σ zj ] ˆτ the operator ˆτ can be determined from symmetries of the Hamiltonian, namely azimuthal symmetry, time reversal symmetry & inversion symmetry. H = H D (φ, z)δ(r R) + H cap (r, φ) s=± δ(z sl/2) (4) Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 7 / 10

19 Surface Dirac fermion Theory which gives the energy quantisation: On the surface of the cap, we obtain E n,j,± = ± (πnv 1 /L) 2 + (jv 2 /R) 2 (5) σ φ = 0 σ r 0 For each total angular momentum j, there are two zero-momentum states corresponding to conduction and valence band, respectively. For the physically allowed k = 0 we find spatially uniform densities. Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 8 / 10

20 Tight Binding Approach Tight Binding Model A simple microscopic model for strong TI was previously proposed by Fu, Kane, Mele PRL (2007) H tb = <i,j> t ij c i c j + 4iλ so a 2 We observe sub gap states as from the low energy model As similar to both the previous predictions, we observe < σ φ >= 0, < σ r > 0 (7) Also, note that, for infinite nanowire, TB calculations give < σ r >= 0. <<i,j>> c i ( σ).[ d 1 ij d 2 ij ]c j (6) Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 9 / 10

21 Summary Summary All three approaches shows that the spin surface locking is broken due to the presence of such edges. A nontrivial eigenstate with k = n = 0. In such a zero-momentum state the charge and spin densities along the trunk are basically homogeneous. The finite-length nanowire dot has subgap states when electron-hole symmetry is broken. The wavefunction of such a subgap state is localized on both caps simultaneously. It may be interesting to observe the effect of coulomb interactions and applied magnetic field Arijit Kundu (Heinrich-Heine University) Topological Insulator quantum dot 10 / 10

Electronic transport in topological insulators

Electronic transport in topological insulators Electronic transport in topological insulators Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alex Zazunov, Alfredo Levy Yeyati Trieste, November 011 To the memory of my dear friend Please

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

Protection of the surface states of a topological insulator: Berry phase perspective

Protection of the surface states of a topological insulator: Berry phase perspective Protection of the surface states of a topological insulator: Berry phase perspective Ken-Ichiro Imura Hiroshima University collaborators: Yositake Takane Tomi Ohtsuki Koji Kobayashi Igor Herbut Takahiro

More information

Spin-Orbit Interactions in Semiconductor Nanostructures

Spin-Orbit Interactions in Semiconductor Nanostructures Spin-Orbit Interactions in Semiconductor Nanostructures Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Spin-Orbit Hamiltonians

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology. Notes on Topological Insulators and Quantum Spin Hall Effect Jouko Nieminen Tampere University of Technology. Not so much discussed concept in this session: topology. In math, topology discards small details

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Topological thermoelectrics

Topological thermoelectrics Topological thermoelectrics JAIRO SINOVA Texas A&M University Institute of Physics ASCR Oleg Tretiakov, Artem Abanov, Suichi Murakami Great job candidate MRS Spring Meeting San Francisco April 28th 2011

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

Wiring Topological Phases

Wiring Topological Phases 1 Wiring Topological Phases Quantum Condensed Matter Journal Club Adhip Agarwala Department of Physics Indian Institute of Science adhip@physics.iisc.ernet.in February 4, 2016 So you are interested in

More information

Coupling of spin and orbital motion of electrons in carbon nanotubes

Coupling of spin and orbital motion of electrons in carbon nanotubes Coupling of spin and orbital motion of electrons in carbon nanotubes Kuemmeth, Ferdinand, et al. "Coupling of spin and orbital motion of electrons in carbon nanotubes." Nature 452.7186 (2008): 448. Ivan

More information

TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS. Jan 23, 2012, University of Illinois, Urbana-Chamapaign

TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS. Jan 23, 2012, University of Illinois, Urbana-Chamapaign TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS Pavan Hosur UC Berkeley Jan 23, 2012, University of Illinois, Urbana-Chamapaign Acknowledgements Advisor: Ashvin Vishwanath UC Berkeley

More information

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato Crystalline Symmetry and Topology YITP, Kyoto University Masatoshi Sato In collaboration with Ken Shiozaki (YITP) Kiyonori Gomi (Shinshu University) Nobuyuki Okuma (YITP) Ai Yamakage (Nagoya University)

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010 Discovery of several large families of Topological Insulator classes with backscattering-suppressed spin-polarized single-dirac-cone on the surface arxiv:1007.5111v1 [cond-mat.mes-hall] 29 Jul 2010 Su-Yang

More information

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov ES'12, WFU, June 8, 212 The present work was done in collaboration with David Vanderbilt Outline:

More information

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies Constantine Yannouleas and Uzi Landman School of Physics, Georgia Institute of Technology [1] Ch. 4 in Metal Clusters,

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Dirac point insulator with topologically non-trivial surface states D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan Topics: 1. Confirming the bulk nature of electronic bands by

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES)

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) PART A: ARPES & Application Yulin Chen Oxford University / Tsinghua University www.arpes.org.uk

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Topological Photonics with Heavy-Photon Bands

Topological Photonics with Heavy-Photon Bands Topological Photonics with Heavy-Photon Bands Vassilios Yannopapas Dept. of Physics, National Technical University of Athens (NTUA) Quantum simulations and many-body physics with light, 4-11/6/2016, Hania,

More information

Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko

Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko Moscow Institute of Electronics and Mathematics, Higher School of Economics Collaborators Alexander

More information

Topological Bandstructures for Ultracold Atoms

Topological Bandstructures for Ultracold Atoms Topological Bandstructures for Ultracold Atoms Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106,

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

Universal transport at the edge: Disorder, interactions, and topological protection

Universal transport at the edge: Disorder, interactions, and topological protection Universal transport at the edge: Disorder, interactions, and topological protection Matthew S. Foster, Rice University March 31 st, 2016 Universal transport coefficients at the edges of 2D topological

More information

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups Structure and Topology of Band Structures in the 1651 Magnetic Space Groups Haruki Watanabe University of Tokyo [Noninteracting] Sci Adv (2016) PRL (2016) Nat Commun (2017) (New) arxiv:1707.01903 [Interacting]

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Quantum Spin Hall Effect in Graphene

Quantum Spin Hall Effect in Graphene Quantum Spin Hall Effect in Graphene Taylor S., Kai S., Benjamin S., Kathryn W., Penghao Z. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 -- (2005) Quick Overview First the Motivation. Go over

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Marino Marsi Laboratoire de Physique des Solides CNRS Univ. Paris-Sud - Université Paris-Saclay IMPACT, Cargèse, August 26

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern Building Frac-onal Topological Insulators Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern The program Background: Topological insulators Frac-onaliza-on Exactly solvable Hamiltonians for frac-onal

More information

ASHVIN VISHWANATH HARVARD UNIVERSITY, USA.

ASHVIN VISHWANATH HARVARD UNIVERSITY, USA. BOULDER SUMMER SCHOOL LECTURE NOTES TOPOLOGICAL SEMIMETALS AND SYMMETRY PROTECTED TOPOLOGICAL PHASES ASHVIN VISHWANATH HARVARD UNIVERSITY, USA. In the previous lectures you have heard about topological

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Topological Insulators and Superconductors

Topological Insulators and Superconductors Topological Insulators and Superconductors Lecture #1: Topology and Band Theory Lecture #: Topological Insulators in and 3 dimensions Lecture #3: Topological Superconductors, Majorana Fermions an Topological

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Interactions and transport in Majorana wires. Alfredo Levy Yeyati

Interactions and transport in Majorana wires. Alfredo Levy Yeyati Interactions and transport in Majorana wires Alfredo Levy Yeyati SPICE Workshop: Spin dynamics in the Dirac systems, Mainz 6-9 June 2017 Content Low energy transport theory in Majorana wire junctions,

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS HIGHER INVARIANTS: TOPOLOGICAL INSULATORS Sponsoring This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962 Jean BELLISSARD Georgia Institute of Technology,

More information

Composite Dirac liquids

Composite Dirac liquids Composite Dirac liquids Composite Fermi liquid non-interacting 3D TI surface Interactions Composite Dirac liquid ~ Jason Alicea, Caltech David Mross, Andrew Essin, & JA, Physical Review X 5, 011011 (2015)

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Interband effects and orbital suceptibility of multiband tight-binding models

Interband effects and orbital suceptibility of multiband tight-binding models Interband effects and orbital suceptibility of multiband tight-binding models Frédéric Piéchon LPS (Orsay) with A. Raoux, J-N. Fuchs and G. Montambaux Orbital suceptibility Berry curvature ky? kx GDR Modmat,

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

Majorana Fermions in Superconducting Chains

Majorana Fermions in Superconducting Chains 16 th December 2015 Majorana Fermions in Superconducting Chains Matilda Peruzzo Fermions (I) Quantum many-body theory: Fermions Bosons Fermions (II) Properties Pauli exclusion principle Fermions (II)

More information

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h. Quantum Hall effect V1 V2 R L I I x = N e2 h V y V x =0 G xy = N e2 h n.b. h/e 2 = 25 kohms Quantization of Hall resistance is incredibly precise: good to 1 part in 10 10 I believe. WHY?? Robustness Why

More information

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana

More information

Weyl semimetals and topological phase transitions

Weyl semimetals and topological phase transitions Weyl semimetals and topological phase transitions Shuichi Murakami 1 Department of Physics, Tokyo Institute of Technology 2 TIES, Tokyo Institute of Technology 3 CREST, JST Collaborators: R. Okugawa (Tokyo

More information

Time-Reversal Symmetric Two-Dimensional Topological Insulators: The Bernevig-Hughes-Zhang Model

Time-Reversal Symmetric Two-Dimensional Topological Insulators: The Bernevig-Hughes-Zhang Model Time-Reversal Symmetric Two-Dimensional Topological Insulators: The Bernevig-Hughes-Zhang Model Alexander Pearce Intro to Topological Insulators: Week 5 November 26, 2015 1 / 22 This notes are based on

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan (Dated: November 1, 18) Contents I. D Topological insulator 1 A. General

More information

E E F (ev) (a) (a) (b) (c) (d) (A ) (A ) M

E E F (ev) (a) (a) (b) (c) (d) (A ) (A ) M Pis'ma v ZhET, vol. 96, iss. 12, pp. 870 { 874 c 2012 December 25 New topological surface state in layered topological insulators: unoccupied Dirac cone S. V. Eremeev +1), I. V. Silkin, T. V. Menshchikova,

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21 Topological Insulator Surface States and Electrical Transport Alexander Pearce Intro to Topological Insulators: Week 11 February 2, 2017 1 / 21 This notes are predominately based on: J.K. Asbóth, L. Oroszlány

More information

Topological Defects in the Topological Insulator

Topological Defects in the Topological Insulator Topological Defects in the Topological Insulator Ashvin Vishwanath UC Berkeley arxiv:0810.5121 YING RAN Frank YI ZHANG Quantum Hall States Exotic Band Topology Topological band Insulators (quantum spin

More information

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Nanostructured Carbon Allotropes as Weyl-Like Semimetals Nanostructured Carbon Allotropes as Weyl-Like Semimetals Shengbai Zhang Department of Physics, Applied Physics & Astronomy Rensselaer Polytechnic Institute symmetry In quantum mechanics, symmetry can be

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

arxiv: v1 [cond-mat.supr-con] 17 Dec 2009

arxiv: v1 [cond-mat.supr-con] 17 Dec 2009 Odd-Parity Topological Superconductors: Theory and Application to Cu x Bi Se 3 Liang Fu and Erez Berg Department of Physics, Harvard University, Cambridge, MA 0138 arxiv:091.394v1 [cond-mat.supr-con] 17

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Recent developments in topological materials

Recent developments in topological materials Recent developments in topological materials NHMFL Winter School January 6, 2014 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Berkeley students: Andrew Essin,

More information

Topological insulator gap in graphene with heavy adatoms

Topological insulator gap in graphene with heavy adatoms Topological insulator gap in graphene with heavy adatoms ES2013, College of William and Mary Ruqian Wu Department of Physics and Astronomy, University of California, Irvine, California 92697 Supported

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Majorana-type quasiparticles in nanoscopic systems

Majorana-type quasiparticles in nanoscopic systems Kraków, 20 IV 2015 Majorana-type quasiparticles in nanoscopic systems Tadeusz Domański / UMCS, Lublin / Kraków, 20 IV 2015 Majorana-type quasiparticles in nanoscopic systems Tadeusz Domański / UMCS, Lublin

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture Electronic structure of correlated electron systems G.A.Sawatzky UBC Lecture 6 011 Influence of polarizability on the crystal structure Ionic compounds are often cubic to maximize the Madelung energy i.e.

More information